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Red blood cell (RBC) transfusion is one of the most frequently performed clinical

procedures and therapies to improve tissue oxygen delivery in hospitalized patients

worldwide. Generally, the cross-match is the mandatory test in place to meet the clinical

needs of RBC transfusion by examining donor-recipient compatibility with antigens and

antibodies of blood groups. Blood groups are usually an individual’s combination of

antigens on the surface of RBCs, typically of the ABO blood group system and the

RH blood group system. Accurate and reliable blood group typing is critical before

blood transfusion. Serological testing is the routine method for blood group typing

based on hemagglutination reactions with RBC antigens against specific antibodies.

Nevertheless, emerging technologies for blood group testing may be alternative and

supplemental approaches when serological methods cannot determine blood groups.

Moreover, some new technologies, such as the evolving applications of blood group

genotyping, can precisely identify variant antigens for clinical significance. Therefore, this

review mainly presents a clinical overview and perspective of emerging technologies in

blood group testing based on the literature. Collectively, this may highlight the most

promising strategies and promote blood group typing development to ensure blood

transfusion safety.

Keywords: red blood cell, blood group typing, blood group testing, blood group antigen, ABO blood group system,

RH blood group system

INTRODUCTION

Blood group antigens in human red blood cells (RBC) can evoke immune antibodies capable of
causing immune-mediated hemolysis. That is, blood group antigen testing is essential to save
the lives of patients undergoing blood transfusion. Generally, a cross-match test is necessary to
observe and assess the compatibility between donor and recipient blood groups before blood
transfusion. Currently, there are 43 blood group systems containing 345 antigens for human
RBCs recognized by the International Society of Blood Transfusion (ISBT, available from: http://
www.isbtweb.org, accessed 12/28/2021) Working Party, which was established in 1980 in England,
works in conjunction with the International Blood Group Reference Laboratory to develop a
professional numerical terminology based on blood group genetics and plays a key role in
ensuring patient safety in blood transfusion. A blood group system comprises inherited antigens
by a single gene or a cluster of two or more closely linked homologous genes and is defined
serologically by a specific antibody. The 43 blood group systems are genetically determined by
48 genes. A blood group system-associated number and symbol was terminology designated
and maintained by the ISBT Working Party for Red Cell Immunogenetics and Blood Group
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GRAPHICAL ABSTRACT | Emerging technologies for blood group typing. Image created with BioRender.com.

Terminology, for example, “001” and “ABO” for the ABO
blood group system, “004” and “RH” for the RH blood group
system (https://www.isbtweb.org/fileadmin/user_upload/Table_
of_blood_group_systems_v10.0_30-JUN-2021_with_LRG_
and_revised_antigens.pdf).

Patients who are awaiting transfusion, pregnant women,
blood donors, etc., needed to be routinely tested for the ABO
and RH(D) antigens, which are the essential antigens for
ensuring patient transfusion safety. Blood transfusions may lead
to hemolytic transfusion reactions without ABO and RH(D)
compatibility testing. Testing for other blood group antigens,
such as MNS, Lewis, Kell, Duffy, and Kidd, is sometimes
necessary for patients who harbor or are significantly likely to
develop antibodies against these antigens (1). Correct blood
group typing is critical for ensuring blood transfusion safety
and is also essential for several clinical tests and research
settings. Considerable advances have been made in recent years
in identifying different blood groups, and novel techniques have
been developed for blood group testing. In this review, we
have summarized the current blood group testing methods and
discussed the clinical applications of novel typing techniques.

ABO BLOOD GROUP SYSTEM

The ABO blood group was first discovered in 1900 by Karl
Landsteiner showed experimentally by cross-testing RBCs and

Abbreviations: DRAM, Direct, real-time allele-specific PCR and melting curve

analysis; EMT, Erythrocyte-magnetized technology; FUT, Fucose transferase;

ISBT, International Society of Blood Transfusion; MALDI-TOF-MS, Matrix-

assisted laser desorption/ionization time-of-flight mass spectrometry; NGS, Next-

generation sequencing; PCR, Polymerase chain reaction; PCR-ASP, PCR-allele

specific primer; PCR-RFLP, PCR-restriction fragment length polymorphism; PCR-

SSCP, PCR-single strand conformation polymorphism; PCR-SSO, PCR-sequence

specific oligonucleotide; PCR-SSP, PCR-sequence specific primer; RBC, Red blood

cell; SNP, Single nucleotide polymorphism; SPR, Surface plasmon resonance;WGS,

Whole-genome sequencing; WM, Waveguide-mode.

