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Abstract: The global outbreak of SARS-CoV-2/COVID-19 provided the stage to accumulate an
enormous biomedical data set and an opportunity as well as a challenge to test new concepts
and strategies to combat the pandemic. New research and molecular medical protocols may be
deployed in different scientific fields, e.g., glycobiology, nanopharmacology, or nanomedicine. We
correlated clinical biomedical data derived from patients in intensive care units with structural
biology and biophysical data from NMR and/or CAMM (computer-aided molecular modeling).
Consequently, new diagnostic and therapeutic approaches against SARS-CoV-2 were evaluated.
Specifically, we tested the suitability of incretin mimetics with one or two pH-sensitive amino
acid residues as potential drugs to prevent or cure long-COVID symptoms. Blood pH values in
correlation with temperature alterations in patient bodies were of clinical importance. The effects of
biophysical parameters such as temperature and pH value variation in relation to physical-chemical
membrane properties (e.g., glycosylation state, affinity of certain amino acid sequences to sialic acids
as well as other carbohydrate residues and lipid structures) provided helpful hints in identifying a
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potential Achilles heel against long COVID. In silico CAMM methods and in vitro NMR experiments
(including 31P NMR measurements) were applied to analyze the structural behavior of incretin
mimetics and SARS-CoV fusion peptides interacting with dodecylphosphocholine (DPC) micelles.
These supramolecular complexes were analyzed under physiological conditions by 1H and 31P
NMR techniques. We were able to observe characteristic interaction states of incretin mimetics,
SARS-CoV fusion peptides and DPC membranes. Novel interaction profiles (indicated, e.g., by
31P NMR signal splitting) were detected. Furthermore, we evaluated GM1 gangliosides and sialic
acid-coated silica nanoparticles in complex with DPC micelles in order to create a simple virus
host cell membrane model. This is a first step in exploring the structure–function relationship
between the SARS-CoV-2 spike protein and incretin mimetics with conserved pH-sensitive histidine
residues in their carbohydrate recognition domains as found in galectins. The applied methods
were effective in identifying peptide sequences as well as certain carbohydrate moieties with the
potential to protect the blood–brain barrier (BBB). These clinically relevant observations on low blood
pH values in fatal COVID-19 cases open routes for new therapeutic approaches, especially against
long-COVID symptoms.

Keywords: SARS-CoV-2; coronavirus fusion peptides; incretin mimetics; blood pH; molecular
modeling; NMR

1. Introduction

Molecular medicine entails the development of new ways to diagnose and treat
diseases. The diagnostic and therapeutic approaches of SARS-CoV-2 are outstanding ex-
amples of the need to understand the mechanisms and possible treatment procedures on
a molecular level. NMR experiments on dodecylphosphocholine (DPC) micelles mixed
with gangliosides (e.g., GM3) can be carried out under defined pH and temperature
conditions [1]. Such a methodology is also suitable to test and refine potential SARS-CoV-2
inhibitory fusion peptides [2–6] as well as other antimicrobial peptides and proteins such as
lysozymes [7,8], hevein domains [9] or defensins [10–12] in respect to their membrane affini-
ties and lectin-like functions. Thereby, it is possible to determine the effectiveness of these
biomedical molecular structures in the context of clinical data [13–16]. The micelles mixed
with surface-exposed sialic acid containing glycolipids (e.g., GM3, GM1, and GD1A) can be
regarded as a simple cell membrane model with sialic acids acting as key contact structures
of pathogens [14,17] as well as contact structures on host cell surfaces [18–25]. NMR studies
supported by molecular modeling calculations enable a detailed analysis of the interac-
tions between proteins or peptides with other biomolecules [26–30], lipids [8,26,31,32]
oligosaccharides or glycoconjugates [18–20,33] under various physiological conditions.
This strategy was previously successfully applied when collagen fragments and sulfated
glucosamines were tested and compared in relation to their receptors [34–38].

In the case of the SARS-CoV-2 spike protein—ACE2 receptor complex—a potential
pH-dependent influence of Zn2+ cations which stabilizes the bio-active conformation of this
complex is of particular interest [39]. Computational studies clearly show that a Zn2+ cation
contributes in a pH-dependent manner to the structural dynamics of the surrounding His
and Glu residues in the virus spike protein–ACE2 receptor complex. Interactions of the
ACE2 receptor which occur in cells present in lung tissue can be significantly influenced by
crucial pH values of approximately pH 6. These values correspond to the physiological con-
ditions on lung tissue surfaces [40,41]. However, other organs whose tissue pH values show
a higher pH value than the lung can also be affected by pH value alterations in the range of
the blood pH which is typically between pH 7.35–7.45. In this pH range, His residues are
still partly protonated. In this context, the stability of the blood–brain barrier (BBB) and
its collagen network is of highest importance [15,16]. Therefore, we evaluated blood pH
values from patients at an intense care unit. Blood pH values below pH 7.35 correspond
to acidosis while blood pH values above pH 7.45 indicate alkalosis. A clinically relevant
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question arose on whether the blood pH value alterations of patients treated in intense care
units can be correlated with the severeness of this disease and the fate to become a survivor
or an exitus (fatal case). Furthermore, these observations of clinical data are regarded as a
starting point for in vitro NMR experiments with model membranes mixed with the gan-
glioside GM1 and potential antiviral peptides [9,25,42–49]. Thus, two physical parameters
that were found to be characteristic of patients with different outcomes, blood pH and
body temperature, were altered in the in silico molecular modeling studies and during the
in vitro NMR experiments in which the solution properties and oligosaccharide affinities
of incretin mimetics with one or two His residues were tested. Dodecylphosphocholine
(DPC) micelles mixed with gangliosides [1,50] are suited role models because the lectin-like
SARS-CoV-2 spike glycoprotein has a specific sialic acid affinity [43,44]. The results of the
experiments described here will contribute to the development of improved diagnostics
and therapeutic strategies in respect to a new generation of incretin-like inhibitory viral
fusion peptides [29,51,52].

