
Blood Fluke Exploitation of Non-Cognate CD4+ T Cell
Help to Facilitate Parasite Development

Erika W. Lamb1, Colleen D. Walls1, John T. Pesce2, Diana K. Riner1, Sean K. Maynard1, Emily T. Crow1,

Thomas A. Wynn2, Brian C. Schaefer1, Stephen J. Davies1*

1Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America, 2 Laboratory of

Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America

Abstract

Schistosoma blood flukes, which infect over 200 million people globally, co-opt CD4+ T cell-dependent mechanisms to
facilitate parasite development and egg excretion. The latter requires Th2 responses, while the mechanism underpinning
the former has remained obscure. Using mice that are either defective in T cell receptor (TCR) signaling or that lack TCRs
that can respond to schistosomes, we show that naı̈ve CD4+ T cells facilitate schistosome development in the absence of T
cell receptor signaling. Concurrently, the presence of naı̈ve CD4+ T cells correlates with both steady-state changes in the
expression of genes that are critical for the development of monocytes and macrophages and with significant changes in
the composition of peripheral mononuclear phagocyte populations. Finally, we show that direct stimulation of the
mononuclear phagocyte system restores blood fluke development in the absence of CD4+ T cells. Thus we conclude that
schistosomes co-opt innate immune signals to facilitate their development and that the role of CD4+ T cells in this process
may be limited to the provision of non-cognate help for mononuclear phagocyte function. Our findings have significance
for understanding interactions between schistosomiasis and other co-infections, such as bacterial infections and human
immunodeficiency virus infection, which potently stimulate innate responses or interfere with T cell help, respectively. An
understanding of immunological factors that either promote or inhibit schistosome development may be valuable in
guiding the development of efficacious new therapies and vaccines for schistosomiasis.
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Introduction

Extensive co-evolution of parasitic organisms and their hosts has

given rise to complex host-parasite relationships in which exploita-

tion of host responses to infection by parasites is a recurring theme.

Nowhere is this complexity in host-parasite relationships better

exemplified than in the parasitic helminths, which infect a third of

the world’s human population [1] by establishing chronic infections

that persist for years, often in the face of vigorous immune responses

[2]. Schistosoma blood flukes account for a significant proportion of

these helminth infections, causing considerable morbidity and

mortality. After initiating infection by direct skin penetration,

schistosomes migrate in the bloodstream to hepatic pre-sinusoidal

venules, where rapid growth and development ensues, culminating

in mating of adult worms and the production of eggs.

It was previously shown that Schistosoma mansoni co-opts CD4+ T

cell-dependent mechanisms to facilitate both parasite development

during pre-patent infection and the excretion of parasite eggs after

the onset of oviposition [3,4,5]. The latter requires formation of

Th2-dependent granulomas in the bowel wall to allow passage of

eggs from the portal vasculature into the intestinal lumen [3,4,6].

However, the mechanism by which CD4+ T cells facilitate

development of schistosome worms has not been elucidated.

While homeostatic maintenance of peripheral CD4+ T cells

through the action of cc cytokines is required to provide a

permissive environment for schistosome development [7], previous

studies did not identify a role for effector Th1/Th2 responses or

any single effector cytokine in parasite development [5,8,9].

In this study we tested whether activation of CD4+ T cells

through the T cell receptor (TCR) by schistosome antigens is

required for schistosome development to proceed. Unexpectedly,

our data indicate that CD4+ T cells that lack specificity for

schistosome antigens can facilitate schistosome development in the

absence of antigen-mediated T cell activation. Interestingly, the

presence of naı̈ve, resting CD4+ T cells also correlates both with

steady-state transcriptional changes in the expression of genes that

are critical for development of monocytes and macrophages and

with changes in the composition of peripheral monocyte

populations. Further, direct stimulation of the mononuclear

phagocyte system bypasses the requirement for CD4+ T cells in

schistosome development, suggesting that innate cells of the

mononuclear phagocyte system facilitate schistosome development

and that CD4+ T cells influence the parasites indirectly by

modulating monocyte/macrophage function. Together, our re-

sults demonstrate that blood flukes exploit innate immune signals

to facilitate their development and suggest that the role of CD4+ T

cells in this process may be limited to the provision of non-cognate

help for innate mononuclear cell function.
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Results

TCR signaling blockade does not impair parasite
development
To evaluate the role of T cell activation in schistosome

development, we first examined schistosome development in

Bcl10 (Unigene accession no. Mm.239141) -deficient and protein

kinase C h (PKCh; Mm.329993) –deficient mice, where impair-

ment of NF-kB activation in response to TCR ligation renders T

cells unresponsive to antigen [10,11]. Unexpectedly, S. mansoni

recovered from Bcl10-/- and wild type mice were indistinguishable

in size (Figure 1A) and deposited comparable numbers of eggs

(Figure 1B), unlike schistosomes from recombination activating

gene 1 (RAG-1; Mm.828) -deficient mice that exhibit a severely

stunted phenotype and greatly reduced rates of egg production ([5]

and data not shown; see also Figure 1D and E). As expected, CD4+

T cell responses to S. mansoni were impaired by Bcl10 deletion, as

measured by acquisition of an activated phenotype (Figures S1A

and B) and cytokine production (Figure S1C), suggesting that

activation of CD4+ T cells through the TCR and subsequent

CD4+ T cell responses are dispensable for normal schistosome

development. Identical results were obtained with PKCh-/- mice

(data not shown). To directly test whether Bcl10-/- CD4+ T cells

can facilitate schistosome development, parasite development was

examined in RAG-1-/- mice that were reconstituted with Bcl10-/-

CD4+ T cells. Adoptive transfer of Bcl10-/- CD4+ T cells prior to

infection partially restored worm growth (Figures 1C and D),

resulting in a phenotype that was intermediate between RAG-1-/-

recipients of wild type CD4+ T cells and non-reconstituted RAG-

1-/- mice. Likewise, adoptive transfer of Bcl10-/- CD4+ T cells

produced an intermediate egg production phenotype that was not

significantly different from RAG-1-/- recipients of wild type CD4+

T cells or non-reconstituted RAG-1-/- mice, even though egg

production in these latter two groups was significantly different

from each other (Figure 1E). Identical results were obtained when

adoptive transfers were performed with PKCh-/- CD4+ T cells

(data not shown). Because TCR signals are required for T cell

homeostasis [12], Bcl10-/- CD4+ T cells exhibited variable levels of

engraftment that were consistently lower than those of wild type

cells (Figure 1F). However, there was a significant positive

correlation between the number of Bcl10-/- CD4+ T cells and

the mean length of the worms recovered from each recipient

(Figure 1G). These data suggest that CD4+ T cells do not require

intact antigen receptor signaling to facilitate parasite development.