sera, and is classified into type A, type B, type AB, and type O
based on five glycoprotein antigens—A, B, AB, A1, and H—that
are expressed on the surface of RBCs later. In addition, ABH
oligomers are also present on the surface of other cells and in
bodily fluids or secretions. The glycosyltransferases of A, B, andH
antigens transfer different monosaccharides to the non-reducing
terminals of glycoproteins and glycolipid-specific glycans and
produce the different terminal glycosyls (blood group epitopes).
The α-1,2-fucose transferase (FUT) plays a crucial role in creating
H antigen. The H antigen on RBCs and in secretion is encoded
by the H (FUT1) gene and Se (FUT2), respectively. The A and
B antigens are carbohydrate antigens built upon the H antigen.
The N-acetyl-D-galactose is added at the end of the H antigen
in the action of α-1,3-N-acetyl-D-galactosyltransferase, creating
the A antigen. The action of α-1,3-D-galactosyltransferase on
the H antigen adds D-galactose, producing the B antigen. Both
transferases in the AB blood group generate A and B antigens.
The resulting blood group is O when neither transferase is
present. See details in Figure 1 (1–4).

The lack of an ABO antigen increases the titer of antibodies
against that antigen in the serum. For instance, individuals with
A blood group contain the A antigen and anti-B antibodies. In
addition, most individuals with the type A blood group are of
type A1 and harbor both A and A1 antigens, whereas the subtype
A2 contains only antigen A and is rare. Likewise, blood type B
consists of the B antigen and anti-A antibodies. The AB blood

type contains both antigens and neither antibodies. O blood type
lacks either antigen and has anti-A and anti-B antibodies (5). The

ABO blood group antibodies are naturally occurring and mostly
of the immunoglobulin IgM class, produced without antigen
stimulation or during the classical adaptive immune response,
which remains controversial (6, 7). Arend P (8) suggested that
allogeneic blood type antibodies are initially determined by an
ancestral gene that “spontaneously” produces B1 lymphocytes.
Following transfusion of an incompatible blood type, the A and
B antigens and the corresponding antibodies form complexes
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FIGURE 1 | The production of ABH antigens. The H antigen is produced when an α-1,2-L-fucosyltransferase catalyzes an L-fucose transfer to the precursor

disaccharide chain of type 1 (soluble) or type 2 (cell-bound). The difference between type 1 and type 2 precursor disaccharide chains is that the residue terminal

disaccharides are linked to different glycosidic chains. Type 1 is the β-1,3-glycosidic bond, and type 2 is the β-1,4-glycosidic bond. The H antigen is the precursor of

both the A and B antigens. The N-acetyl-D-galactose for A antigen, D-galactose for the B antigen. The actions of α-1,3-N-acetyl-D-galactosyltransferase and

α-1,3-D-galactosyltransferase are responsible for forming the A and B antigens, respectively.

and trigger a robust immune response, resulting in a fatal
hemolytic reaction.

RH BLOOD GROUP SYSTEM

The RH blood group system is second only to the ABO
blood group system for determining blood transfusion safety.
Currently, it includes 56 antigens, of which the D, C, c, E, and
e antigens are most relevant to blood transfusion, especially the
D antigen. RH blood typing determines the presence or absence
of D antigen on RBCs using an anti-D reagent. D-positive is
RH-positive, and D-negative is RH-negative. Weak or partial
D antigens may present in some individuals, such as newborns
with D-negative mothers, due to reduced antigenic sites or the
loss of extracellular D epitopes (9–13). In such cases, a direct
agglutination test with the anti-D reagent may result in false-
negative results, and agglutination can only be observed with an
anti-human immunoglobulin reagent.

