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Blood pressure measurement using only a smartphone
Lorenz Frey1, Carlo Menon 1 and Mohamed Elgendi 1✉

Hypertension is an immense challenge in public health. As one of the most prevalent medical conditions worldwide, it is a major
cause of premature death. At present, the detection, diagnosis and monitoring of hypertension are subject to several limitations. In
this review, we conducted a literature search on blood pressure measurement using only a smartphone, which has the potential to
overcome current limitations and thus pave the way for long-term ambulatory blood pressure monitoring on a large scale. Among
the 333 articles identified, we included 25 relevant articles over the past decade (November 2011–November 2021) and analyzed
the described approaches to the types of underlying data recorded with smartphone sensors, the signal processing techniques
applied to construct the desired signals, the features extracted from the constructed signals, and the algorithms used to estimate
blood pressure. In addition, we analyzed the validation of the proposed methods against reference blood pressure measurements.
We further examined and compared the effectiveness of the proposed approaches. Among the 25 articles, 23 propose an approach
that requires direct contact between the sensor and the subject and two articles propose a contactless approach based on facial
videos. The sample sizes in the identified articles range from three to 3000 subjects, where 8 articles used sample sizes of 85 or
more subjects. Furthermore, 10 articles include hypertensive subjects in their participant pools. The methodologies applied for the
evaluation of blood pressure measurement accuracy vary considerably among the analyzed articles. There is no consistency
regarding the methods for blood pressure data collection and the reference blood pressure measurement and validation.
Moreover, no established protocol is currently available for the validation of blood pressure measuring technologies using only a
smartphone. We conclude the review with a discussion of the results and with recommendations for future research on the topic.
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INTRODUCTION
Hypertension is a serious medical condition and a major cause of
premature death. According to the World Health Organization, an
estimated 1.28 billion adults aged 30–79 years worldwide have
hypertension, with two-thirds of this population living in low- and
middle-income countries1. The detection, diagnosis and monitor-
ing of elevated blood pressure (BP) remains an immense public
health challenge.
Hypertension is typically asymptomatic, which greatly reduces

the chances of early detection. BP measurements conducted in a
clinical setting over a short time period, are often biased by white
coat hypertension, masked hypertension, and similar phenomena,
which complicates the detection and diagnosis. Subjects with
white coat hypertension exhibit elevated blood pressure values in
a clinical setting compared to an ambulatory setting, presumably
due to anxiety experienced during a clinical visit2. On the other
hand, masked hypertension is a phenomenon where BP of
patients is normal in the clinic but elevated out of the clinic3.
Hypertension can be monitored with various different methods.

Invasive (intra-arterial) BP monitoring, commonly used in intensive
care units, returns an accurate and continuous BP measurement.
However, the need for a trained operator, comparatively high
costs, and the time-consuming nature of the procedure render
this technique unsuitable for monitoring elevated BP in an
ambulatory setting4. These difficulties can be overcome with non-
invasive, cuff-based BP monitoring devices. A recent study5, has
clearly shown that many BP monitoring devices (including
oscillometric machines and gold standard mercury auscultation)
do not accurately represent the BP within the arteries at the upper
arm (brachial) or central aorta. Nonetheless, automated oscillo-
metry and mercury auscultation allow for a simpler measurement

of systolic and diastolic BP and are therefore predominantly used
today. The limiting factors of these devices are the intermittency
of measurements, as well as the possibility of erroneous
measurements due to movement, inadequate inflation of the
cuff, or incorrect cuff size6. Furthermore, BP cuffs are obtrusive and
uncomfortable to wear during daily activity and are thus not
practical for regular measurements throughout the day.
Arterial applanation tonometry and the volume clamp

method are other continuous non-invasive BP measurement
techniques. However, volume clamping requires a finger cuff,
and tonometry is dependent on a cuff-based calibration7.
Furthermore, both techniques are prone to erroneous measure-
ments due to patient movement4. In summary, none of these
techniques is well suited for unobtrusive and continuous blood
pressure monitoring throughout the day.
Research on BP measurement using only a smartphone has

intensified in recent years. Measuring blood pressure with a
smartphone would allow for highly cost-effective and unobtru-
sive monitoring of hypertension. The steadily growing percen-
tage of people owning a smartphone increases the promise of
on-the-go monitoring of elevated blood pressure on a large
scale. Advances in smartphone technology, especially improved
camera and processor performance, are also potential catalysts
of progress in this field.
In this review, publications from the last decade dedicated to

measuring BP with the use of only a smartphone are identified
and examined. In the “Methods” section, we outline the workflow
of our literature search. In the results section, we first present an
analysis and comparison of the underlying data from all articles in
terms of the characteristics of the subjects. Subsequently, we
analyze the data types that were recorded and how they were
recorded, the signal processing applied to the raw data, the
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algorithms used to estimate BP from the processed data, and how
the proposed methods were validated.