Further, our data suggest there is a simple requirement for

sufficient numbers of CD4+ T cells to allow parasite development

to proceed and predict a minimum of approximately 26106 CD4+

T cells as the number required to restore parasite growth to wild

type levels (Figure 1G).

Non-responsive CD4+ T cells facilitate S. mansoni

development
To test whether TCR specificity for schistosome antigens is

necessary for CD4+ T cells to facilitate schistosome development,

we examined S. mansoni development in TCR-transgenic RAG-/-

mice that transgenically express previously rearranged MHC class

II-restricted TCRs specific for irrelevant antigens. In RAG-/- mice

possessing only chicken ovalbumin (OVA)-specific (OT-II/RAG-

1-/- C57BL/6, DO11.10/RAG-2-/- BALB/c) or pigeon cyto-

chrome C (PCC)-specific (Cyt5-CC7/RAG-2-/- B10.A) CD4+ T

cells, schistosome development was enhanced relative to RAG-/-

controls that lack CD4+ T cells, as determined by assessment of

parasite size (Figures 2A and B) and egg production (Figure 2C).

The extent to which parasite development was rescued varied

between the different strains, with DO11.10/RAG-2-/- mice

supporting parasite development that was comparable to wild

type mice and parasites from OT-II/RAG-1-/- and Cyt5-CC7/

RAG-2-/- exhibiting intermediate levels of development. As

expected, OVA- and PCC-specific CD4+ T cells from S. mansoni-

infected RAG-/- mice were completely unresponsive to schisto-

some antigens (Figures S2A and S2B), though these cells retained

the ability to respond to the appropriate antigen (Figure S2B).

These data demonstrate that CD4+ T cells do not require

specificity for schistosome antigens and do not need antigen

stimulation in order to facilitate schistosome development.

Furthermore, the MHCII molecule by which the TCR is restricted

is also likely irrelevant, as the three transgenic TCRs used

recognize different murine MHCII molecules. Taken together, the

data in Figures 1 and 2 suggest that CD4+ T cells influence the

outcome of schistosome infection by mechanisms that are

independent of antigen receptor specificity and signaling.

The presence of naı̈ve CD4+ cells correlates with steady-
state changes in mononuclear phagocyte development
Regardless of antigen specificity, naı̈ve CD4+ T cells are

maintained by active homeostatic processes [12], requiring cc
cytokines and interactions with professional APCs that express

MHCII [13,14,15,16,17,18]. Because the effect of CD4+ T cells on

schistosome development is independent of antigen receptor

specificity and antigen-mediated activation (Figures 1 and 2), we

hypothesized that steady-state homeostatic interactions between

naı̈ve CD4+ T cells and MHCII+ APCs in host tissues may play a

role in promoting schistosome development. To identify tran-

scriptional changes induced by the steady-state homeostatic

interactions of naı̈ve CD4+ T cells, we used a whole genome

microarray to compare transcript levels in liver tissue from non-

infected RAG-1-/- and OT-II/RAG-1-/- mice (NCBI GEO series

accession number GSE8340.) Using this approach, we identified

165 genes that were differentially expressed only in the presence of

naı̈ve CD4+ T cells (Figure 3A and Table S1). None of these genes

Author Summary

Schistosomes, or blood flukes, cause a debilitating illness
in millions of people worldwide, which manifests when
inflammation develops in response to parasite eggs that
become trapped in the liver and other organs. Paradox-
ically, schistosomes require signals from the host’s immune
system in order to develop fully into egg-producing adults.
Previously, we showed that CD4+ T cells facilitate
schistosome development. Here, we show that the mere
presence of CD4+ T cells is sufficient for schistosome
development to proceed. There is no requirement for
these cells to respond to the parasite, or to exhibit any
typical ‘‘effector’’ response. Two pieces of data suggest this
effect on parasite development is mediated by antigen-
presenting cells of the innate immune system such as
monocytes and macrophages, which interact with CD4+ T
cells by expressing MHC class II molecules. First, the
presence of naı̈ve CD4+ T cells correlates with baseline
changes in the development of monocyte/macrophage
populations. Second, direct stimulation of the monocyte-
macrophage system restores parasite development, by-
passing the requirement for CD4+ T cells in schistosome
development. Understanding the mechanisms that pro-
mote or inhibit blood fluke infection may facilitate
the development of new treatments and vaccines for
schistosomiasis.
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are specifically expressed by CD4+ T cells, suggesting that OT-II

CD4+ T cells contribute relatively little to the total hepatic RNA,

being relatively few in number and transcriptionally quiescent.

Supervised average-linkage hierarchical clustering of the expres-

sion data revealed that the transcriptional profile of hepatic tissue

from OT-II/RAG-1-/- mice was more similar to that of wild type

mice than RAG-1-/- mice, with the single largest grouping of genes

comprising those that were expressed at higher levels in wild type

and OT-II/RAG-1-/- mice when compared to RAG-1-/- mice

(Figure 3A).