The incretins, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic
polypeptide (GIP), are glucose-lowering, intestinal peptide hormones. Their receptors, GLP-
1R and GIPR, are primarily localized to pancreatic islet cells and implicated in the treatment
of type 2 diabetes mellitus (T2DM). It is important to emphasize that both receptors are
also present elsewhere and particularly throughout the nervous system, on the dendritic
branches of neurons as well as on activated microglia and astrocytic cells [53,54]. The N-
glycosylated incretin receptors are coupled to the cAMP second messenger pathway whose
upregulation is associated with neuroprotection and anti-inflammation [55–57]. Therefore,
the potential therapeutic benefit of incretin mimetics in brain pathologies, especially in
relation to long-COVID symptoms is of growing interest. Our hypothesis assumes that
incretin mimetics provide excellent models for the development of new antiviral peptides
under consideration of pH and temperature effects. Incretin mimetics are suitable molecules
due their structural properties being linear peptides with proper amino acid sequences.
In addition, receptor-induced neurotrophic, defensive and anti-inflammatory processes
of incretin mimetics, being neuroprotective in respect to long-COVID symptoms, will
be discussed.

We tested incretin-like model structures which may block SARS-CoV-2 entry based on
their known membrane affinity and potential use in oral delivery to patients. The substances
and nanoparticle models under study are summarized and visualized in Schemes 1–3. The
methodology used is consistently described in part 4 of the presented article.
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Scheme 1. Schematic view of Neu5Ac (sialic acid)-coated nanoparticles. FSNP: fluorescein-doped
silica nanoparticle; PFPA: perfluorophenyl azide; Sia: Neu5Ac. PFPA and Sia are non-covalently
attached to the silica nanoparticles (indicated here with dashed lines).
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(bottom) example of a 3D conformation of GM1.
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Scheme 3. Sequence information for Semaglutide, Pt2His, Tirzepatide, RUO and RUM. In the case of
the first three peptides, a lipid tail (spacer and C-18 fatty di-acid to the lysine residue) is linked to K.
X is a substitution of alanine to α-amino-isobutyric acid. The lipid tail provides strong binding to
human serum albumin.

The similarities in the symptoms of diabetes, SARS-CoV-2 and long-COVID symp-
toms have led to the use of incretin mimetics playing a key role in clinical research
projects [58–62]. These studies focus on the nanomedical aspects of the corresponding
interactions between peptides/proteins, lipids and oligosaccharides.

In our study, the DPC micelles mixed with GM1 gangliosides (sialic acid containing
glycolipids) were considered as model membranes of the host cell surfaces. However,
sialic acids are also contact structures of virions and virus models due to their presence
at the terminus of the saccharide chains [63,64]. In this context, sialic acid-coated silica
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nanoparticles are well suited virus models because they allow one to study the impact of this
carbohydrate moiety on specific residues within the spike-protein of the SARS-CoV-2 virus.

2. Results
2.1. Clinical Studies

Blood pH values of 25 SARS-CoV-2 patients in an intense care unit were detected
every day (12 fatal cases and 13 survivors). The average blood pH values of 25 patients are
shown in Figure 1. In this figure, the pH values were detected at exact times per day or per
week of the clinical stay of the patients. The pH values of surviving patients are shown in
green; fatal cases in red. In Figure 2, the pH values were detected at exact times per day or
per week at the clinical stay of the patients. The blood pH values from these 25 patients
were listed during these time intervals as (a) minimum pH values and as (b) maximum
pH values. Notably, lower blood pH values measured during all days of the stay in the
hospital were directly correlated with the risk of fatality. It must be emphasized that the
pH measurements during the first 7 days (with a special focus on days 1 to 3) are the most
meaningful since the pH values can strongly be influenced by other effects (multiple organ
failure) after this time period and thus are only indirectly correlated with the attack of
the virus.

A statistical analysis of the blood pH values from 25 patients in the intense care unit
was carried out to determine whether the observed pH alterations within this patient group
were of statistical significance.

Our clinical data lend support to a model in which pH may be a valuable prognostic
marker for patient outcomes in the first three to seven days of clinical treatment. We there-
fore investigated this further by incorporating these parameters into molecular modeling
calculations and NMR experiments of incretin-like potential inhibitory SARS-CoV-2 fusion
peptides. In order to examine the feasibility of this assumption, in silico molecular model-
ing calculations and in vitro NMR experiments were performed under different pH and
temperature conditions. We note that when determining treatment options for COVID-19
patients, it is important to understand the mechanics of the interplay between SARS-CoV-2,
potential treatments and cell models under the pH and temperature conditions seen in
patients more at risk.
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Figure 1. Average blood pH values of 25 patients in an intense care unit. The pH values were
measured at exact time intervals on days 1–8, 14 and 21. Each point represents the average pH value
in surviving patients (13 persons) shown in green; the average pH values of fatal cases are in red
(12 persons). The time period between day 1 and day 7 is of the highest importance. During this time,
one of the surviving patients had already left the hospital while there were four fatalities.
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Figure 2. Minimum pH (top) and maximum pH (bottom) values of 25 patients in an intense care
unit measured at exact time intervals on days 1–8, 14 and 21. The average pH values for minimum
or maximum pH of surviving patients (13 persons) are shown in green; the average minimum or
maximum pH values of fatal cases (12 persons) are shown in red.

2.2. CAMM: ACE2 Receptor and Incretin Mimetics

The conformation of the ACE2 receptor (6M0J.pdb) is strongly pH dependent due
to its Zn2+ ion interacting with His-374 and His-378 as well as with Glu-375, Glu-402 and
Glu-406 (see Figure S1). We therefore concentrated on in silico studies on the zinc cation
and neighboring amino acids. One two-fold positively charged zinc ion is surrounded by
two histidine (His374, His378) residues and three glutamates (Glu375, Glu402, Glu406)
residues. The pH value for stabilizing the histidine (His) side chains has to be above 6. At
pH values below 6, the zinc cation separates from the positive charged His residues and
thus alters the tertiary structure. It is noted that the amino acid residues mentioned above
are located on different strands and are therefore apart from each other in respect to the
primary sequence.