METHODS
In order to identify as many relevant publications on the topic as
possible, we conducted a literature search on four different
platforms: IEEE Xplore, PubMed, Embase, and Google Scholar. The
search was conducted in accordance with the PRISMA guidelines8.
Taking advantage of the advanced search filter and with a search
base-specific syntax, we were able to define highly specific search
terms, thus obtaining a large number of relevant publications and
greatly simplifying the subsequent categorization. We restricted
our search to the period from November 2011 to November 2021.
This allowed us to focus on recent trends and developments in
this field. Despite the thorough literature search, we are aware
that some relevant publications might have been missed. In the
search, we combined the following terms with the logical
operators OR and AND: blood pressure, hypertension, image,
imaging, face, facial, video, camera, finger, chest, contactless,
contact-less, non-contact, noncontact, cuffless, cuff-less, smart-
phone, and smart-phone. The workflow of the literature search is
shown in Fig. 1.
On IEEE Xplore, 73 articles were identified with the following

search terms: ("Document Title”: blood pressure OR “Document
Title”: hypertension) AND ("Full Text Only”: image OR imaging OR
face OR facial OR video OR camera OR finger OR chest OR
contactless OR contact-less OR non-contact OR noncontact OR
cuffless OR cuff-less) AND ("Full Text Only”: smartphone OR smart-
phone). On PubMed, 42 articles were identified with the following
search terms: (blood pressure[Title] OR hypertension[Title]) AND
(image OR imaging OR face OR facial OR video OR camera OR
finger OR chest OR contactless OR contact-less OR non-contact OR
noncontact OR cuffless OR cuff-less) AND (smartphone OR smart-
phone). On Embase, 59 articles were retrieved using the following
search terms: ("hypertension”:ti OR “blood pressure”:ti) AND
(image OR imaging OR face OR facial OR video OR camera OR
finger OR chest OR contactless OR “contact less” OR “non contact”
OR noncontact OR cuffless OR “cuff less”) AND (smartphone OR

“smart phone”) AND [2011–2021]/py. We adjusted the search
terms for Google Scholar since it offers a very limited advanced
search filter and thus search results can reach very large numbers.
On Scholar, 159 articles were identified with the following search
terms: allintitle: hypertension OR “blood pressure” smartphone OR
smart-phone OR “smart phones”. During screening, 153 duplicates
and 25 articles that did not constitute a paper in the desired
format were removed. From this point, 155 articles were assessed
for eligibility. In the next step, we excluded all articles that were
not dedicated to measuring BP using only a smartphone. As seen
in Fig. 1, five articles that used an advanced camera setup were
excluded. Another 56 articles were excluded because additional
devices, e.g., sensors or a second smartphone, were used to
measure BP. We excluded 11 reviews from our search. We
categorized 12 articles as inaccessible, either due to the record
being written in another language (n= 2) or because the
publication is unavailable as a PDF with our institutional login.
In addition, 46 articles were categorized as irrelevant, either
because measuring BP was not their main focus or they fell under
two or more exclusion criteria. After completing all the steps of
filtering and excluding articles, 25 articles were included in our
detailed analysis.

RESULTS
This section outlines the findings of our review. First, a brief
overview with possible ways of categorization is provided in the
subsection on “Publications”. Second, the participant pools for
data acquisition are are analyzed. Third, the datatypes measured
by a smartphone that are correlated to BP are examined, followed
by an analysis of the BP estimation algorithms and the evaluation
of the proposed methods.