BLOOD GROUP TESTING METHODS

Generally, blood typing can be classified as forward and
reverse typing based on traditional serological testing (14, 15).
Specifically, forward typing involves the detection of A and
B antigens on the basis of RBC agglutination by the specific
antiserum and the intensity of agglutination, whereas reverse
typing is used to identify the presence or absence of anti-A,
anti-B, and anti-AB antibodies in plasma or serum. The titer
of the ABO antibodies is also of great significance in clinical
blood transfusion and is commonly measured by the test tube

method, the microcolumn gel card method, etc. However, each
of these serological methods is based on hemagglutination and is
therefore affected by subjective factors, making standardization
difficult and decreasing the accuracy. It is always mandatory to
test the ABO type prior to blood transfusion. Nevertheless, there
is no specific antiserum or technology that can guarantee the
detection of all rare, weak, or variant antigens. Moreover, certain
diseases, such as acute myeloid leukemia, can decrease the level of
blood group antigens (16). The conventional and novel methods
for blood group testing have been described and discussed in the
following sections.

Slide Testing
The slide method is a simple and rapid (5–10min) method
for blood typing that uses small amounts of reagents and is
routinely used for emergency blood group testing (17). However,
the sensitivity of this method is low and can be easily affected
by multiple factors, thus making standardization difficult. In
addition, weakly expressed or rare antigens cannot be easily
detected by the slide method. Low-titers of anti-A or anti-B
antibodies often lead to false-negative results, which increases the
risk of mistyping before blood transfusion (18).

Tube Testing
The test tube method is a more sensitive and faster alternative
to the slide method that requires lower amounts of reagents and
is suitable for emergency and initial blood group typing. The
RBCs and antibodies mixture is centrifuged, and the result is
easily interpreted by visual examination. If the RBC sediment
is undisturbed after centrifugation for a few minutes and gently
shaking the test tube, it is considered complete agglutination.
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On the other hand, uniform distribution suspension of the RBCs
indicates non-agglutination. In the event of a lack of any obvious
agglutination, the RBC suspension is dropped on a glass slide,
and the degree of agglutination is observed under a microscope.
The interpretation of these results lacks objectivity and a unified
standard. In addition, this method cannot be used to accurately
determine the blood group in infants (reverse typing), leukemia
patients with weak antigens, and patients with low antibody
titers, etc. It is imperative to clean test tubes, be precise with
the centrifugation time and speed, and observe the results
under ambient conditions to assure the accuracy of this testing
(19). Tube testing is also challenging to automate. Despite its
disadvantages, the test-tube method is still a prevalent technique
that has been used for blood type identification and validation.

Microplate Agglutination Method
The microplate technology uses automated platforms to detect
serum antibodies and RBC surface antigens. The reactants are
centrifuged and incubated in microplates, and the ABO/RH(D)
blood type is read through an automated system (20, 21).
It has the advantages of speed, low reagent consumption,
and high-throughput analysis. The U-shaped plate method
is fully automated and involves the addition of plasma and
RBCs, centrifugation, incubation with constant shaking, and
final observation and interpretation (22). The appearance of
RBC clots or fine sand in the U-shaped micropores indicates
agglutination. The U-shaped plate can detect multiple specimens
simultaneously, which saves both time and labor. However, since
the U-shaped plate needs to be clean and transparent to prevent
fibrin from affecting RBC agglutination, the process must be
strictly standardized to ensure the accuracy of test results. Studies
show that the accuracy of blood typing using U-shaped plates
is as high as 99.6% (23), which is comparable to that of the test
tube method.

Generally, the ladder microplate is a 96/120-well trapezoid or
V-shaped plate with a stepped hole wall, and the width of each
step is approximately equal to whereas the height exceeds the
diameter of one RBC. Following the antigen-antibody reaction,
the RBCs aggregate through covalent bonds and van der Waals
forces and adhere uniformly to the wall of the hole. In the event
of no antigen-antibody reaction, the RBCs sink along the ladder
to the bottom of the hole into a solid dot. The addition of samples
is automated through an enzyme immunoassay instrument, and
the results are detected using digital imaging technology (24).
Both visual and text results are automatically transmitted to the
laboratory management system, which is convenient to retrieve
and avoids manual recording errors. The trapezoidal microplate
can be used repeatedly to simultaneously analyze numerous
samples, which significantly reduces analysis time and labor.