To identify biological functions associated with the differentially

expressed genes, we employed a structured, knowledge-based

approach to identify networks of differentially expressed genes

with related functions [19]. Ingenuity Pathways Analysis software

(Ingenuity Systems, www.ingenuity.com) was used to overlay

differentially expressed genes onto a global molecular network

developed from information contained in the Ingenuity Pathways

Knowledge Base. Networks of up to 35 differentially expressed

genes were then algorithmically generated based on the functional

connectivity between the genes. Numerical network scores were

calculated to rank networks according to their degree of relevance

to the molecules in the dataset. Using this approach, five high-

scoring networks (score.20) of differentially expressed genes were

identified, a representative of which (score = 45) is illustrated in

Figure 3B. Biological functions significantly associated with the

networks, together with the genes associated with each function,

are displayed in Table S2. Biological functions with the most

significant associations included Cell Morphology (P=

1.3761024
24.8061022), Cellular Compromise (P=1.3761024

24.3161022), Cell Cycle (P=2.2861024
24.5861022), Cell

Death (P=6.3061024
24.3161022) and Cell-to-Cell Signaling

and Interaction (P=7.5161024
24.3161022), suggesting signifi-

cant changes in cellular development within the liver in the

presence of naı̈ve CD4+ T cells. Interestingly, genes significantly

up-regulated in the presence of naı̈ve CD4+ T cells included Csf1/

macrophage colony-stimulating factor (M-CSF) (UniGene acces-

sion no. Mm.795), which is an essential growth factor for

monocytes and monocyte-derived macrophages [20], and other

genes involved in myeloid cell development and function (Myd116

(Mm.4048) [21], Cd2 (Mm.22842) [22], Gli1 (Mm.391450) [23]

and Plld (Mm.29933) [24]; highlighted in Figure 3A), suggesting

specific alterations in mononuclear phagocyte development. Other

genes that were up-regulated in the presence of naı̈ve CD4+ T cells

are associated with the cellular response to stress (highlighted in

Figure 3A), including genes involved in the response to mis-folded

proteins [25], e.g. several chaperones (Hsp90aa1 (UniGene

Accession No. Mm.341186) [26], Hsp90ab1 (Mm.2180) [26],

Hsp110 (Mm.270681) [27], p23 (Mm.305816) [28], Dnajb9

(Mm.27432) [29]), enzymes involved in protein folding (Sep15

(Mm.29812) [30], a disulfide isomerase (Mm.33692) [31], a

peptidyl-prolyl cis-trans isomerase (Mm.32842)), enzymes involved

in protein degradation (Ubxd2 (Mm.29812) [32], the Syvn1

ubiquitin ligase (Mm.149870) [33], Usp43 (Mm.158885)), and

DNA-binding proteins involved in the transcriptional response to

stress (an XBP-1-like transcription factor (Mm.187453) [34], the

ER transmembrane transcription factor Creb3l2 (Mm.391651)

[35], H2afx (Mm.245931) [36], and Junb (Mm.1167) [37]). Junb

in particular is a central regulator of the cellular response to stress

and is targeted for phosphorylation by stress-activated protein

kinases [38]. Presumably because of the role of these cells in

phagocytosis and in antigen processing and presentation, stress

responses are constitutively active in immature APCs and are

required for APC development and survival [39], Indeed, the

stress response gene Junb is also a critical regulator of myeloid cell

differentiation and is classified as a myeloid differentiation primary

response (MyD) gene [40]. Also up-regulated in the presence of

naı̈ve CD4+ T cells were genes involved in another critical aspect

of phagocyte and APC function, namely vesicle formation and

transport, e.g. Rabgap1l (Mm.25833) [41], Arhgap21 (Mm.28507)

[42], Arfip2 (Mm.41637) [43], Kif13b (Mm.23611) [44], and

Diap1 (Mm.195916), which is also implicated in receptor-

mediated phagocytosis in myeloid cells [45]. Thus, transcriptional

changes consistent with alterations in mononuclear phagocyte

and/or APC development and function correlate with the

presence of naı̈ve CD4+ T cells in OT-II/RAG-1-/- mice.

To explore the possibility that mononuclear phagocyte

development was altered by the presence of CD4+ T cells,

leukocytes from the spleen and liver of non-infected RAG-1-/- and

OT-II/RAG-1-/- mice were compared by flow cytometry. After

gating to exclude granulocytes and OT-II T cells, mononuclear

phagocytes were identified by expression of the myeloid marker

CD11b (Mm.262106) [46]. In both mouse strains, CD11b+ cells

segregated into two populations based on relative CD11b

expression levels and forward scattering (FSC) properties –

CD11bhi FSChi and CD11blo FSClo (Figure 3C). However, the

relative proportions of the two populations differed markedly in

the two strains, with RAG-1-/- mice possessing relatively more

CD11blo cells than OT-II/RAG-1-/- mice (Figure 3C). Further

analysis revealed that the two CD11b+ populations also differed

significantly in expression of CD115 (Mm.22574, the receptor for

M-CSF), with CD11hi cells exhibiting higher CD115 expression

than CD11lo cells (Figure 3D; P=0.0016). Both CD11b+

populations also expressed Ly6C (Mm.1583, a monocyte marker),

although again, CD11bhi cells exhibited higher levels than

CD11blo cells (Figure 3D). Together, the greater forward scatter

and elevated expression of CD115 by CD11bhi cells strongly

suggest these are functionally more mature mononuclear phago-

cytes than CD11blo cells, as increased size and expression of

CD11b and CD115 are all implicated in monocyte activation and

maturation [47,48,49]. Finally, systematic analysis of CD11bhi and

Figure 1. TCR signaling in CD4+ T cells is dispensable for S. mansoni development. (A) Wild type and Bcl10-/- mice were infected with S.