Publications
BP measurement conducted with only a smartphone can be
categorized under two main groups: contact and contactless,
where “contact” indicates that the signal acquisition requires
physical contact between the sensor and the subject. In most
cases, this means that the subject’s finger is placed on the

Fig. 1 Workflow of the study. Identification, screening, eligibility, and inclusion of articles.
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smartphone camera. Contactless measurement entails a video-
based recording of a physiological signal where no direct contact
between the camera and measurement site is necessary. In this
review, 23 of the articles were on contact-based BP estimation9–31,
and only two on contactless BP estimation32,33. Combining both
groups and within our time window of November
2011–November 2021, there was a clear trend toward increased
research activity in the field of BP measurement using only a
smartphone. Looking at the geographical distribution of publica-
tions in this review, Asia led with 14 of 25 articles (seven from
India, four from China, two from Japan and one from South Korea),
followed by Europe with eight of 25 articles (five from Switzerland,
one each from Italy, Germany, and the Czech Republic), and the
United States with three articles.

Number of subjects and gender distribution
The sample size of all articles analyzed in this review ranged
between three and 3000 subjects. Six articles used a sample size
smaller than 10 subjects18,24,25,29,31,32, and 8 articles used sample
sizes of 85 or more subjects9,11,14,16,22,23,28,33 (Table 1).
Clinical evidence on the accuracy of the proposed BP

measurement methods is a prerequisite for smartphones to be
used as medical tools for BP monitoring. Therefore, a participant
pool of an adequate size is vital for testing and validation.
Moreover, the samples need to represent the entire spectrum of
patients; for instance, a method that is validated with only male
subjects is likely to be less accurate when tested on female
subjects. Note that Fine et al.34 reported physiological differences
between men and women can impact the photoplethysmography
(PPG) waveform and other physiological signals. Furthermore,
structural differences in the cardiovascular system, such as
gender-dependent diameters of blood vessels or different average
heart rates between genders35,36, and differing skin thickness
between women and men, also have a direct impact on the PPG
signal37. In this review, 14 of the 25 articles reported the ratio of
female to male participants9–12,15–17,19,21,23–26,33.

Inclusion of hypertensive subjects
Of the 25 articles, 10 included hypertensive subjects in their
participant pool9–12,14,17,19,23,27,28. Three of these 10 articles also
included hypotensive subjects along with normotensive and
hypertensive subjects9,12,28. The sample sizes of these articles
ranged between 13 and 965 subjects. Another three of 25 articles
specified that only normotensive subjects were examined21,32,33.
Their sample sizes range between 4 and 1328 subjects. The
remaining 12 of 25 articles, with sample sizes between three and
3000 subjects, did not report on the hypertension status of their
subjects13,15,16,18,20,22,24–26,29–31. In an article on PTT-based con-
tinuous BP estimation, Ding et al.38 obtained higher estimation
accuracy of BP from a normotensive group compared to the
results obtained from a hypertensive group. Consequently, clinical
assessment of hypertension using only a smartphone requires
sufficient clinical evidence of accuracy among hypertensive
patients6. Therefore, it is important that articles on BP monitoring
include hypertensive subjects in their testing and validation
procedures.

Subjects with comorbidities
Eleven of the publications provided information on subjects’
health9–12,17,19,21,26,27,32,33. Of these, seven included only subjects
with no comorbidities other than hypertension10,12,17,21,26,27,32.
One article excluded subjects with myocardial infarction of less
than one week, pulmonary embolism, arrhythmia, and decom-
pensated heart failure9. The remaining three articles provided
more detailed statistics on their subjects’ cardiovascular diseases
or corresponding risk factors11,19,33. Because clinical assessment ofTa
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hypertension using only a smartphone requires clinical evidence
of accuracy, it is critical to also include patients with comorbidities
in the participant pool. This is particularly true for diseases or
conditions that are related to hypertension or its risk factors, such
as diabetes and obesity, which can cause cardiovascular diseases.