Microcolumn Gel Method
The column gel agglutination technology was introduced by
Lapierre et al. (25) in 1990. Both manual and automated testing
are available. The automated microcolumn gel method is widely
used for ABO and RH blood typing. It is the relatively standard
method for RBC typing in clinical laboratories and blood banks.
This technology is a straightforward, convenient, and quick

method that uses small amounts of reagents and has high
sensitivity, accuracy, and reproducibility, which dramatically
reduces identification errors caused by human factors. The
microcolumn gel testing card has forward and reverse typing, just
like the test tube method for blood type testing. Additionally,
utilizing glass beads instead of gel material helps further
reduce analysis time, with quicker centrifugation speeds being
reached (17). Except for ABO and RH antigens, other RBC
phenotypes will also be tested with updated microcolumn gel
cards and instruments.

Novel Paper-Based Testing
A novel paper-based test can simultaneously determine forward
and reverse ABO and RH blood groups within 10min based
on the paper-based analytical device fabricated by using a
combination of wax printing and wax dipping technique in
real blood sample analysis (26). Compared with slide testing,
the accuracy of this assay for blood groups A, B, O, and AB
ranges from 85 to 96%. Six parallel channels are printed with
wax on the filter paper in a paper-based ABO blood group
analysis (27). The forward and reverse ABO blood group typing
were strongly correlated with the slide and tube testing (27).
Compared to ordinary paper, nitrocellulose-based paper can fix
agglutinated blood cells using less sample volume and exhibits
higher accuracy and reproducibility (28). Due to the higher
degree of separation between agglutinated and non-agglutinated
RBCs on the nitrocellulose matrix, the color changes are more
significant. After the blood sample is mixed with the blood
group antibody, the change in the bloodstain area over time
is measured. A rapid paper-based blood group testing method
from droplet wicking was found to have a high sensitivity, which
was sensitive to antibody dilution between 1:2 and 1:8. It can
determine ABO groups within 10 seconds and RH(D) for 20
seconds (29). The use of low-density and thick paper was more
sensitive to detection (29).

Additionally, bioactive paper for blood group typing has
been established by observing RBCs’ haemagglutination (30–33),
such as Kleenex paper towels (34, 35). The low cost, quickness,
portability, and ease of paper-based testing holds considerable
potential for point-of-care blood group typing with naked-eye
readouts (27, 29, 36). The paper-based analytical device may be
further developed for future applications in blood group testing.

Dye-Assisted Paper-Based Detection
Several clinical situations, such as excessive blood loss, require
rapid bedside detection of the patient’s blood type (37–40). The
traditional detection method requires 5–45min to determine
the blood type, and weak agglutination identification remains
challenging. In general, routine paper testing techniques may
encounter inherent environmental challenges and low precision
during the readout process. A novel method was developed for
rapid and reliable blood typing using linter paper as the matrix
and the dye bromocresol green that changes color in the presence
of different blood components with flipping identification with a
prompt error-discrimination platform and the color correction
algorithm (41). As a result, the color change of the indicator dye
can be used to determine the blood group. Cotton lint paper
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has larger fiber space, smaller pores, and greater blood-absorbing
capacity compared to 3MM chromatography paper, making it
more suitable for blood flow and stable antibody coating. Once
the blood sample is dropped on the paper, it penetrates the deeper
layer and reacts with the coated antibody. Depending on whether
or not agglutination occurs, bromocresol green undergoes a
specific color change in the reaction zone. The bromocresol green
paper strip can accurately detect the ABO/RH blood type within
30 s and determine 16 rare blood types within 3 min.

In one study, this method exhibited similar accuracy and
reproducibility as the classical column assay when tested on
450 blood samples (41). Based on the same principle, another
group developed bromocresol green dye and antibody-coated
paper strips, which typed 3,550 human blood samples with
comparable accuracy to the classic gel-card analysis (42). To
summarize, the paper-based detection matrix is simple, portable,
fast, and convenient (43); combined dye assist may further benefit
blood typing.

Microfluidic Testing
Rapid and accurate blood group typing is essential in emergency
scenarios for safe blood transfusion. A digital microfluidic
droplet agglutination assessment detection method was recently
developed for rapid blood group typing prior to emergency
transfusion (44). It depends on digital microfluidics that
manipulates discrete nano- to microscale droplets on an open
electrode array by increasing the electric potential. The digital
microfluidics-based detection system includes a DropBot droplet
control system, reconstituted pumps for freeze-drying analysis
reagents, cameras, laptops, etc. (44–47). The specimens can be
collected, processed, and measured using an automated system
and simple portable instruments that can operate in remote
and difficult environments with limited access to centralized
laboratories (48). Using this method, the blood type of 60 blood
samples was tested and validated with 100% accuracy (44).
The detection system can also perform compatibility detection
with the donor and hematocrit analysis (44). Since the entire
process takes <6min, it is highly suitable for emergency trauma
patients (44).