Interestingly, it is known that the pH dependence of the His residues also plays a
crucial role in the context of linear peptides which can act as peptides inhibiting viral
fusion when surrounded by Ca2+ cations at various concentrations [65]. Regarding the
incretin mimetics under study (in our case, role models for inhibitory fusion peptides),
we focused on Semaglutide with a primary His residue and Pt2His with a primary and
a tertiary pH-sensitive His residue in the amino acid sequence. The Pt2His structure at
various possible binding positions to human serum albumin is shown in Figure 3A,B.
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Figure 3. Representative images of Pt2His bound to human serum albumin (HSA). (A) Nine possible
binding modes. (B) Best binding mode. The binding sites of protein are colored yellow together
Pt2His shown in a space-filling CPK model.

The structural dynamics of the lipid chain conformations of Tirzepatide and Semaglu-
tide are similar to that of Pt2his. However, in the case of Pt2His, the lipid chain is linked
to K14 and the chain is attached to K20 in the case of Tirzepatide and Semaglutide. The
Semaglutide model structure in Figure 4 A was analyzed in the presence of glycosylated
DPC micelles in respect to their structural dynamics along with NMR experiments to-
gether with MD simulation methods. The structural dynamics of the identical lipid tails of
Semaglutide and Pt2His (Figure 4B,C) are independent from the two different positions
in the amino acid part of these incretin mimetics. When inhibitory fusion peptides are
used as antiviral therapeutics, it is essential that they are guided through the blood stream
by a shuttle system to many target organs. In the examples described here, it is human
serum albumin (HSA, Figure 3) to which the lipid parts of the two incretin mimetics under
study are attached. The lipid part (Figure 5B,C) is linked to Lys20 (K20) in the case of
Semaglutide or at Lys14 (K14) as performed for Pt2His. Since the lipid part has a defined
impact on the structural dynamics of Pt2His Figure 5A of Tirzepatide (Figure 5B) as well as
on Semaglutide (Figure 5C), it was possible to study the corresponding structural influence
by NMR and molecular modeling techniques [66–68]. This analysis allowed us to study
different incretin mimetics which could be used as potential SARS-CoV-2 therapeutics.
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Figure 4. Semaglutide in a micelle (A). Lipid tail (B) of Semaglutide and Pt2His is shown as MD start
conformation (B) and conformation after 7 ns (C) of MD simulation in a water box. Color coding:
Carbon atoms—light blue, nitrogen—blue, oxygen—red, sulfur—yellow and hydrogen—light grey.
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In addition, we carried out MD simulations for the SARS-CoV fusion peptides 2RUM
and 2RUO in a water or in a lipid environment. We emphasize here that no His residues
occur in the two peptides 2RUM and 2RUO. These fusion peptides seem to only interact
with the glycosylated cell membrane while the glycosylated GIP—and GLP-1—receptors
are the main targets for Pt2His, Semaglutide and Tirzepatide.

Our experimental setting provides a simple membrane model suited for testing SARS-
CoV fusion peptides as well as incretin mimetics interacting in a receptor-independent
way with a glycosylated model membrane. The correlation of these findings in the con-
text of issues associated with a damaged blood–brain barrier (BBB) are addressed by a
detailed analysis of interactions with collagen structures. Furthermore, sialic acid-coated
nanoparticles and certain glycosylation techniques can also be applied to test the membrane
properties [69,70].

It is known that a decrease in collagen destabilizes the blood–brain barrier [15,16].
Therefore, the role of collagen-structures was taken into account when ACE2 virus spike
protein complexes were analyzed. Furthermore, we considered that the ACE2 receptor can
also occur as an unbound enzyme free in the blood stream.

In Figure 6A, the Asn-109 covalently linked surface trisaccharide of the ACE2 receptor
is shown with green carbon atoms. The visualization reflects the 4APH.pdb structure. In
Figure 6B, the ACE2 receptor is depicted in complex with the SARS-CoV-2 virus spike
protein (pdb code 2AJF) in a ribbon and surface representation. The surface of the receptor
is colored in grey and the surface of the spike protein is highlighted in yellow (Figure 6B).
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Figure 6. Angiotensin receptor (A) with a ligand consisting of a collagen-fragment similar in structure
to angiotensin. The Asn-109 connected surface trisaccharide is shown with green carbon and red
oxygen atoms. The visualization reflects the 4APH.pdb structure. (B) Angiotensin receptor in complex
with the virus spike protein (pdb code 2AJF) in ribbon and surface representation. The surface of the
receptor is colored grey, the surface of the spike protein is shown in yellow.
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The binding sites of the angiotensin receptor (violet surface) are the focus of Figure 7.
Left side, (A)—SiteMap-calculated binding sites of the angiotensin receptor (the angiotensin
molecular surface is colored violet). Right side; (B)—the angiotensin receptor (grey surface)
in complex with virus spike protein (yellow surface). The first four SiteMap-preferred
binding sites are shown with red ellipses and yellow/blue highlights. An angiotensin
receptor (grey surface) and virus spike protein (yellow surface) complex is shown in
Figure 7B. The first four SiteMap-preferred collagen binding sites are highlighted with red
ellipses and yellow/blue highlights. Conformational changes that occur in protein-collagen
complexes which can be influenced by temperature and/or pH alterations are displayed in
Figure 8.
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shown with red ellipses and yellow/blue highlights.
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Figure 8. Angiotensin receptor protein in interaction with collagen strands as seen from molecular
dynamics (MD) simulations. The carbohydrates linked to the proteins are also highlighted (green
carbons). The conformations shown were extracted from 10 ns MD simulation in a water environment.
The collagen model is shown as a grey colored ribbon for (A) and a semitransparent blue and green
colored collagen surface is added for (B).