Age distribution and skin tone
Aging leads to a multitude of anatomical and physiological
changes that can alter the measured PPG signal34,39. Besides
vascular changes such as increased collagen deposition and
calcification that lead to an increased systolic BP40, the skin is
known to become thinner with age34. This impacts the transmis-
sion of light through the skin, leading to changes in the PPG
signal. Another factor that influences the acquired PPG signal and,
by extension, PPG-based BP estimation, is skin tone. Different
articles have reported a positive correlation between heart rate
(HR)-error estimated from video-based PPG and skin tone scores
according to the Fitzpatrick skin scores when using primarily
green light34,41. Since HR is evaluated by measuring the distances
between two consecutive systolic peaks in the PPG signal, also
referred to as peak-to-peak interval, HR-error can be considered a
quality measure of the PPG signal41,42. Another important finding
by Shirbani et al.41 is the independence of the HR error from skin
tone when recording the video-based PPG signal under brighter
lighting conditions. As Mohapatra et al.43 state, a remedy for
higher estimation errors with darker skin is the use of light sources
at higher wavelengths, i.e., a combination of a green light source
with a light source of a higher wavelength.
Fifteen of the 25 articles provided information about the

subjects’ age distribution9–12,16–21,23,26,28,31,33, and only four out
of 25 articles provided information about ethnicity and hence
skin tone of the subjects10,16,17,33. This lack of information
complicates the process of unbiased comparison of different BP
estimation methods. If BP measurement using only a smartphone
is to become a viable alternative to cuff-based BP monitoring,
methods that deliver accurate results for the entire spectrum of
patients regarding age and skin tone are needed. In the section
below on algorithms, we discuss further how additional demo-
graphic information can leverage the performance of BP
estimation methods.

Acquiring PPG data from the finger
Among the 25 articles, we identified four types of data that
correlate to BP and are measured at different body locations.
These four data types are listed in Table 2. After the acquisition of
the raw signal, different signal processing steps are applied,
depending on the type of signal. Information from all articles
with respect to the signal acquisition is summarized in Table 1.
Different smartphone models are used for data acquisition in the
analyzed articles. It is generally difficult to provide hard
constraints regarding the smartphone sensor specifications.
However, a sufficiently high camera frame rate is of particular

importance, especially for the time-sensitive estimation of pulse
transit time (PTT). The smartphone models and respective frame
rates are listed in Table 1.
Reflection photoplethysmography is a technique used to non-

invasively measure changes in blood flow and volume. If a
smartphone is used as a photoplethysmograph, the subject’s
finger is placed on the smartphone camera while the LED light is
activated. This light is transmitted into the skin, where a certain
amount is reflected. The reflected light that is measured with a
photodiode (PD), contains static and pulsatile components, often
referred to as direct current (DC) and alternating current (AC)
components44. The terms originate in electronics and refer to the
constant and alternating components of a signal. The AC
component of the acquired PPG signal is a result of the volume
changes of blood as it is pumped from the heart to the periphery,
i.e., the measurement site. Consequently, the AC component
carries meaningful information about the blood pulse wave. Thus,
when acquiring the PPG signal from the finger, the objective is to
extract the pulsatile component from reflected light. However, it
has been shown that the AC component of a PPG signal accounts
for only a small proportion of the total intensity, around 1%, of the
intensity from the DC component, which poses a challenge to the
signal processing45. Additionally, PPG signals measured with
smartphone sensors are prone to motion and noise artifacts46. A
low signal-to-noise ratio further complicates the extraction of
meaningful information for BP estimation20. During signal
collection, moving the finger, incorrectly placing the finger, or
applying pressure can corrupt the PPG signal and hence the
subsequent BP estimation.
Various techniques have been proposed in the literature to

mitigate the negative effects of motion artifacts and incorrect
finger placement on the PPG signal. As Lee et al.47 state, one
approach to tackle such artifacts, based on the optical character-
istics of tissue, can be the choice of light wavelength. Previous
articles have shown that green is the light color least susceptible
to motion artifacts47. Compared to the larger wavelengths of red
and infrared that penetrate deeper into the tissue due to low
absorption, the light at lower wavelengths such as green is
strongly absorbed by hemoglobin, leading to a shallow penetra-
tion into the tissue47. Furthermore, motion artifacts tend to be
more amplified in deeper sites48. Among the 21 articles that
measure a PPG signal, nine extracted the green channel for BP
estimation9–13,17,19,21,31, another nine extracted the red
band14,15,20,22,24,25,28–30, and one article used the infrared (IR)
component of the acquired signal16. Banerjee et al.27 used the Y
component of the YCRCB color space for BP estimation. One article
did not report on any specific color channel extracted from the
raw signal.
The most commonly applied method for obtaining a 1D PPG

signal from a recorded video sequence is calculating the mean
brightness of a particular color channel in each frame, leading to
the desired signal. Subsequently, the raw signal is processed
with the objective of extracting the meaningful variations in

Table 2. Data types measured by a smartphone that are correlated with blood pressure.

