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In contrast to the past reliance on morphology, the identification and enumeration of
blood monocytes are nowadays done with monoclonal antibodies and flow cytometry
and this allows for subdivision into classical, intermediate, and non-classical monocytes.
Using specific cell surface markers, dendritic cells in blood can be segregated from these
monocytes. While in the past, changes in monocyte numbers as determined in standard
hematology counters have not had any relevant clinical impact, the subset analysis now
has uncovered informative changes that may be used in management of disease.
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The Definition of Monocytes

The term monocyte is used for blood cells of a lineage called monocytes/macrophages or mononu-
clear phagocytes. These blood monocytes are bone marrow-derived leukocytes that are functionally
characterized by the ability to phagocytose, to produce cytokines, and to present antigen. In early
studies, they had been identified based on glass adherence andmorphology (1). Also, cytochemistry
for specific enzymes like monocyte-specific esterase (2, 3) has been employed, while the standard
approach in clinical hematology relies on physical properties of these cells including light scatter.

In bone marrow, the monocytes derive from myelo-monocytic stem cells, which give rise to more
direct precursors like monoblasts and pro-monocytes. These cells earlier were identified based on
morphology (4) such that the monoblast was an ill-defined cell type. More recently in the mouse
model, a Ly6C+ CD115+ CD117+ monoblast-type cell, termed common monocyte progenitor
(cMoP), was identified in bone marrow and spleen and this cell is able to proliferate and give rise to
the different monocyte subsets (5). A cMoP monoblast type of cell remains to be identified for man
and other species.

The number of circulating blood monocytes in man can strongly increase within minutes by
stress or exercise followed by a rapid return to baseline levels. These recruited cells are thought to
come from what is called the marginal pool (6). This compartment describes areas of reduced blood
velocity close to the endothelium of venules and here cells can loosely adhere and can be mobilized
in a catecholamine-dependent fashion (7). These marginal pool monocytes can have an adhesion
molecule pattern distinct from monocytes found in blood at rest.

In addition, CD11bhigh (CD90, B220, CD49b, NK1.1, Ly-6G, F4/80, I-Ab, CD11c)low cells are
mobilized from the spleen after severe injury (8). These cells have monocyte morphology and their
transcriptome matches with that of blood monocytes. Furthermore, CD11b+ Ly6Chi monocytes
can be mobilized from bone marrow to blood in infectious disease models (9), and adoptively
transferred monocytes were shown to return to the bone marrow (10) in the mouse. What remains
to be determined is whether the spleen and bone marrow compartments also contribute to the pool
of monocytes that can be mobilized by stress and exercise.
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When under homeostatic or inflammatory conditions, the
monocytes have migrated into tissue; then by definition, these
cells are called macrophages. Cells newly emigrated into the lung
have been termed monocytes in some studies [e.g., Ref. (11)].
Since monocytes, once they have arrived in tissue, will start to
transform into larger cells and rapidly lose their monocyte char-
acteristics, others have called these recently emigrated cells “small
macrophages” (12).

More detailed studies in the mouse have demonstrated tissue
cells with characteristics close to blood monocytes (13, 14). How-
ever, these cells in the lymph node show a gene expression pattern
that distinguishes them from the blood cells (14) and in the skin
they show increased expression of lysozyme and CD68, markers
typical of mature macrophages (13). Therefore, more data are
required in the mouse model and obviously also in man before
a consensus can be reached whether we use the term tissue mono-
cyte or whether we continue to call these cells macrophages. Until
these issues have been resolved, the term monocyte should be
restricted to cells in the blood compartment and the bonemarrow
and spleen reservoirs that can replenish the blood monocyte pool.