The angiotensin receptor protein is modelled in interaction with collagen strands as
seen from molecular dynamics (MD) simulations. The carbohydrates linked to the proteins
are also highlighted (green carbons). The conformations shown were extracted from 10 ns
MD simulation in a water environment. The collagen model is shown as grey colored
ribbon for (A) and semitransparent blue and green colored collagen surface is added for (B).
Molecular modeling and NMR methods are thus invaluable tools in analyzing important
changes that may occur in the blood–brain barrier (BBB). Blood temperature-dependent
destabilization of the BBB under conditions of acidosis [16,71] is a potential explanation
for pH-dependent effects in respect to the gravity of acute and/or long-COVID symptoms.
Since collagen strands are essential building blocks of the blood–brain barrier, we focused
on the ACE2-receptor–spike protein–collagen interactions. This allowed us to examine
the way that such complexes can be described in respect to their structural dynamics
and whether a temperature- and pH-dependent effect could be expected. It is now of
importance to find out in which way the insights obtained by clinical observations and
molecular modeling can be verified with the help of NMR experiments. In this context, it is
important to mention that collagen hydrolysates, which are mixtures of linear peptides and
short collagen fragments, have been successfully studied by various NMR methods [34–38].
Clinically, they are orally administered and serve to act as chondroprotective agents in
patient target tissues. The design of the NMR experiments flanked by molecular modeling
studies as introduced here provide guidelines for cell-culture experiments under certain pH
and temperature conditions [72,73]. This will be outlined in detail in a follow-up study with
the focus on tissue studies and cell-culture experiments as well as on a mass spectrometric
analysis of blood probes from COVID-19 patients.
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2.3. NMR: Semaglutide and Pt2His

NMR experiments were carried out under consideration of two physiological key-
parameters: temperature and pH value. The incretin mimetics Semaglutide and Pt2His
as well as the two SARS-CoV fusion peptides 2RUM and 2RUO show detectable model
membrane interactions in different ways. These interactions are of interest when looking
for inhibitory viral fusion peptides providing a steric perturbation of the entry platform
created by the viral fusion peptides. The other way to hinder the spread of SARS-
CoV-2 and block viral fusion is the direct interaction of incretin mimetics with their
glycosylated receptors.

The incretin mimetics Semaglutide and Pt2His were the first approach to study the
temperature-dependence of peptides in the pH range of interest. We speculate that these
two peptide drugs may inhibit SARS-CoV-2 infection and virus spread in the body due
to membrane-related effects. The peptide membrane interactions were analyzed in the
presence of non-glycosylated and glycosylated model membranes. The glycosylated
membranes were created with the help of GM1 gangliosides as contact structures of the
host cell membrane. Ganglioside GM1 is a glycolipid with one sialic acid residue in
which the N-acetyl-neuraminic acid (a member of the sialic acid family) residue ισ α2–3
linked to a galactose unit. Furthermore, silica nanoparticles at the size of the SARS-CoV-2
virus with a sialic acid-coated surface were used as a suited virus standard model for
referencing the intensities of our 31P NMR signals for glycosylated DPC membranes at
42 ◦C and 37 ◦C.

Four 31P signals are shown in the left as well as in the right part of Figure 9. The
signals represent the micelles of four different experimental settings at two temperatures
at a constant physiological pH value of 7.4: 42 ◦C (high risk temperature of the patients)
and 37 ◦C (normal temperature of the patients). Black signal: pure DPC micelles. Blue
signals: DPC micelles with sialic acid containing compounds: GM1 and sialic acid-coated
silico nanoparticles. Green signal: Pt2His in the presence of DPC micelles. Red signal:
Semaglutide in the presence of DPC micelles.
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Figure 9. 31P NMR spectrum of Semaglutide (red) mixed with DPC in comparison to other spectra:
DPC (black), Pt2His with DPC (green) and DPC with sialic acid-coated silica nanoparticles (blue)
measured at 42 ◦C (A) and at 37 ◦C (B). The pH value was adjusted to 7.4.

At 42 ◦C, the 31P signal of DPC micelles in the presence of Pt2His is high and sharp
while it changes at 37 ◦C to a broad and smaller signal. This result indicates that the inter-
action of micelles and Pt2His is strongly temperature dependent and thereby influenced
by the tumbling rate of the micelles. In contrast to the Pt2His result, the Semaglutide
DPC micelle interactions show a minor temperature dependence in the physiological
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range. The black DPC 31P signal represents the pure DPC micelles without any pep-
tide or sialic acid containing compounds. It turned out that this signal can be used as a
temperature-independent reference signal. DPC micelles mixed with GM1 gangliosides in
the presence of sialic-coated nanoparticles as a basic cell membrane model in addition to
pure DPC micelles.

We varied the concentrations of both GM1 gangliosides and sialic acid-coated nanopar-
ticles. However, we found that only one concentration already taken for the peptides under
study was of importance. A 40 molar access of DPC to the ganglioside GM1 as well as to
the sialic acid-coated nanoparticles leads to proper mixtures, Therefore, the molar ratios of
the ganglioside GM1, the sialic acid-coated silico nanoparticles, the incretin mimetics and
the SARS-CoV fusion peptides to DPC has to be adjusted to 1:40.

The fact that interactions, especially between aromatic amino acid residues and carbo-
hydrate moieties play a prominent role in complex formation independent of the peptides
or proteins studied is documented in the literature [18,30,74]. This is of special interest here,
because we focus on the amino acid residues that are acting as specific contact structures in
the presence of a DPC environment.