Another microfluidic device was developed to type the
ABO/RH(D) blood groups and identify the weak antigens (49,
50). The process requires only 1µl of blood collected by pricking
the fingertip, which is then mixed with 10 µl of PBS in a reaction
tank (49). The sample passes through a four-layer microfluidics
chip pre-loaded with anti-A, anti-B, and anti-D antibodies (0.5
µl). The agglutinated RBCs accumulate in the channel, and
the formation of a distinct red line within 2min is a positive
result. The length of the red line is directly proportional to the
agglutination intensity. A microfluidic thread-based analytical
device was also used to accurately identify six weak A subgroups
and 89 normal ABO groups (50). This device can use a manual
pump system that does not need to rely on electricity and
therefore can be used outdoors, at home, or in an emergency
vehicle (51).

Additionally, in one study, ABO and RH(D) blood groups
were detected using an antibody microarray on the poly
(methylmethacrylate) surface coupled with the microfluidic

system (52). The Poly (methylmethacrylate) microarray chip
showed good reproducibility, accuracy, and precision. The
platform is simple to fabricate for mass manufacturing (53, 54).
The microfluidic system allows very fast visual detection with a
minuscule amount of the sample, which also lowers the cost.

Waveguide-Mode (WM) Sensor Testing
A waveguide-mode (WM) sensor can detect particles and
molecules on the sensor chip using electric field enhancement
with waveguide modes (55, 56). A WM sensor is a portable,
instantaneous blood group testing device with a portable battery
that does not require an electricity supply. In emergency
scenarios, WM sensors can determine ABO and RH(D) blood
types by utilizing hemagglutination detection within 3.5min
(57). Sensor chips made of glass are versatile, and the wavelength
of incident light is easy to control (57). Microfluidic multichannel
WM sensor chips that are mechanically stable are available for
automated, simultaneous blood group testing (58, 59). A WM
sensor equipped with a microfluidic channel can determine
forward ABO typing in <1 min (58).

Erythrocyte-Magnetized Technology
Erythrocyte-magnetized technology (EMT) is a fully automated
blood typing technology for ABO and RH phenotyping and
antibody on the basis of the magnetization of RBCs (60–62).
Magnetized erythrocytes for the rapid transfer of antigens or
antibodies through simple magnets benefit automated diagnostic
equipment (62). The simplicity of automation made it highly
reliable and ideal for medium-to-extensive facilities and saved
a lot of staffing; the high level of security and total traceability
perfectly respond to excellent clinical laboratory practice
requirements (62).

Protein Chip Testing
Generally, a protein chip or protein microarray is a type
of proteomic technology that involves the immobilization
of hundreds of distinct proteins (63, 64). Following the
antigen-antibody reaction, secondary antibodies labeled with
fluorescence tracers or magnetic beads that are specific for
different epitopes of the target antibody are added (65).
Magnetic beads are used more frequently due to lower costs. In
addition to high sensitivity and specificity akin to enzyme-linked
immunosorbent assays, the protein chip also has the advantages
of high throughput, high parallelism, and miniaturization of
the chip technology (66). A protein chip consists of a substrate
coated with blood group antigens or antibodies that can detect
the corresponding antibodies/antigens in RBC fragments or
serum samples (67, 68). A visual protein chip for ABO blood
group testing was successfully fabricated based on magnetic
beads (67). The results of the protein chip and test tube
methods are consistent, and the former has higher sensitivity and
specificity. Additionally, in one study, a multiplexed bead-based
immunoassay was developed utilizing reproducible and robust
RBC blood group antigen arrays constructed using fragmented
RBC membranes (68). Compared to the gel microcolumn assay,
this approach showed tremendous promise in screening blood
group antibodies with higher sensitivity and quantitatively.
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Surface Plasmon Resonance Testing
Surface plasmon resonance (SPR) is a sensitive technique
and is a label-free method for tracking molecular interactions
in real-time (69). In some applications, the sensitivity and
versatility of the label-free, real-time technique outperform
traditional methods like enzyme-linked immunosorbent assays
or fluorescence (70). Generally, RBC antigen-specific IgM or IgG
antibodies immobilized on the surface of SPR can be used to
identify blood groups (71, 72). The intensity of agglutination
depends on RBC adhesion and wall shear stress (73). The adhered
RBCs move at different average cell velocities under the shear
flow, which produces resistance. Higher average cell velocity
decreases the resistance of antigen and antibody binding and
lowers agglutination intensity. The antigen density of A1 and B
RBCs from that of A1B RBCs and can be resolved using this
approach (73).