Definition of Blood Monocytes Based on
Cells Surface Markers

As explained above, monocytes initially had been identified by
function andmorphology and these criteria have been misleading
especially when disease processes altered these features. There-
fore, attempts have been made to define unequivocal criteria
for monocytes. Here, monoclonal antibodies against cell surface
molecules have been proposed. In man, CD14 has been used as
a marker (15), and in the mouse, CD115 is often employed (16).
CD115 identifies the M-CSF receptor and has the main drawback
that in the mouse, it is downregulated on blood monocytes with
inflammation (17). Also, the question is whether such markers
are sufficiently specific and do not react with other cell types like
dendritic cells (DCs). In fact, part of theCD1c+ bloodDCs inman
can express low-level CD14 (18) and also human B cells have been
reported to express some CD14 (19). Therefore, monocytes can
be identified with markers like CD14 and CD115, but this should
be supported by additional markers and by functional studies.
Interestingly, when searching for macrophage-specific transcripts
in the mouse, CD64 and MerTK have emerged (20). While CD64
is absent from non-classical monocytes in man, MerTK is a
molecule that might prove informative for blood monocytes in
different species. In addition, staining for CD16, which is used for
monocyte subset definition (see below), will at the same time help
to exclude DCs in human blood.

Dissection of Monocytes from
Dendritic Cells

Dendritic cells were first described by Steinman and Cohn as
stellate cells isolated frommouse spleen (21). Over the years, there
have been debates as to whether these cells are a distinct lineage or
part of the mononuclear phagocyte system. A common precursor
for monocytes and DCs was described in the mouse (22), but the
existence of this cell was later disputed (23) suggesting that DCs

and monocytes may diverge at an earlier multi-potent progenitor
stage (24).

However, the demonstration that monocytes can be used to
generate DCs in vitro by adding GM-CSF and IL-4 suggested
a close relationship between monocytes and DCs (25). Later,
transcriptome analysis demonstrated that suchmonocyte-derived
DCs rather resemble macrophages than DCs from lymphoid tis-
sue (26). Therefore, these in vitro generated monocyte-derived
cells are potent antigen-presenting cells, but they do not represent
bona fide DCs; they rather belong to the monocyte/macrophage
lineage. Still not resolved is the question whether in tissue the
monocyte-derived cells with high levels of class II expression
and with high antigen-presenting capacity should be termed
monocyte-derived DC (13, 27, 28) or activated macrophages.

In addition to DCs in tissue, cells with DC properties have been
described in blood based on the expression of CD68, CD1c, or
CD141 (29, 30). Transcriptome analysis has demonstrated that
these cells and the monocytes belong to different clusters (26,
31). These data suggest that blood DCs can be segregated from
monocytes and macrophages as a separate lineage.

The data also demonstrate the power of transcriptomic analysis
in defining and dissecting leukocyte populations like monocytes
and DCs. Ontogeny can help in such a definition, but in men,
adoptive transfer is limited to strategies like transfer of bone
marrow stem cells, and informative mutations are rare. Also, the
ontogeny approach needs to be used with caution since a defined
progenitor cell can give rise to clearly distinct cell populations.
An informative example is the megakaryocyte–erythrocyte pro-
genitor (MEP) cell, which gives rise to either megakaryocytes
and their platelet progeny or to erythroblasts and their red blood
cell progeny (32, 33). Megakaryocytes and erythroblasts have
a distinct transcriptome (34), and they are involved in distinct
functions, i.e., in blood clotting and oxygen transport, respec-
tively. Therefore, although having a common ontogeny, these cells
belong to clearly separate lineages. This example illustrates that
ontogeny can provide a framework, but a comprehensive analyses
like transcriptomics and the analysis of cell function are required
for dissecting cell types and for developing a nomenclature. There-
fore, in order to assign a novel leukocyte population in blood or
tissue to either monocytes or DCs, a straight-forward approach is
to analyze the transcriptome (and other omics like the proteome,
lipidome, glycome, or metabolome) of these cells in compari-
son to typical monocytes and DCs and to then ask whether the
novel cell type co-clusters with either prototypic monocytes or
DCs (26).

Monocyte Subpopulations

Evidence for monocyte subpopulations has come from experi-
ments using differential flotation in counter-current elutriation
(35) and from differential binding to antibody-coated red blood
cells, which has defined populations with different functions (36).
With the use of monoclonal antibodies and flow cytometry, tools
have become available to clearly define, enumerate, and isolate
monocyte subsets based on the differential expression of CD14
and CD16 cell-surface markers (37).