mansoni, parasites were recovered from the portal tract at 6 weeks post infection and male worms were measured from digital micrographs. Mean
values are represented by horizontal bars. (B) Egg production by schistosome pairs in wild type and Bcl10-/- mice at 6 weeks post infection. Mean
values are represented by horizontal bars. (C) RAG-1-/- mice reconstituted with wild type or Bcl10-/- CD4+ T cells mice were infected with S. mansoni

and parasites were recovered from the portal tract at 6 weeks post infection. Representative micrographs of parasites recovered from non-
reconstituted RAG-1-/- mice and RAG-1-/- mice reconstituted with wild type or Bcl10-/- CD4+ T cells are shown. Bar = 1 mm. (D) Lengths of male worms
recovered from reconstituted RAG-1-/- mice described in (C) were measured from digital micrographs. Mean values are represented by horizontal
bars. (E) Egg production by schistosome pairs in reconstituted RAG-1-/- mice described in (C) at 6 weeks post infection. Mean values are represented
by horizontal bars. (F) At necropsy, the numbers of CD4+ T cells in the spleens of RAG-1-/- recipients were determined by flow cytometry. Data are
represented as mean +/2 SEM. (G) Correlation of average male worm length and CD4+ T cell numbers for each RAG-1-/- recipient of Bcl10-/- CD4+ T
cells. ‘‘WT Transfer’’ and ‘‘No Transfer’’ dashed lines represent the average length of parasites recovered from control mice that received wild type
CD4+ T cells or PBS alone, respectively. Worm length data for each mouse are represented as mean +/2 SEM. Groups of 4–5 mice were used for each
experimental condition. Data are representative of three independent experiments.
doi:10.1371/journal.ppat.1000892.g001
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CD11blo populations in age-matched groups of non-infected OT-

II/RAG-1-/- and RAG-1-/- mice revealed that cells of the

functionally more mature CD11bhi phenotype were significantly

more abundant in OT-II/RAG-1-/- mice than RAG-1-/- mice

(Figure 3E). Thus, our data suggest that, compared to OT-II/

RAG-1-/- mice, RAG-1-/- mice exhibit a defect in mononuclear

phagocyte development, with accumulation of cells that possess an

immature CD11blo phenotype. Furthermore, this alteration in

myeloid cell development correlates with reduced expression of

genes that are required for mononuclear phagocyte development

and function (Figure 3A, Figure 3B, Tables S1 and S2). As the only

difference between RAG-1-/- and OT-II/RAG-1-/- mice is that, in

B C

RAG-1 -/-Wild type OT-II/RAG-1 -/-

A
W

o
rm

 l
e

n
g

th
 (

m
m

)

Wild type OT-II/

RAG-1 -/-
RAG-1 -/-

0

1

2

3

4

5

6
P<0.01 P<0.001

P<0.001

E
g

g
s
 p

e
r 

p
a

ir

Wild type OT-II/

RAG-1 -/-
RAG-1 -/-

0

300

600

900

P>0.05

P<0.01

P>0.05

W
o

rm
 l
e

n
g

th
 (

m
m

)

Wild type DO11.10/

RAG-2 -/-
RAG-2 -/-

P>0.05 P<0.001

P<0.001

0
1
2
3
4
5
6
7

E
g

g
s
 p

e
r 

p
a

ir

Wild type DO11.10/

RAG-2 -/-
RAG-2 -/-

0

10000

20000

30000

P>0.05 P<0.05

P<0.05

W
o

rm
 l
e
n
g
th

 (
m

m
)

Wild type Cyt/

RAG-1 -/-
RAG-1 -/-

P<0.001 P<0.001

P<0.001

0

1

2

3

4

5

6

E
g

g
s
 p

e
r 

p
a

ir

Wild type Cyt/

RAG-1 -/-
RAG-1 -/-

0

5000

10000

15000

20000
P>0.05 P>0.05

P<0.01

Figure 2. Recognition of schistosome antigens by CD4+ T cells is dispensable for S. mansoni development. (A) Wild type, OT-II/RAG-1-/-

and RAG-1-/- mice were infected with S. mansoni and parasites were recovered from the portal tract at 6 weeks post infection. Representative
micrographs of parasites recovered from wild type, OT-II/RAG-1-/- and RAG-1-/- mice are shown. Bar = 1 mm. (B) Length of male worms and (C) egg
production by schistosome pairs from OT-II/RAG-1-/- (top), DO11.10/RAG-2-/- (center) and Cyt/RAG-1-/- (bottom) mice and their appropriate wild type
and RAG-/- controls at 6 weeks post infection. Mean values are represented by horizontal bars. Groups of 4–5 mice were used for each experimental
condition. Data are representative of at least two independent experiments.
doi:10.1371/journal.ppat.1000892.g002
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the latter, transgenic expression of a previously rearranged MHC

II-restricted TCR allows for development of a monospecific

population of CD4+ T cells with specificity for chicken ovalbumin,

our data suggest that steady-state MHCII-TCR-mediated inter-

actions between mononuclear cells and naı̈ve CD4+ T cells

enhances developmental progression of mononuclear phagocytes

to a functionally more mature state.

Direct activation of mononuclear phagocytes rescues
schistosome development in the absence of CD4+ T cells
Since enhanced parasite development and egg production in

OT-II/RAG-1-/- mice correlated with enhanced steady-state

maturation of monocytes in these animals, we hypothesized that

non-responsive OT-II CD4+ T cells facilitate schistosome

development indirectly, through steady-state interactions with

mononuclear cells that promote monocyte maturation. To test this

hypothesis, we tested whether direct stimulation of mononuclear

phagocyte maturation, in the absence of any CD4+ T cells, could

substitute for CD4+ T cells in restoring parasite development in

RAG-/- mice. As the Toll-like receptor (TLR) -4 (Mm.38049)

ligand lipopolysaccharide (LPS) has previously been shown to

stimulate the in vivo maturation of monocytes [50,51], we

administered ultrapure LPS to schistosome-infected RAG-/- mice

during pre-patent infection and assessed the effect on parasite

growth and egg production at 6 weeks post infection. Consistent

with other reports [50], we found that LPS administration caused

a significant decrease in the relative numbers of CD11b+

monocytes (Figure 4A), indicative of the terminal maturation

and subsequent apoptosis of these cells in response to TLR-4

ligation. Treatment of both BALB/c RAG-2-/- (Figures 4B-D) and

C57BL/6 RAG-1-/- (Figures 4E and 4F) mice with LPS led to

significant increases in both parasite length (Figures 4B, 4C and

4E) and egg production (Figure 4D and 4F). Indeed, parasite

growth (Figure 4E) and egg production (Figure 4F) were responsive

to increasing doses of LPS. Together these data indicate that

innate immune signals alone are sufficient to support schistosome

development and suggest that blood flukes exploit the role of

CD4+ T cells in providing help for mononuclear phagocyte

maturation and function.