SPR imaging has the potential to be used as a high-throughput
bioanalyzer in protein analysis (74–76). Using SPR imaging as a
high-throughput technique for ABO and RH blood group typing
is a promising strategy (77, 78). Blood samples were correctly
used for ABO blood typing within 12min by the SPR imaging
and were consistent with the standard agglutination methods
(72). SPR biodiagnostics using the sensor chip can quantitatively
detect blood groups, which could benefit from detecting weaker
variants (79). The D-antigen was validated as an example for
quantitative blood grouping (79). Using the long-range SPR
biosensor in a long-range SPR blood group typing, the results
were in full accordance with those of the agglutination test (70).
In a word, this method has high accuracy and sensitivity and
requires a small sample quantity and little time. However, SPR
relies on expensive equipment and consumables and may not be
practical for routine blood group testing.

Flow Cytometry Testing
A flow cytometry-based method has been established to
detect the human ABO group and D type. It has higher
specificity, sensitivity, and reproducibility compared to
traditional hemagglutination methods and can easily detect
immunoglobulin subtypes in addition to quantifying the
antibodies (80–84). Flow cytometry is capable of detecting tiny
subpopulations as an alternative and supplemental approach
when blood groups cannot be detected by serology and results
can be delivered in less than an hour (85). Flow cytometry
identifies the recipient and donor blood using the transferrin
receptor and the fluorescent stain Thiazole Orange RNA as a
maturity index of reticulocytes (86). Therefore, flow cytometry
for blood typing on immature reticulocytes can be achieved,
particularly in the recipient population (85).

Blood groups can also be typed using dual-color CdTe
quantum dots to quantify antigen expression on the RBC surface
by flow cytometric analysis (87). Quantum dots were conjugated
to anti-A/anti-B and the anti-H (Ulexeuropaeus I) lectin to study
A1, B, A1B, O, A2 RBCs, and weak donors. With high sensibility
and specificity, this approach can be used as a complementary
and versatile analysis to better understand a variety of RBC
antigens (87). Flow cytometry testing is a multi-parametric,

TABLE 1 | Blood group genotyping methods.

Groups Test methods

Low-throughput PCR-RFLP, PCR-ASP, PCR-SSO,

PCR-SSCP, PCR-SSP

Medium-throughput Real-time PCR, DRAM, Sanger DNA

sequencing, pyrosequencing

Medium- to high-throughput/

High-throughput

Mini sequencing, MALDI-TOF-MS, NGS,

WGS

Semi-automatic platforms SNP stream, snapshot assay, open array,

floating array, multiple ligation-dependent

probe amplification analysis

relatively easy, and not expensive approach. On the other hand,
∼1 h may not be suitable for trauma care settings.

Genotyping
Blood group genotyping methods can be divided into low-
throughput, medium-throughput, and high-throughput
techniques (88, 89). Different throughput blood group
genotyping methods are shown in Table 1. Low-throughput
techniques include polymerase chain reaction-restriction
fragment length polymorphism (PCR-RFLP), PCR-allele specific
primer (PCR-ASP), PCR-sequence specific oligonucleotide
(PCR-SSO), PCR-single strand conformation polymorphism
(PCR-SSCP), PCR-sequence specific primers (PCR-SSP), etc.
(90–92), which are mostly based on the detection of known single
nucleotide polymorphism (SNP) (89, 93, 94), and therefore may
miss unknown gene mutations. Although PCR-SSP can detect
the weak antigens and subtypes of the ABO system, it can only
analyze a few key sites in the ABO gene. Medium-throughput
techniques include real-time PCR, Sanger DNA sequencing,
and pyrosequencing, etc. Real-time fluorescent PCR was used
to genotype the Diego (95) and Duffy (96) blood groups, and
Atamaniuk et al. (97) used the TaqMan probe method to predict
the fetal RH(D) blood type in 2009.