The SARS-CoV fusion peptides 2RUM (MWKTPTLKYFGGFNFSQIL-NH2) and 2RUO
(GAALQIPFAMQMAYRF-NH2) have provided essential supporting data for the interpreta-
tion of the 31P NMR results obtained for Semaglutide and Pt2His. These two linear peptides
2RUM and 2RUO do not have a His residue in their amino acid sequence but other aro-
matic amino acids, especially the CIDNP sensitive Tyr and Trp residues. Similar peptides
with a specific oligosaccharide affinity have already been analyzed with NMR, ESI-MS
and CAMM methods [18,30]. In the case of the 19-mer peptide 2RUM, we have observed
two different 31P signals of the DPC micelles in contrast to the 31P NMR results from
Semaglutide, 2PtHis and the 16-mer peptide 2RUO. The two 31P signals of different size
argue in favour of two distinct populations of micelles at different size in the presence of
2RUM. The signal spitting does not depend on the two measurement temperatures. The
splitting of the signals is an important result because it proves that only one population
of micelles exists in the presence of Semaglutide, Pt2His or 2RUO independent of the
physiological temperature.

Notably, the four peptides under study and the sialic acid containing silica nanoparti-
cles interfere in characteristic ways with the non-glycosylated and glycosylated DPC model
membranes, Figures 10–12 and S2–S7.
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and (B) 37 ◦C.
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aromatic part (A) as well as the aliphatic part (B) of a one-dimensional proton NMR spectrum. The
molar ratio of the SARS-CoV fusion peptide 2RUO as well as the ganglioside GM1 to DPC was 1:40.

3. Discussion

Our preliminary clinical study indicated that the body temperatures of COVID-19
patients were always well above normal human body temperatures. This was coupled with
a significant lowering of blood pH in affected individuals. The observed pH alterations
gave us an important hint that the two His residues of a new incretin prototype at position
one and three could influence the incretin properties in a pH-dependent way. This could
be tested in a combination of NMR experiments with CAMM (computer-aided molecular
modeling). Given this, we incorporated these clinical parameters into our NMR experi-
ments of established and novel incretin mimetics and their lipid tails with a high HSA
affinity. Although the number of blood samples was not large, we emphasize that these
observations were statistically significant.

HSA (human serum albumin) is a well-known shuttle system for incretin mimetics. In
our context, it was essential to use CAMM to analyze the suitability of HSA as a transporter
for our new incretin prototype on a sub-molecular level.

Incretins and incretin mimetics bind to incretin receptors in a specific way. The impact
of these interactions on gastro-intestinal and neurological processes is well studied (as well
as discussed and cited above). The gravity of a SARS-CoV-2 infections is closely related to
that of other systemic diseases such as diabetes. Therefore, a positive influence of these
medications on the course of a coronavirus infection can in particular be explained by
the corresponding receptor interactions [75,76]. Furthermore, linear SARS-CoV-2 peptides
seem to stabilize or destabilize the virus host–cell interactions without a specific receptor.
They directly trigger the cell membrane in order to support or block the entry of the virus.
To understand this process, we used a simple DPC ganglioside membrane model and
applied 31P NMR experiments for the incretin mimetics and the viral fusion peptides under
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study. It turned out that the signal shifts and line broadening regarding the corresponding
31P NMR signals of DPC clearly indicate significant differences between the interactions of
the peptides under study and the glyco-membrane model.

A contributing element to fatal SARS-CoV-2 cases may be pH- and temperature-dependent
destabilization of the blood–brain barrier (BBB) under conditions of acidosis [16,71]. An effect
on the brain vasculature is suspected since neurological symptoms and vascular lesions
are seen in COVID-19 infections. It is important to note that that the ACE2 receptor is
ubiquitously expressed in vessels of the cerebral cortex. Furthermore, the spike protein
ACE2 receptor interaction is known to be correlated with property changes within the
BBB [77].

The infection with SARS-CoV-2 in relation to the ACE2 receptor is not limited to
affecting the blood–brain barrier (BBB), it also affects ACE2 receptor rich cells of the choroid
plexus epithelium. This leads to a breach of this important brain protective barrier, allowing
pathogens to leak into the cerebrospinal fluid and diffuse into the brain tissue [71,78]. So
far, two barriers which protect the brain—the blood–brain barrier and the choroid plexus
epithelial barrier—are broken. The ACE2 receptor spike protein interactions can also be
increased by ischemic insults and inflammation in the brain. This in turn may lead to
possible changes in blood pH as well as brain pH changes through hypoxemia [79].

In respect to the structural dynamics of the virus spike protein, we demonstrated with
CAMM methods that pH-dependent effects of His residues and Zn2+ ions exist. Since
incretin mimetics have been identified as potential therapeutics under special consideration
of long-COVID symptoms we focused on two substances, Semaglutide and Pt2His. These
substances have one or two His residues in their amino acid sequence. In this context, the
impact of the body temperature (the second clinical parameter in addition to the blood pH
value) raised our interest. It was not possible to detect effects on the structural dynamics by
NMR methods within the small pH interval determined by clinical observations. However,
it was possible in this small pH range of interest to examine effects of the blood and
body temperature. It turned out that the fluctuations of the body temperature between
37 ◦C and 42 ◦C are associated with alterations in the structural dynamics of the four
peptides in complex with the DPC micelles under study. It is not surprising to identify such
temperature effects when studying linear peptides in a liquid environment. However, in
our case, it was of importance in which way these linear peptides were able to interact with
dodecylphosphocholine (DPC) micelles. We obtained different results for Semaglutide as
well as for PtHis2 when 31P NMR experiments were performed at 42 ◦C and 37 ◦C (Figure 9).
This documents the importance of temperature altering DPC-peptide interactions in the
context of Pt2His and Semaglutide at these two body temperatures. A temperature of 42 ◦C
represents the crucial point, especially when we correlate these findings with the 31P NMR
data obtained for 2RUM and RUO in the presence of DPC micelles.