In 2010, an international consortium under the auspices of the
IUIS and the WHO has proposed a nomenclature for monocyte

Frontiers in Immunology | www.frontiersin.org August 2015 | Volume 6 | Article 4232

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Ziegler-Heitbrock Monocyte subsets

FIGURE 1 | Blood monocyte subsets in man. Illustration of the definition of
human monocyte subsets in health based on a typical distribution of events in
a CD14 CD16 staining.

subpopulations (38). The proposal defined the major popula-
tion of CD14high cells found in human blood as classical mono-
cytes and the minor population of cells with low CD14 and
high CD16 as non-classical monocytes. A population in between
these two subsets was termed intermediate monocytes (see
Figure 1).

While an unequivocal approach to defining the intermediate
monocytes has not been developed, as yet (39), a host of studies
on intermediate monocytes has been published since the 2010
proposal. In fact, a search for the term “intermediate monocyte”
under Google Scholar has revealed more than 100 studies on
these cells since 2010. These reports have described an expansion
of intermediate monocytes in various inflammatory diseases and
these cells have been shown to be of prognostic relevance in
cardiovascular disease (40). The use of additional markers for
delineation of intermediate monocytes has been suggested (41)
and it remains to be shown whether markers, such as CCR2 or
slan, will improve the definition of these cells.

The same nomenclature as proposed for man can be used in
other species [reviewed in Ref. (42)]. The respective cells can be
very similar to men as seen for non-human primates (43, 44). In
species like the mouse, the classical and non-classical monocyte
subsets can be identified as well, but differentmarkers like CD115,
Ly6C, andCD43 are used (16, 45). Also in species like rat, pig, cow,
and horse, classical and non-classical monocytes can be defined
and even intermediate monocytes have been described in some
animals (42). It is predicted that the nomenclature of monocyte
subsets will be applicable to all mammalian species.

In human blood, a population of slan-positive cells has been
described as DCs, but phenotypic analysis has shown that these

cells are CD14-low and CD16-high (46), functional studies
demonstrated a high capacity to produce TNF (47), and clin-
ical studies showed that these cells are depleted by glucocor-
ticoid treatment (48). These features are identical to what has
been reported as characteristics of non-classical CD14+CD16++
monocytes (37, 49, 50). Also, the increased absolute numbers
of slan-positive monocytes and of non-classical monocytes show
a clear correlation in HIV-infected patients (51), and part of
the non-classical monocytes has been shown to be slan-positive
(52–54). Collectively, these findings suggest that the slan-positive
cells belong to the non-classical monocytes.

There may be additional monocyte subsets including
Fcepsilon-RI-positive cells (55), which were found with a median
of 2.5% among CD14-positive blood monocytes in a pediatric
cohort (56) and these cells may be involved in IgE clearance (57).
Also, proliferating monocytes have been described (58) as well as
precursors for fibrocytes (59) and osteoclasts (60). For all of these
cell types, further characterization is awaited.

Clinical Implications of Monocyte Numbers

Monocyte numbers as defined in the hematology lab using light
scatter properties have not contributed much to diagnosis and
monitoring of disease, but with the definition ofmonocyte subsets
by flow cytometry, informative patterns have emerged. For exam-
ple, severe infection will increase the number of non-classical and
intermediate monocytes (61–63). Here, it remains to be analyzed
whether such an increase can predict prognosis, as has been
suggested (64). Furthermore, therapywith glucocorticoids leads to
a decrease of non-classical monocytes, which appears to be due to
a selective induction of apoptosis in the non-classical monocytes
while classical monocytes even increase in number under gluco-
corticoids (50, 65). Also, blockade of the M-CSF pathway can lead
to depletion of non-classical monocytes (66–68). A likely expla-
nation is that M-CSF signaling via the CD115 M-CSF receptor is
required for the classical monocytes to mature into non-classical
monocytes. Again still to be determined is whether such a drug-
induced depletion can be used to predict therapeutic response
in inflammatory diseases. Still unresolved is the mechanism of
depletion of non-classical monocytes in three siblings within one
family (69). Here, more families with this type of defect need to
be analyzed in order to identify the gene and the mechanisms
involved. Finally, the absolute count of intermediate monocytes
was shown to predict cardiovascular events (70, 71). Hence, anal-
ysis of monocyte subsets by flow cytometry now provides clin-
ically useful parameters in various settings. What remains to be
established in this context is an unequivocal dissection of the
non-classical and the intermediate monocytes.
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