Discussion

Parasites of the genus Schistosoma likely arose over 70 million

years ago [52] and have undergone complex co-evolution with

their definitive hosts, resulting in parasite adaptations that both

evade and exploit host immune functions. Previous studies showed

that schistosomes require host CD4+ T cells for normal

development [5,53,54] and to mediate egress of eggs from the

body across the bowel wall [3,55]. While egg excretion requires

induction of an effector Th2 response to egg antigens [6], the

CD4+ T cell effector functions that facilitate blood fluke

development have not been elucidated. Because previous studies

failed to identify a specific role for either Th1 or Th2 responses in

schistosome development [5,8], the question of whether any CD4+

T effector functions are required to promote schistosome

development remained unresolved. Therefore, the purpose of this

study was to test whether antigen receptor signaling and

subsequent activation of CD4+ T cells are necessary for normal

parasite development to proceed. Our results show that, in

contrast to the requirement for effector T cell responses to

facilitate egg excretion, neither recognition of schistosome antigens

nor TCR-mediated activation of CD4+ T cells are required for

normal parasite development. Our findings suggest that none of

the effector functions typically associated with CD4+ T cell

responses are directly implicated in facilitating schistosome

development, and may explain why previous attempts to identify

a single T cell factor that modulates schistosome development,

using knockout mice deficient in individual cytokines or their

receptors [8], have been unsuccessful.

The schistosome requirement for CD4+ T cells, but the lack of

necessity for traditional T cell effector functions, suggests that the

steady-state homeostatic activities of naı̈ve CD4+ T cells make the

host environment more conducive to schistosome development.

While the role of homeostatic interactions with MHCII+ cells in

maintaining the peripheral CD4+ T cell pool is well established,

the necessity of these same interactions for efficient APC

maturation is being increasingly recognized [18,56,57]. In T

cell-deficient mice, APC development and function are compro-

mised but can be restored by reconstitution of peripheral T cell

populations [18]. Furthermore, it was recently demonstrated that

T cell conditioning of APCs for efficient maturation occurs under

steady-state conditions before the initiation of T cell responses, in

the absence of cognate antigen, and is mediated, at least in part, by

the co-stimulatory molecule B7-H1 expressed by naı̈ve T cells

[57]. We propose that similar steady-state interactions between

naı̈ve OT-II T cells and MHCII+ cells in OT-II/RAG-1-/- mice

account for the baseline increases in APC-related gene expression

and the alterations in mononuclear cell maturation we observed in

these mice.

Given the ability of naı̈ve T cells to prime for efficient APC

maturation, we hypothesized that exploitation of APC function by

schistosomes, rather than of CD4+ T cells directly, accounts for the

enhanced parasite development we observed in TCR-transgenic

RAG-/- mice. While we cannot exclude the possibility that

unknown factors elaborated by resting, naı̈ve T cells directly

influence schistosome development, our hypothesis provides a

Figure 3. Modulation of gene expression in the liver by naı̈ve CD4+ T cells. (A) Microarray analysis revealed 165 genes that are expressed at
statistically different (P,0.05) levels in liver tissue of both OT-II/RAG-1-/- and wild type mice compared to RAG-1-/- mice. Supervised hierarchical
clusters of all 165 differentially expressed genes are shown. Red corresponds to overexpression and green to underexpression, compared to the
pooled reference sample. Genes upregulated in OT-II/RAG-1-/- and wild type mice relative to RAG-1-/- mice are indicated by a bracket. Asterisks
denote functional annotation as follows: red, myeloid cell development; blue, stress response; green, vesicle formation and transport. For a full list of
differentially expressed genes, fold change in expression and statistical significance, see Table S1. Three animals of each genotype were used as a
source of RNA for each array. Hybridizations were performed three times (i.e. nine arrays in total). (B) A representative network of functionally related
genes from Figure 3A, algorithmically generated based on significant functional gene connectivity in the Ingenuity Pathways Knowledge Base.
Network score = 45. Annotations in red denote genes associated with the five most significant biological functions listed in Table S2, as follows: m,
Cell Morphology; c, Cellular Compromise; y, Cell Cycle; d, Cell Death; s, Cell-to-Cell Signaling and Interaction. (C) Flow cytometric analysis of peripheral
CD11b+ mononuclear cells from representative RAG-1-/- (upper panels) and OT-II/RAG-1-/- (lower panels) mice. After excluding dead cells and
granulocytes, mononuclear cells were selected based on CD11b positivity and forward scatter (gate, left panels). Cells in this gate resolved into two
populations (hi and lo) based on CD11b expression levels (right panels). (D) Analysis of CD115 (left panels) and Ly6C (right panels) expression by
CD11blo (upper panels) and CD11bhi (lower panels) cells defined by the gates in C, right panels. Gates indicate the percentage of gated cells
expressing each marker. P values were calculated from analysis of 5 mice per group. (E) Relative abundance of CD11bhi and CD11blo cells in OT-II/
RAG-1-/- and RAG-1-/- mice.
doi:10.1371/journal.ppat.1000892.g003
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parsimonious explanation for why naı̈ve CD4+ T cells that do not

respond to schistosome infection can still influence parasite

development. That schistosome development can be restored in

the complete absence of CD4+ T cells, through direct maturation

of APCs, supports this hypothesis by demonstrating that CD4+ T

cells are not directly required for parasite development.

As the sentinels of the immune system, circulating monocytes

and tissue macrophages and dendritic cells, also known as the

mononuclear phagocyte system, specifically express pattern

recognition receptors (PRRs), including TLRs, which allow for

the detection of invading pathogens [58]. Indeed, monocytes

express high levels of TLRs and are the predominant producers of

proinflammatory cytokines during endotoxic shock [59]. Thus

while other cells in RAG-/- mice express PRRs, the monocytes,

macrophages and dendritic cells are the predominant responders

to pathogen-associated molecular patterns (PAMPs) such as LPS

and are the likely mediators of the effect of LPS on schistosome

development. Monocytes, macrophages and dendritic cells are

ontologically related, as monocytes are the macrophage and

dendritic cell precursors that migrate into the tissues, both during

steady-state conditions and during infection. In response to

infection, PRR ligation stimulates increased monocyte flux to

meet the elevated demand for antigen-presenting and effector cells

to combat infection [60]. Our demonstration that LPS adminis-

tration restores schistosome development is therefore further

evidence in support of the hypothesis we propose above, that

schistosome development is influenced by innate mononuclear cell

function. Indeed, our data point to mononuclear cell function as

the common mechanism underpinning the enhancement of

schistosome development by both naı̈ve CD4+ T cells and LPS.