Medium- to high-throughput/High-throughput typing
techniques include mini sequencing or the snapshot assay,
matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF-MS) (98–100), and next-
generation sequencing (NGS), etc. (101–103). Di Cristofaro et
al. (104) successfully analyzed multiple blood group systems by
microsequencing. In addition, NGS can identify blood group
antigens on the basis of specific gene sequences and detect
all polymorphisms, including null alleles, new mutations, and
complex gene rearrangements (105–109). Therefore, NGS is
a highly suitable approach for identifying rare and mutant
blood types with no known specific antibodies (110, 111).
The microarray technology (112) can simultaneously identify
numerous SNPs and alleles of different blood group systems,
thereby allowing genotyping of multiple blood group systems.
In addition, the microarray technology generally involves high
throughput automated and can detect and analyze a large
number of blood group DNA polymorphisms (112, 113).
However, the sensitivity of the microarray chip decreases after
repeated use, sample preparation, and labeling are technically
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TABLE 2 | The classification and comparison of blood group testing methods.

Principle Test method Character Time Cost Application

Manual Agglutination Slide Fast, insensitive 5–10min Low cost Clinical

Tube Sensitive, time-consuming 10–20min Cost-effective and

efficient

Clinical

Novel

paper-based,

dye-assisted

paper-based

detection

Quickness, high sensitivity <30 s Moderate cost Emergency

Cell sorting Flow cytometry High specificity and sensitivity,

quantify the antibodies

<1 hr Not expensive Clinical

Automated Agglutination Microplate Highly sensitive 10–30min Moderate cost Clinical

Gel Highly sensitive, time-consuming 10–45min Moderate cost Clinical

Microfluidic Microfluidic Fast <6min Not costly Emergency

Magnetic EMT Simple and well adapted for

medium- and large-sized

facilities

10–30min Not costly Clinical

Fluorescence or

magnetic bead

Protein chip Sensitive, specificity, high

throughput

>1 hr Costly Clinical

Sensor SPR Sensitive <12min Expensive Research

WM Fast, stable, versatility, easy to

control

<3.5min Not costly Emergency

Nucleic acid

amplification;

sequencing

Genotyping Time-consuming, highly sensitive >3 hrs Costly Clinical

demanding, and it can only detect known alleles. Semi-automatic
platforms based on microarray assays have also been developed
for blood group genotyping (1), including SNP stream (114, 115),
snapshot (116, 117), open array (118, 119), suspension array
(120), and multiplex ligation-dependent probe amplification
analysis (121).

However, the aforementioned techniques generally require
DNA purification, which is usually the most speed-limiting
and labor-intensive step. On the other hand, direct, real-time
allele-specific PCR and melting curve analysis (DRAM) is a
fast and reliable one-step blood group genotyping technique
that does not require DNA preparation (122). It uses a special
buffer for direct PCR, rapid RBC lysis buffer, white blood
cell DNA template, allele-specific primers, and DNA-binding
fluorescent dyes (EvaGreen; Biotium) for discriminating ABO
alleles. The PCR reaction process is carried out in a closed
system, reducing manpower and material resources and the risk
of contamination. Studies showed that DRAM measurement
was 100% consistent with the ABO genotyping results of PCR-
RFLP, PCR direct sequencing, and serological typing results.
Compared to traditional ABO genotyping utilizing allele-specific
PCR with purified DNA and agarose gel electrophoresis, DRAM
reduces manual procedures to hands-on time from ∼40 to
12min. The total time required for the DRAM assay is around
274 min.

Additionally, NGS has the capacity to sequence the whole
genome (WGS), but is neither cost-efficient nor practical
for clinical transfusion laboratories. Nevertheless, WGS is
increasingly performed to discover unknown or undiscovered

allelic polymorphisms, blood group antigen phenotypes, and
associations between genes and certain chronic diseases (105).
In one study (123), the whole genome data of 79 individuals
with nine red blood cell antigen systems was analyzed, and
the consistency of blood group polymorphism was 93%. A
total of 267 gene polymorphisms identified in this study
were not present in the ISBT database. The highly complex
ABO/RH(D) and MNS systems were also identified by WGS.
Blood group typing with WGS is feasible but requires
improvements in reading depth for precision typing of single
nucleotide variant polymorphisms (123). An automated RBC
typing algorithm based on WGS data was 100 % concordant
with serological methods for ABO and D antigens and 99.5%
accurate at typing the C antigen (124). In the future, WGS
may play an essential role in detecting rare blood types and
RBC diseases.