Signal Sensor Method Site

Photoplethysmography (PPG)

Optical technique used to detect blood volume changes Camera Contact and non-contact Finger, face

Transdermal Optical Imaging (TOI)

Optical data-driven technique to detect changes in hemoglobin concentration Camera Non-contact Face

Phonocardiography (PCG)

The recording of the heart sounds Microphone Contact Chest

Seismocardiography(SCG)

The recording of body vibrations induced by the heart beat Accelerometer Contact Chest

L. Frey et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)    86 



intensity caused by the periodic propagation of blood pulse
waves through the arteries. The workflow of constructing a PPG
signal from finger-based video recording is shown in Fig. 2. The
contact-based PPG signal serves as a basis for BP estimation in
21 of the 23 articles that have proposed a contact-based
approach. Of those 21 articles, four combined the PPG signal
with heart sounds or seismocardiographic signals recorded at
the chest to estimate BP15,18,24,25.
Schoettker et al.12 simultaneously recorded a raw optical signal

from the patients’ fingers and continuous invasive BP before and
during anesthesia. In each session, 10 recordings of one minute
each were made. First, the pixels from the green channel in each
frame were averaged, resulting in a PPG signal. Then, a quality
index is given to each pulse wave according to its similarity to
neighboring pulse waves. A weighted average of all pulse shapes
based on the quality indices was generated and subsequently
used as an acceptance criterion for all the recorded pulses. Pulses
that did not meet the criteria were automatically rejected.
Similarly, Visvanathan et al.28,30 adopted a finite-state machine-
based approach to estimate the signal quality and to reject noisy
video sequences49. Instead of reducing noise by assessing the
signal quality, a group of articles simply applied a band-pass filter
to reject unwanted frequencies13,14,20,27. The analyzed articles
apply lower cutoff frequencies in the range of 0.5–4 Hz and
upper cutoff frequencies in the range of 5–8 Hz. Besides band-
pass filtering the raw signal, Datta et al.20 additionally applied
mean subtraction and a baseline correction. In order to mitigate
the effects of motion artifacts, a cycle selection was implemen-
ted. To this end, a histogram-based analysis on certain features
was conducted, and cycles outside the most frequently occurring
bin of a histogram were rejected50. Instead of just processing the
acquired signal, Banerjee et al.27 modeled each cycle of the
signal with a sum of two Gaussian functions. Then, root mean
square error was used as a tool to assess the curve fitting quality.
The modeled signal was subsequently used along with the
original signal for BP estimation. The method outlined by
Lamonaca et al.29 is the only one that identified a region of
interest (ROI) for the contact-based signal acquisition. In each
frame, a circled ROI based on the intensity histogram of the red
component was identified. Then, an adaptive threshold was
defined as the minimum brightness of the third quartile in the
first k frames. This threshold was used to reject erroneous frames,
i.e., frames that were too bright or too dark due to incorrect
placement of the finger on the camera and LED. The PPG signal is
computed as follows:

PPG½l� ¼ maxðRÞ � R½l�
maxðRÞ �minðRÞ ; (1)

where the vector R contains the number of pixels with brightness
higher than the adaptive threshold. The variable l denotes the lth
element of the vector time, i.e., the lth frame. Junior et al.24,25

stressed the importance of locking the exposure time of the

camera during measurements in order to prevent changes in the
frame rate and image brightness during data acquisition. Since BP
is estimated based on PTT, the temporal accuracy of the signal is
pivotal, which requires precise reconstruction and delineation of
the PPG signal in the time domain.