This hypothesis is under further investigation.

Several hypotheses can be proposed to explain how mononuclear

phagocytes might influence shistosome development. Recruited to

sites of infection and tissue damage, mononuclear cells produce

cytokines and chemokines in response to activation that could act as

cues for developing schistosomes [51]. Alternatively, the localized

release of proinflammatory cytokines by mononuclear cells would be

predicted to increase blood flow and vascular permeability, perhaps

increasing the supply of host factors required for normal parasite

development. At sites of inflammation, monocyte-derived cells also

contribute to blood vessel remodeling and angiogenesis, by secreting

angiogenic factors and trans-differentiating into endothelial cells [61].

As schistosomes are intravascular parasites and early parasite

development occurs within portal venules, vessel remodeling may

be required to allow for parasite growth. Yet another possibility is that

mononuclear phagocytes may directly damage schistosomes, there-

fore requiring their local depletion for schistosome development to

proceed normally. Activated macrophages and dendritic cells can

produce nitric oxide [62], a molecule that is toxic to developing

schistosomes [63] and mediates immunity to schistosome infection in

animals vaccinated with irradiated cercariae [64]. Priming of APC

maturation by CD4+ T cells or TLR ligands might allow for more

rapid progression of these cells to apoptosis in response to activation.

In RAG-/- mice, developmental impairment of APCs might allow for

their persistence, constituting a persistent source of nitric oxide and/

or other molecules that impair schistosome development. If this is the

case, analysis of innate responses to developing schistosomes in

RAG-/- mice may identify innate effector mechanisms that can be

harnessed to enhance immunity to schistosome infection. These

hypotheses are currently being tested.

Our data demonstrate that blood flukes do not respond to CD4+

T cells directly, but rather respond to signals that originate from

the innate immune system. These findings corroborate previous

studies where tumor necrosis factor (TNF; Mm.1293), an innate

proinflammatory cytokine, was shown to stimulate parasite egg

laying in CD4+ T cell-deficient Prkdcscid/scid mice [65]. While TNF

does not appear to stimulate parasite development directly [5,8],

the overlap between the TNF receptor and TLR signaling

pathways could account for the ability of both ligands to enhance

schistosome development [66,67]. Our findings also have

implications for understanding epidemiological associations be-

tween schistosomiasis and other infections [68], such as salmonel-

losis. While schistosome infection has been implicated in

persistence of Salmonella infection [69], our data also suggest that

proinflammatory stimuli produced in response to bacterial LPS

could play a role in exacerbating schistosome infection by

supporting parasite development in co-infected individuals. These

putative immunological and epidemiological associations are

currently under investigation. The possible requirement of

schistosomes for proinflammatory signals to support normal

development is intriguing, as schistosomes, and helminths in

general, are largely unable to stimulate such responses themselves

due to a lack of potent TLR ligands [70]. It is therefore tempting

to speculate that, under evolutionary pressure to avoid immune

detection, schistosomes have lost the ability to stimulate the

inflammatory feedback required for their successful development

and now rely on other mechanisms to generate these essential

inflammatory signals.

In summary, our investigation of the mechanism by which CD4+

T cells facilitate schistosome development has revealed that blood

flukes require neither CD4+ T cell responses nor associated effector

functions. Furthermore, our data show that schistosomes do not

respond directly to CD4+ T cells, as their requirement for these cells

can be bypassed completely by direct stimulation of innate immune

responses. Indeed, our data suggest that the role of CD4+ T cells in

facilitating schistosome development may be limited to the provision

of non-cognate T cell help for the maturation ofMHCII+APCs.We

provide two lines of evidence in support of this hypothesis. First,

non-responsive, naı̈ve CD4+ T cells, which also condition immature

APCs to undergo maturation, support improved parasite develop-

ment. Second, direct stimulation of APC maturation in the absence

of CD4+ T cells restores schistosome development. These data,

together with previous findings that macrophages mediate vaccine-

induced immunity to schistosome infection [64], implicate mono-

nuclear cells as central host determinants of the outcome of

schistosome infection in the definitive host. A detailed understand-

ing of the interactions between blood flukes and the mononuclear

phagocyte system could therefore identify opportunities to modulate

mononuclear cell function in ways that impair or prevent the

establishment of schistosome infections.

Materials and Methods

Ethics statement
All animal studies were performed in accordance with protocols

approved by the USUHS Institutional Animal Care and Use

Committee.

Experimental mice
RAG-1-/- mice were purchased from Jackson Laboratory (Bar

Harbor, ME) and bred in-house to generate sufficient numbers for

experiments. Bcl10-/- mice [11] were kindly provided by Dr. Tak

Mak. OT-II mice [71] were the kind gift of Dr. Francis Carbone.

Bcl10-/- and OT-II mice, originally with a mixed 129/C57BL/6

background, were backcrossed to the C57BL/6 background. OT-

II mice were then bred with RAG-1-/- in house, to generate

OTII/RAG-1-/- mice. C57BL/6 (National Cancer Institute,

Frederick, MD) and 1296 C57BL/6 F1 hybrid wild type mice
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(Taconic) were used as positive controls, although no differences in

parasitological parameters were found in parasites recovered from

either wild type strain (data not shown). BALB/cTac-

TgN(DO11.10)-Rag2tm1 (DO11.10/RAG-2-/-) mice [72] and

B10.A/AiTac-[Tg]TCRCyt5CC7-I-[KO]-Rag2tm1 (Cyt/RAG-

2-/-) mice [73] were kindly provided by Dr. Dragana Jankovic.