Although genetic testing of blood types shows a decisive
ascendancy, it has certain limitations. First, genetic testing
requires highly trained technicians and hardware support, and
some blood transfusion departments may have to rely on
reference laboratories for RBC antigen genotyping. Secondly, it
is not suitable for emergency blood transfusions or patients with
complex blood groups since it is time-consuming. Finally, the
high cost of genetic testing also limits its clinical applications.
In summary, genomics is influencing all areas of medicine.
Blood group genotyping is currently being used as an alternative
and supplementary tool to serological testing to determine
blood types for the donor-recipient match in safe blood
transfusion (125).
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RARE BLOOD GROUPS TESTING

A rare blood group is defined by the AABB as one with a
frequency of<1/1,000 (4). Rare blood types may cause hemolytic
reactions or other adverse effects after transfusion, as well as
neonatal hemolytic disease. Both serological and genetic tests are
available for detecting rare blood groups. Serological detection
depends on the visible agglutination of RBCs in the presence of
specific antibodies. However, most rare blood group antibodies
are of the IgG subtype. Due to the low molecular weight of IgG
antibodies and the short distance between two antigen-binding
fragments, they cannot overcome the electrostatic force on the
surface of RBCs. The surface negative charge on the RBCs needs
to be reduced to allow visible agglutination. Therefore, rare blood
group antibodies generally cannot be detected in saline media.
The enzyme treatment method, the polybrene method, or the
microcolumn gel method may be necessary (126). Generally, it
can also increase the sensitivity of antigen and antibody and
the reaction speed by adding low-ion medium and polyethylene
glycol reagents, greatly shortening the detection time andmaking
the results easy to interpret.

Indeed, pre-transfusion compatibility testing largely relies on
serological testing, but antibody reagents are not available for a
large number of rare blood group antigens testing with regard
to rare blood requirements. Genotyping overcomes serology
limitations, has the capacity of high-throughput testing, and
allows easier detection of rare blood group antigens. As already
discussed, PCR-RFLP, PCR-SSCP, DNA sequencing, etc., are
the common genetic tests used for blood typing. They can be
used to identify rare blood types and study the inheritance
and frequency of rare blood antigen genes, such as real-time
fluorescent PCR (95, 96). NGS is also suitable for identifying
rare blood types without knowing specific antibodies (110, 111).
Currently, there aremore rapid and cost-effective genotyping kits
with multiplex capacity and high-throughput volumes, enabling
affordable large-scale rare blood group genotyping (127).

Additionally, some novel detection methods can also
detect rare blood groups using small amounts of samples,
such as Kleenex paper towel-based elution and direct flow-
through methods (34), bromocresol green paper strip (41),
nitrocellulose-based lateral-flow technique (MDmulticard R©)

(128), microfluidic thread-based analytical device (50), SPR
technique (73), etc. These rare blood group detection approaches
can shed light on the most promising strategies.

CONCLUSIONS

In summary, new technologies for blood group testing are
constantly emerging. Novel paper strips, biosensors, SPR,
microfluidic devices, chips, gene sequencing, etc., can accurately
and rapidly detect blood groups but may be hindered by
prolonged turnaround and/or high costs. The classification
and comparison of blood group typing methods are shown in
Table 2. Emerging testing techniques have certain limitations
and need to be verified further for more comprehensive
applications. Currently, tube testing, microcolumn gel testing,
etc. (serological methods) are still the primary methods for
ABO and RH typing; these approaches are generally trustworthy
and suitable for routine use. However, it also has certain
drawbacks and is unable to meet the increasing demand for
blood types for varieties of RBC antigens. The serological
methods currently used in conjunction with evolving typing
technologies can be of great value for safe blood transfusion.
Furthermore, the development and validation of rapid, cost-
effective, simple, and point-of-care assays for blood groups will
benefit bedside pre-transfusion compatibility testing, as well as
rapidly determining blood typing in emergency scenarios or
remote areas where access to laboratory facilities is unavailable.
It is hoped that the study of blood group typing will
continue to develop and complete generations of updates
and advancements.
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