Acquiring PPG and TOI data from the face
In non-contact PPG imaging, microvascular blood volume changes
in tissues are extracted from a video sequence. In the literature,
the term video PPG (vPPG) is typically referring to the
methodology of extracting a PPG signal from a video, whereas
the terms remote PPG (rPPG), non-contact PPG, and facial PPG are
associated with the method of acquiring a PPG signal in a non-
contact manner. Compared to contact-based PPG measurements,
no direct contact between the subjects’ skin and sensor is
required. This avoids the deformation of the arterial wall caused
by pressing the finger on the camera, which leads to inaccurate
measurements45. Furthermore, the contactless method has the
advantage of not being limited to a single measurement site,
which is the case for contact-based signal acquisition. This is
particularly useful in cases where two or more signals from
different sites are required for BP estimation. The possibility of
recording multiple signals with the same sensor, i.e., the camera,
renders a synchronization between signals obsolete. This is an
asset for BP estimation based on PTT, which is outlined in the
section on algorithms.
Measuring BP from a facial video sequence necessitates the

detection of the face, the identification of regions of interest
(ROIs), and an accurate tracking of these ROIs. Face detecion is
usually performed in the first frame based on known algorithms
such as Viola–Jones51,52. Similarly, existing algorithms such as the
Kanade–Lucas–Tomasi feature tracker are applied to track specific
ROIs in the subject’s face51,52. Patil et al.32 selected the forehead
and right cheek as ROIs such that they cover the last branch of
facial artery and the halfway of supratrochlear artery respectively.
Luo et al.33 on the other hand, identified 17 ROIs with robust
hemoglobin fluctuations across the face based on a spatiotem-
poral map of hemoglobin concentration. A major challenge to
remote PPG signal acquisition is motion artifacts. The quality of
the acquired PPG signal is significantly affected by movements of
either the subject’s face or the camera53. This effect is further
amplified by the use of a low-cost camera, such as a smartphone
camera, with only ambient light54. Cho et al.55 hypothesized that
motion artifacts are caused by an uneven reflection of light from
the skin due to the curvature of the subject’s face and by the
reflection of light from melanin and residual pigments, which is
time-varying in the presence of movement. Based on this
hypothesis, an adaptive noise cancellation algorithm based on
recursive least square and the hue-saturation-intensity (HSI)
model was applied55. Feng et al.53 proposed an approach that
combines an enhanced facial tracking algorithm, an adaptive
band-pass filtering method applied to the raw PPG signal, and

Fig. 2 Construction of the PPG signal from finger-based video recording. After the video is recorded, a mean pixel brightness for each color
channel (red, green, and blue) is computed over the entire frame. This results in a signal that reflects the temporal fluctuations in brightness
for each color channel. Subsequently, a single-color channel (mostly green or red) is typically band-pass filtered to obtain the desired
photoplethysmographic (PPG) signal. This schematic represents the general workflow and highlights commonalities among the different
methods.
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automatic sorting of ICA output components based on a
reference sine function53.
In our literature search, we found only two publications that are

dedicated to contactless BP estimation with a smartphone32,33.
However, the number of articles on rPPG-based BP estimation
increases substantially if the constraint of using only a smartphone
is removed. In the approach presented by Patil et al.32, several
steps were needed to extract the desired PPG signal from the raw
facial video. The approach is split into image processing and signal
processing. As seen in the top row of Fig. 3, the image processing
involves noise reduction by means of the image pyramid
technique, detection of the face, selection of ROIs, and the
amplification of spatial frequency bands that contain information
about cardiovascular activity. The forehead and right cheek were
selected as ROIs. After completion of the image processing steps,
the PPG signal was acquired at both ROIs by spatially averaging
the pixel intensities over the entire ROI. Then, an independent
component analysis (ICA) was applied to compute the underlying
source signals from the observed signals. Subsequently, the
signals were band-pass filtered and smoothed by a moving
average filter, which completed the process of extracting the
intrinsic features of the PPG signals from the facial video.
Luo et al.33 first separated the information in each frame of the

video by color channel as depicted in the bottom row of Fig. 3. In
all channels—red, green, and blue—each frame is composed of
an 8-bit color stack. Subsequently, all eight bitplanes were
analyzed in terms of their temporal fluctuations in zeroes and
ones. Based on a machine learning model, the bitplanes that
fluctuated along with reference blood pressure, were isolated.
These data were then used to identify 17 ROIs in the face with
robust hemoglobin fluctuations. From these ROIs, the pixels were
averaged in each frame, resulting in the desired hemoglobin
signals. These averaged signals served as the basis for the
subsequent estimation of BP.

Acquiring PCG data from the chest
The contraction and relaxation of the atria and ventricles, the
valve movements, and the blood flow cause audible sounds26.