Our clinical observations together with CAMM methods indicate that pH and tem-
perature effects are of interest when SARS-CoV-2 spike protein interactions with potential
ligand structures are studied. Semaglutide with its primary His residue is an approved
medication against diabetes and the incretin mimetic proto-type Pt2His is already a part
of human clinical studies. In addition to having a positive effect in the field of diabetes
therapy, these drugs are also applied in the field of neurological diseases, e.g., after brain
traumata. This may infer that they may be of potential use in the case of SARS-CoV-2
infections where long-COVID symptoms may affect nervous tissues, especially where it
involves the collagen network of the blood–brain barrier. These changes should be consid-
ered to be among the most dangerous threats of this viral infection. Since the mechanism by
which the incretin mimetics under study are working is not yet known, some possibilities
have to be considered. They could act as antiviral fusion peptides which destroy the
platform for virus entry prepared by viral fusion peptides. They may accomplish this by
interfering directly with the cell membrane or with surface-exposed gangliosides along
with glycosylated GIP/GLP-1 receptors. Incretin mimetics can bind in a specific way to
GIP/GLP-1 receptors on nervous cells. The receptor concentration is triggered by the
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glycosylation pattern of the incretin receptors [80]. Incretin mimetics have been employed
in clinical applications to prevent or cure long-COVID symptoms in order to control the
over-expression of cytokines [81].

Here, we see a strong link to the field of glycobiology where clinical questions re-
lated to SARS-CoV-2 infections and a potential impact on the nervous system may be
addressed [82–84]. The therapeutic effects of lipid encapsulated inhibitory SARS-CoV-2
fusion peptides for injection or an oral administration are dependent on their membrane
affinity. In this context, it was advantageous that incretin mimetics without (Tirzepatide)
or one (Semaglutide) or two (Pt2His) pH-sensitive His residues exist (Scheme 1). Incretin
mimetics, in special cases, are used in addition to other therapies in TD2 as well as for
treatments of mixed forms of TD2 and TD1 [85,86]. Furthermore, incretins are also applied
during treatment of traumatic injuries [87,88]. Importantly, we note here that the presence
of the incretin receptors (GIP and GLP-1 receptor) is regulated by N-glycosylation [80].

Answers to biomedical questions provided by tools applied in the field of nanomedicine
such as quantum-chemical/DFT calculations on collagen–integrin interactions [89], as well
as neuronal research related to sialic acids [20] and studies on the lectin-like function
human lysozyme [7,8] may provide valuable hints for the direction of treatment options
to curtail the SARS-CoV-2 pandemic. In a recent publication (retrospective study [90]),
it was reported that incretin mimetics used in TD2 diabetes therapy had no effect on
COVID-19–related symptoms in diabetic patients under incretin treatment infected by
SARS-CoV-2. This is indeed not surprising because our study clearly shows that incretin
mimetics with an altered amino acid sequence act in different ways with model membranes
(being necessary to consider in relevant clinical studies). Based on this, it was necessary to
analyze incretin mimetics which differ from Semaglutide, Liraglutide, Tirzepatide, Lixisen-
atide or other clinically applied incretin mimetics. We therefore focused on the comparison
of the pH and temperature-dependent structural dynamics of Pt2His and Semaglutide in
relation to glycosylated membrane models. Remarkably, the results obtained for Pt2His,
shows significantly altered membrane interaction properties in comparison to Semaglutide.
The differences between Pt2His and Semaglutide can in part be accounted for by structural
dynamics in terms of temperature, solubility and membrane effects. The Pt2His sequence
contains two pH-sensitive His residues at positions 1 and 3 that lead to different 1H and
31P NMR spectra in comparison to Semaglutide (Figure S2 and Figure 9). In particular,
Figures S2, S3 and S6 demonstrate that the solubility of these two incretin mimetics differs
strongly in a watery or a lipid environment. This points to an altered membrane affinity
making Pt2His a promising prototype in our search for inhibitory viral fusion peptides
acting in opposition to the membrane perturbing SARS-CoV fusion peptides 2RUM and
2RUO. The altered membrane interactions could be a consequence of a higher affinity to
glycosylated membranes of Pt2His due to the protonation state of the two His residues
attracted by the negatively charged sialic acid residues.

Notably, NMR experiments were carried out under consideration of the two phys-
iological key parameters, temperature and pH value. In addition, the presence of a gly-
cosylated model membrane and sialylated silica nanoparticles as a simple virus model
were also essential prerequisites to perform such experiments. The incretin mimetics
Semaglutide and Pt2His as well as the two SARS-CoV fusion peptides 2RUM and 2RUO
display a detectable model membrane affinity which is of interest when characterizing
potential inhibitory viral fusion peptides. 1H (proton) NMR data and 31P (phosphorus)
NMR data of DPC micelles mixed with ganglioside GM1 at various concentrations in
the presence of Semaglutide, Pt2His, sialic acid-coated nanoparticles (Figure 9) as well
as the SARS-CoV fusion peptides 2RUM (19-mer peptide) (Figure 10) and 2RUO (16mer
peptide) (Figures 11 and 12) were recorded with various NMR methods during our recent
study. The supplementary Figures S2–S7 document the variations of the four peptides
under study in respect to temperature, the solution and the presence of DPC and GM1 by
1H NMR methods.
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In previous publications, we demonstrated that, in addition to a binding affinity
to sialic acid moieties, a specific binding to sulfated carbohydrates is also important to
establish stable ligand receptor complexes which are related to so-far non-answered bio-
medical questions [91–93]. Furthermore, ab initio and DFT quantum-chemical calculations
are necessary to obtain the nanomedical details of these affinities since they may depend
on certain functional groups or conformational states [94,95] as well as on the stabilizing
cations involved [89].

It has to be mentioned here that we are not restricted to DPC micelles. Triggering the
fibrilization of model proteins such as human lysozyme and influencing the stability of
phosphatidylserine emulsions are additional prerequisites [73,96,97] on our way to design-
ing encapsulated inhibitory viral fusion peptides against MERS and SARS-CoV-2 [98–100].

Future cell tissue experiments with the before mentioned antiviral fusion peptides and
incretin mimetics will be performed under various pH conditions (at approximately pH
6 on the lung surfaces and between pH 7,35 and 7,45 in the blood stream). Semaglutide
with one and Pt2His with two His residues are here the most promising candidates because
histidine are pH-sensitive residues under physiological conditions. Its imidazole ring
changes at pH 6 from a positively charged ring system to an aromatic ring. Human serum
albumin (HSA) is a suited shuttle system since the lipid tails of Semaglutide and Pt2His
interacts in a specific way with the protein (1e7e.pdb) in the blood stream (Figures 3–5).