RAG-2-/- and wild type mice on the BALB/c and B10.A2

backgrounds (Taconic) were used as controls, respectively.

Mice were infected percutaneously via the tail skin with 150 S.

mansoni cercariae (Puerto Rican strain) shed from infected

Biomphalaria glabrata snails [74]. All animal studies were performed

in accordance with protocols approved by the USUHS Institu-

tional Animal Care and Use Committee.

Parasite recovery and measurement of parasitological
parameters
Parasites were recovered from the portal system by perfusion

[74] 42 days post-infection, immediately fixed in 4% neutral-

buffered formaldehyde and photographed using a Nikon Coolpix

4500 4.0 megapixel digital camera connected to a Vistavision

trinocular dissecting microscope at 206magnification. Length of

male parasites was determined from digital images using ImageJ

software (http://rsb.info.nih.gov/ij). Quantitative analysis of

parasite length was performed on male worms as male

schistosomes always outnumber females in experimental infections

and female growth is significantly influenced by pairing with males

[75]. Liver tissue was digested in 0.7% trypsin (50 ml) in

phosphate-buffered saline (PBS) for 2–3 hours at 37uC, and eggs

were counted under a dissecting microscope. Egg production per

schistosome pair was determined by dividing the total number of

eggs calculated for each mouse liver by the number of parasite

pairs recovered.

Cell isolation and adoptive transfer
Lymph nodes and spleens from wild type C57BL/6 mice or

Bcl10-/- mice were dispersed through a 70-mm nylon strainer.

Single cell suspensions were washed and red blood cells were lysed

using ACK lysing buffer (Quality Biological, Inc.) Cells were

incubated with anti-CD4 (Mm.2209) coated microbeads (Miltenyi

Biosciences) and separated using Midi-Macs magnetic columns

(Miltenyi Biosciences). Flow cytometric analysis of isolated CD4+

T cells routinely demonstrated a purity of ,99%. 36106 cells

suspended in PBS were transferred into RAG-1-/- mice by

intravenous injection into a lateral tail vein. Control recipients

received PBS alone. All tissue culture reagents used were free of

endotoxin as determined by routine testing. Recipient animals

were then infected with cercariae 24 hours post transfer, as

described above. To verify the efficacy of adoptive transfers at

necropsy, splenocytes from reconstituted RAG-1-/- mice were

surface labeled with APC-Cy7-conjugated antibodies to CD4,

FITC-conjugated antibodies to CD8 (Mm.1858), APC-conjugated

antibodies to TCRb (Mm.333026), PE-conjugated antibodies to

NK1.1 (Mm.6180) and PerCp-Cy5.5-conjugated antibodies to

CD19 (Mm.4360) (BD Biosciences) and analyzed using a LSR II

Optical Bench flow cytometer with FACSDiva and Winlist

software, version 5.0 (Verity Software House). The total number

of T cells in each recipient after adoptive transfer was estimated by

multiplying the percent of CD4+TCRb+ cells by the total number

of splenocytes for each mouse.

Analysis of cytokine production
CD11c+ cells were isolated from wild type spleens through

incubation of cells suspensions with anti-CD11c (Mm.22378)

coated microbeads (Miltenyi Biosciences and separated using

Midi-Macs magnetic columns (Miltenyi Biosciences). CD4+ cells

were isolated from spleens and livers of wild type, Bcl10-/- and

OTII/RAG-1-/- mice as described above. CD4+ T cells and

CD11c+ cells, pulsed with 50 mg/ml schistosome worm antigen

preparation (SWAP)[76,77], 5 mg/ml OVA or 1 mg/ml anti-CD3

(Mm.210361) (BD Bioscience), were co-cultured for 72 hours in 96

well plates at a ratio of 56105 CD4+ cells to 56104 CD11c+ cells.

Culture supernatants were assessed for IFNc (Mm.240327) and

IL-10 (Mm.874) by ELISA using BD Opt EIA Mouse IFNc and

IL-10 antibody pairs and ELISA reagents (BD Bioscience) and

analyzed using a Spectramax M2 Plate reader (Molecular

Devices).

Analysis of cell surface molecule expression
For analysis of T cell activation in cells recovered from spleen

and liver, expression of CD44 (Mm.423621), CD62L (Mm.1461),

CD69 (Mm.74745), and CD25 (Mm.915) was examined by flow

cytometry, after gating on CD4+TCRb+NK1.1- cells. Cells

isolated from spleens and livers were surface labeled with FITC-

conjugated antibodies to CD44 or CD69, PE-conjugated anti-

bodies to TCRb or NK1.1, PerCp-Cy5.5-conjugated antibodies to

NK1.1 or CD4, APC-conjugated antibodies to CD62L, and APC-

Cy7-conjugated antibodies to CD4 or CD25, (BD Biosciences).

For analysis of mononuclear populations, cells were stained with

PE-conjugated anti-CD11b (Mm.262106), PerCP-Cy5.5-conju-

gated anti-Ly6C (Mm.1583) and APC-conjugated anti-CD115

(Mm.22574). Aqua dead cell stain (Invitrogen) was used to

discriminate live and dead cells and granulocytes were excluded

based on their high side scatter. All samples were analyzed using a

LSR II Optical Bench flow cytometer with FACSDiva (BD

Biosciences) and Winlist software, version 5.0 (Verity Software

House).

Microarray
Livers from naı̈ve female wild type C57BL/6, RAG-1-/-, and

OT-II/RAG-1-/- (N= 9 for each genotype) mice were pooled into

groups of three and prepared for cDNA microarray analysis.