Concerning the SARS-CoV fusion peptides, 2RUM and 2RUO, it is of interest to
determine whether these two peptides react in a different way when a glycosylated DPC
membrane model is analyzed with 31P and 1H NMR methods. The findings published here
are a prerequisite for further MD supported NMR studies and a detailed analysis of how
our data can be confirmed in human tissue probes [9,101–106].

Our observation strongly suggests that blood pH is an important parameter, which
has to be considered when designing SARS-CoV-2 inhibitory fusion peptides. We have
already noted that the pH sensitivity of the His residues at positions 1 and 3 of Pt2His are
important in this context. This result provides a basis to further refine and optimize the
sequence of the incretin mimetic prototype Pt2His as well as other SARS-CoV-2 inhibitory
fusion peptides. It is a key step in combating this inflammatory disease, especially when
focusing on the nervous system.

4. Materials and Methods
4.1. Chemicals

The model structures are two incretin mimetics (Semaglutide and Pt2His, a new
incretin mimetic prototype) as derived from the corresponding amino acid sequence of the
Gila monster.

These substances were analyzed together with the two SARS-CoV fusion peptides
RUO and RUM [2] (16mer peptide, pdb code: 2RUO.pdb and 19-mer peptide, pdb code:
2RUM.pdb). Scheme 3 illustrates the relevant sequences.

Semaglutide and Pt2His were provided by United Laboratories, China.
Two linear SARS-CoV-related fusion peptides were tested for comparison under similar

conditions. The fusion peptides (equivalent to 2RUM.pdb; MWKTPTLKYFGGFNFSQIL-NH2
and 2RUO.pdb; GAALQIPFAMQMAYRF-NH2) were obtained from Nanjing Yuan Peptide
Biotechnology Co., Ltd.: https://cn.kompass.com/c/nanjing-peptide-biotechnology-co-
ltd/cn192988/, accessed on 20 December 2020.

The purity of all studied materials was 98% as verified by HPLC methods.
The GM1 ganglioside was purchased from Sigma Aldrich, 64293 Darmstadt, Germany.
The sizes of the nanoparticles vary in the range from 50 to 100 nm in diameter [107].
Synthesis of Fluorescent Silica Nanoparticles (FSNP) fluorescein 5-isothiocyanate

(39 mg) was dissolved in anhydrous ethanol (16 mL) and (3-aminopropyl) trimethoxysilane
(17 µL) was added while stirring. The mixture was stirred overnight at 42 ◦C to produce
the precursor solution. For the synthesis of fluorescein isothiocyanate (FITC)-doped silica
nanoparticles, 5.0 mL of the precursor solution was added to anhydrous ethanol (34 mL)

https://cn.kompass.com/c/nanjing-peptide-biotechnology-co-ltd/cn192988/
https://cn.kompass.com/c/nanjing-peptide-biotechnology-co-ltd/cn192988/
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while stirring followed by the addition of tetraethyl orthosilicate (1.7 mL) and aqueous
ammonia (1.4 mL, 25% v/v). The mixture was stirred for 48 h to give the FSNP solution.

Synthesis of perfluorophenyl azide (PFPA)-functionalized Fluorescent Silica Nanopar-
ticles (FSNP-PFPA) FSNP-PFPA was synthesized by adding a solution of silane-derivatized
PFPA in toluene (7.0 mL, 10 mg/mL) into the FSNP solution and stirring at room tempera-
ture for 24 h. The product was purified by repeated washing and centrifugation in acetone
(12,000 rpm of a HERMLE Labnet Z326 centrifuge, 30 min), and was re-suspended in 10 mL
of acetone to give FSNP-PFPA.

Synthesis of sialic acid-conjugated FSNP (FSNP-Sia) To 1 mL of FSNP-PFPA in acetone,
an aqueous solution of sialic acid (1.0 mL, 3.6 mg/mL) was added. The glass jar containing
the mixture was covered with a 280 nm long-path optical filter and was subsequently
irradiated with a 450 W medium-pressure mercury lamp for 40 min. The resulting FSNP-
Sia was purified by repeated washing in Milli-Q water and centrifugation (12,000 rpm of a
HERMLE Labnet Z326 centrifuge, 30 min). The final product was re-suspended in water.

4.2. NMR Spectroscopy

All NMR experiments were carried out with either a Bruker Avance II NMR spectrom-
eter of 750 MHz or an Avance III NMR spectrometer of 600 MHz, both equipped with a
regular probe-head. Lyophilized peptides were either dissolved in water, or in water with
200 mM DPC. Pure peptide solutions were characterized by regular 1D 1H and 2D TOCSY
(60 ms mixing time), 2D NOESY (150 ms mixing time) and 2D 1H-13C HSQC experiments
at 600 MHz, while peptide–DPC mixtures were measured at 750 MHz. Experiments were
carried out at 37 ◦C and 42 ◦C. Interaction with GM1 was studied by addition of GM1 to
final concentration of 0.5 mM. The 1D 31P NMR spectra were recorded at 700 MHz without
1H decoupling, using an acquisition time of 0.9 s, a recycle delay of 5 s, and 64 scans. All
spectra were processed using Bruker Topspin software suite.

4.3. Computer-Aided Molecular Modeling (CAMM)
4.3.1. ACE2-Receptor/Spike Protein and Collagen Complexes

The binding sites of the ACE2 protein were analyzed at first by the SiteMap [108,109]
program of Schrödinger [110]. The ACE2-receptor/spike protein and collagen complexes
were solvated in Schrödinger’s Maestro [111] with the water molecules added within a 1 nm
buffer at neutral pH around the proteins. The resulting structures were then minimized
and equilibrated for 5 ns. The final structures after equilibration were submitted for 50 ns
NPT (pressure at 1.01325 bar) molecular dynamics (MD) simulations with the Desmond
program [112] at 300 K. Molecular geometries resulting from simulations were saved at
10 ps intervals and were used for further analysis. Maestro was used for visualization of
molecular complexes.