Briefly, RNA was isolated via RNAzol (Tel-Test, Friendswood,

TX) and the RNeasy protocol (Qiagen) and analyzed for purity

and concentration on a NanoDropH ND-1000 Spectrophotometer

(Wilmington, DE). cDNA was prepared from two 30 mg aliquots of

each pooled sample and labeled with either Cy3 or Cy5

fluorescent probes. One 30 mg aliquot from each pool was used

to create a background control pool, while the second aliquot was

used as the comparative sample. For further isolation and labeling

protocol details please refer to http://www.niaid.nih.gov/dir/

services/rtb/microarray/protocols.asp. Samples were hybridized

as described by Schaupp [78] to Mmbe custom arrays manufac-

tured by the NIAID Microarray Facility. Further information

about these arrays can be found at http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc =GPL1057. Hybridizations were per-

formed in triplicate. Images were scanned by GenePix4000B

Scanner (Axon Instruments/Molecular Devices, Sunnyvale, CA)

and analyzed using the mAdb program (http://madb.niaid.nih.

gov/). Signals were calculated as mean intensity – median

background. Data were analyzed using Significance Analysis of

Microarrays (SAM), version 2.11 (Stanford University) and

student’s T tests (EXCEL, with P values ,0.05 considered

significant) to identify only those genes that exhibited differential

expression in RAG-1-/- liver tissue compared to both OT-II/

RAG-1-/- and wild type liver tissue (i.e. genes differentially

expressed in RAG-1-/- liver tissue compared to either OT-II/

RAG-1-/- or wild type alone were not considered specific to the
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presence of naı̈ve CD4+ T cells). We applied supervised average-

linkage hierarchical clustering on differentially regulated genes, as

implemented in the program Cluster version 2.11 (M. Eisen;

http://www.microarrays.org/software), separately to both the

genes and arrays. The results were analyzed, and figures generated,

using TreeView version 1.60 (http://www.microarrays.org/

software). Initial gene annotation was performed through GoMiner

(http://discover.nci.nih.gov/gominer/). Functional analyses and

networks of differentially expressed genes were then generated

through the use of Ingenuity Pathways Analysis (IngenuityH

Systems, www.ingenuity.com). To identify networks of differentially

expressed genes that were functionally related, Ingenuity Pathways

Analysis software was used to overlay differentially expressed genes

onto a global molecular network developed from information

contained in the Ingenuity Pathways Knowledge Base. To facilitate

analysis, networks were limited to a size of up to 35 differentially

expressed genes. A numerical network score was then calculated for

each network, as described under Statistical Analysis below, to

determine the probability of obtaining the same network by random

chance.

LPS treatment
In RAG-/- mice, APC maturation was induced by biweekly

intraperitoneal injection of low doses of ultrapure LPS, E. coli

0111:B4 (InvivoGen, San Diego), at doses of 2 mg or 20 mg LPS/

mouse. Monocyte numbers were monitored by flow cytometry, as

described above.

Statistical analysis
Because unequal variances were observed among some of the

groups analyzed in this study, stringent non-parametric tests were

used throughout to test the significance of differences between

experimental groups. For two groups, significance of differences

between experimental groups was tested using Mann-Whitney

tests, and for three groups the significance of differences was tested

using Kruskal-Wallis tests followed by Dunns’ multiple compar-

ison tests. Statistical analyses were performed with GraphPad

Prism Version 4.0 software (GraphPad Software, Inc., San Diego,

CA). P values of less than 0.05 were considered significant.

Experiments were repeated at least twice, with 4–5 animals per

group. For microarray data, Functional Analysis of differentially

expressed genes was performed using Ingenuity Pathways Analysis

(IngenuityH Systems, www.ingenuity.com) to identify networks of

differentially expressed genes that were functionally related. For

putative networks, a numerical score was calculated from the

hypergeometric distribution of the network using the right-tailed

Fisher’s Exact Test. The network score is the negative log of the

Fisher’s Exact Test P value. The probability that each biological

function assigned to the network is due to chance alone was also

tested using Fischer’s Exact Test. P values of less than 0.05 were

considered significant.

Accession numbers
The gene expression data discussed in this manuscript have

been deposited in the NCBI’s GEO database and are available

under GEO series accession number GSE8340.

Supporting Information

Table S1 Differential gene expression in liver tissue of RAG-1-/-

and OT-II/RAG-1-/- mice.

Found at: doi:10.1371/journal.ppat.1000892.s001 (0.29 MB

DOC)

Table S2 Biological Functions associated with genes that are

differentially expressed in liver tissue of RAG-1-/- and OT-II/

RAG-1-/- mice.

Found at: doi:10.1371/journal.ppat.1000892.s002 (0.35 MB

DOC)

Figure S1 CD4+ T cell activation in response to S. mansoni

infection is impaired in Bcl10-/- mice. (A) Activation marker

expression by hepatic or (B) splenic CD4+ T cells was evaluated in

response to pre-patent S. mansoni infection 28 days post-infection.

Surface expression of CD44 and CD62L, CD69, and CD25 on

gated CD4+TCRb+NK1.1- cells is shown. Numbers represent

percentages of the CD4+TCRb+NK1.1- population within each

gate. (C) CD4+ cells were isolated from the spleen and liver of

infected or control wild type and Bcl10-/- mice and co-cultured

with dendritic cells from non-infected wild type mice pulsed with

schistosome worm antigen (SWAP). After 72 hours, culture

supernatants were collected and IFNc and IL-10 were measured

by ELISA. Data are represented as mean +/2 SEM.

Found at: doi:10.1371/journal.ppat.1000892.s003 (1.54 MB EPS)

Figure S2 CD4+ T cell activation in response to S. mansoni

antigens is impaired in OT-II/RAG-1-/- mice. (A) Activation

marker expression by hepatic and splenic CD4+ T cells in wild

type and OT-II/RAG-1-/- mice was evaluated in response to pre-

patent S. mansoni infection 28 days post-infection. Surface

expression of CD44 and CD62L on gated CD4+TCRb+NK1.1-

cells is shown. Numbers represent percentages of the

CD4+TCRb+NK1.1- population within each gate. (B) CD4+ cells

were isolated from the liver and spleen of infected or control wild

type and OT-II/RAG-1-/- mice and co-cultured with dendritic

cells from non-infected wild type mice pulsed with schistosome

worm antigen (SWAP) or OVA peptide. After 72 hours, culture

supernatants were collected and IFNc and IL-10 were measured

by ELISA. Data are represented as mean +/2 SEM.

Found at: doi:10.1371/journal.ppat.1000892.s004 (1.06 MB EPS)
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