4.3.2. De Novo Protein Structure Prediction and Homology Modeling of Pt2His
and Semaglutide

For Tirzepatide, Semaglutide and Pt2His, no crystallographic structure data are avail-
able in the RCSB PDB database. Therefore, de novo molecular constructions with PEP-
FOLD 3 [113] and Raptor [114] as well as homology modeling with SWISS-MODEL [115]
were completed in order to build the 3D models. Consequently, molecular dynamics
(MD) simulations were performed using YASARA program [116]. The hydrogen bond
network [117] was optimized at first to increase the solute stability together with pKa predic-
tion to fine-tune the protonation states of protein residues at the chosen pH of 7.4 [118] Na+

and Cl− ions were added with a physiological concentration of 0.9% The structures thus
created were minimized at first (steepest descent and simulated annealing). The structures
were then solvated using the TIP3 water model. One hundred nanosecond MD simulations
were performed using the AMBER14 force field [119] for the solute, GAFF2 [120] and
AM1BCC [121] for ligands, special amino acids (hydroxyproline) and ions. The cutoff was
set to 8 Å for Van der Waals forces (the default used by AMBER [122], no cutoff was applied
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to electrostatic forces (using the Particle Mesh Ewald algorithm [123]. The equations of
motion were integrated with a multiple time step of 1.25 fs for bonded interactions and
2.5 fs for non-bonded interactions at a temperature of 310 K, a density of 0.993249 g/mL
and a pressure of 1 atm (NPT ensemble) in accordance with previous algorithms [124]. The
first 10 ns (equilibration) of the simulation time after inspection of the solute RMSD was
excluded from further analysis.

In addition, RMSD (Figure S8A–C) and RMSF (Figure S9A–C) values for the individual
residues of Tirzepatide, Semaglutide and Pt2His were calculated.

4.4. Statistical Analysis

The statistical analysis was performed using the SPSS 25.0 software.

5. Conclusions

We would also like to emphasize that the mechanism described in our study offers
solutions for virus-induced pathology in general. We tested potential inhibitory SARS-CoV-
2 fusion peptides together with SARS-CoV fusion peptides in the presence of a glycosylated
model membrane and sialic acid-coated nanoparticles as a simple virus model. The sialic
acid affinity provides key information on how inhibitory peptide sequences can be further
optimized given the fact that this contact structure is present on the SARS-CoV-2 spike
protein as well as on the host cell membrane.

This opens a new route to a potent weapon against SARS-CoV-2 variants that can also
be directed versus future as yet unknown viral species.

In summary, vaccination is a strong tool to combat viral infections. However, it is
also important to develop alternative strategies that will enable clinicians to fight quickly
against the evolving severe threats imposed by mutations within the pathogen. A promising
strategy for this is the application of inhibitory viral fusion peptides which destroy the
platform on the host cell membrane created by the virus itself in order to foster its entry. A
first attempt towards this step may involve incretin mimetics, which have already been
clinically tested for a number of medical applications (e.g., approaches in therapies against
diabetes and brain traumata). The lipid side-chains of incretin mimetics are known to bind
to serum albumin. Once bound, they are carried to various tissues and cell types by the
circulatory system [125], where they interact with GIP and GLP-1 receptors on the cell. This
means that aside from targeting the islet cells of the pancreas, incretins target cells in other
tissues throughout the body.

It is still not yet known whether the interactions of certain incretin mimetics which
contact various cell membrane structures or specific receptors located on the membrane
are mediated by sialic acid residues or other carbohydrate moieties. Sialic acid-related
contact structures are present on the SARS-CoV-2 spike protein as well as on the host cell
membrane. In particular, the protonation state of histidine residues plays a crucial role in
this context. In respect to the fate of patients in intense care units, we focused on incretin
mimetics having one (Semaglutide) or two (Pt2His) histidine residues. The substances
under study are temperature and pH sensitive in the physiological range. Our results
indicate that the arsenal of methods provided by structural biology including molecular
modeling tools will be invaluable in finding optimized inhibitory viral fusion peptides to
combat pandemic viral diseases.

The strategy discussed here can be considered as an important step in developing pan-
incretins against SARS-CoV-2 mutations, long-COVID symptoms and other neurological
diseases such as multiple sclerosis [84,126–130]. The application of linear peptides is
discussed as a potential therapy that could block virus entry by interfering with the host
cell membrane and/or with the glycosylated virus spike proteins. The advantage of incretin
mimetics in this context is their approved use in clinical applications mainly in correlation
with diabetes. There are a number of incretin mimetics available on the global market
and the individual amino acid sequences are responsible for altered binding properties.
Therefore, we have compared a well-established incretin mimetic (Semaglutide) and a
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new incretin mimetic prototype in which the amino acid sequence has been modified in
accordance to clinical and biophysical observations.

Concerning myalgic encephalomyelitis/chronic fatigue syndrome, there was no se-
lection here. We analyzed a presumably representative sample. All COVID-19 patients
in the hospital requiring intensive care were included at the time of the examination. An
accumulation of pre-existing myalgic encephalomyelitis/chronic fatigue syndrome in the
sample is therefore almost impossible. The results obtained from the patients in the intense
care units allowed us to initiate studies related to patients who developed long-COVID
conditions. This is the reason why we focus now on the analysis of incretin mimetics which
are approved for diabetes therapies and treatments in the case of brain injuries. These
results will be published later on.

The symptoms of long COVID are known to be related to various inflammatory
diseases. Indeed, in another trial (unpublished yet), we analyzed inflammatory markers
and the outcome was comparable to our current analysis of pH values. Concordant with
the pH values and the corresponding analysis, we detected an impact of inflammatory
markers and other parameters associated with an adverse outcome as well, i.e., IgM, CRP,
leukocyte values, PCT, IL-6, LDH, D-Dimers, and Ferritin.
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