During each cardiac cycle, there are two main heart sounds: S1,
representing the closure of the mitral and tricuspid valves, and S2,
representing the closure of the aortic and pulmonary valves26. The
recording of the heart sounds leads to a signal that provides
valuable information on the cardiac cycle. Nemcova et al.15

supported the subjects with an audio-visual feedback to ensure
the correct placement of the sensors during measurements and
thus improved the robustness and accuracy of the BP estimation.
To acquire the PCG signal, the users were asked to place the
smartphone’s bottom edge, where the microphone is integrated,
perpendicularly to the mitral area of the heart. The raw PCG signal
was then down-sampled from 48 to 1 kHz and band-pass filtered
with an Infinite Impulse Response filter. Junior et al.24,25 recorded
the heart sounds by placing the smartphone tightly on the chest.
Similar to the approach of Nemcova et al.15, an audio–visual
feedback was provided to support the user in correctly placing the
sensors and thus to improve the signal quality. The raw PCG signal
was down-sampled from 44.1 kHz to 900 Hz. Because BP estima-
tion based on PTT requires synchronization between the two
acquired signals, a synchronization procedure was introduced to
ensure perfect alignment of the two signals. Peng et al.26 recorded
the heart sound signal by connecting a stethoscope to the
microphone on the earphone line. According to the authors,
however, tests showed that the stethoscope is not needed in a
quiet environment, and the heart sound signal can be recorded by
pressing the smartphone’s microphone tightly to the subject’s
chest. Since the PB estimation is based on the characteristics of
the S2 wave, the stethoscope was placed at the right upper sternal
border, where the S2 is stronger than that in other regions. The
subjects underwent a measurement procedure of 13 min with an
initial resting phase, a cold water stimulus, and a subsequent
recovery phase. In order to reduce high-frequency noise, the
signal was first filtered using a Butterworth low-pass filter with a
cutoff frequency of 1000 Hz. An additional Butterworth high-pass
filter with a cutoff frequency of 5 Hz was applied to remove
baseline wandering. The general workflow of PCG signal acquisi-
tion is depicted in the top row of Fig. 4.

Fig. 3 Construction of the PPG (a) and TOI (b) signals from a facial video. To obtain the PPG signal from the regions of interest, the frames
are first processed to reduce noise and amplify the relevant information. Then, three signals are created per region of interest (ROI) by spatially
averaging the pixel brightness of red, green, and blue over the entire ROI in each frame. In a last step, independent component analysis (ICA)
is applied and the signal is band-pass filtered and smoothed to obtain the PPG signal. In the case of transdermal optical imaging (TOI), the
information in each frame is divided into three color channels that are each comprised of an 8-bit color stack. Each bit of the stack constitutes
a bitplane. Subsequently, bitplanes of the stack with characteristic fluctuations in one's are isolated using a machine learning model. With this
data, a spatiotemporal map of hemoglobin concentration is created, regions of interest are identified and the hemoglobin concentration is
spatially averaged in each frame to obtain a hemoglobin signal for each region of interest.
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Acquiring SCG data from the chest
Unlike phonocardiography, seismocardiography (SCG) does not
rely on the heart sound signal but on the vibrations caused by the
cardiac cycle. These vibrations can be measured using a
smartphone’s accelerometer. According to Wang et al.18, the
SCG is preferable to the PCG signal, as it actually captures the
opening of the heart valves and is thus a better reference for
the ejection of blood into the artery. Their article was the only one
that incorporated an SCG signal into the BP estimation. They
measured the SCG signal from the chest, as was the case for the
acquisition of PCG signals.
The general workflow of PCG signal acquisition is depicted in

the bottom row of Fig. 4.

Pulse wave analysis methods
In data-based methods, inherent characteristics of the pulse wave,
i.e., the processed PPG signal, are collected as features and fed to
a machine learning model. These features are commonly
complemented by features from PGG derivatives and demo-
graphic information. Additionally, characteristics obtained from
the frequency domain of the pulse wave signal can further
improve estimation accuracy. The number of features fed into the
model varies widely among different methods. Among the

features depicted in Fig. 5, pulse interval, systolic upstroke time,
and diastolic time are the most frequently used among the
analyzed articles. In a few articles, principal component analysis
(PCA) was applied to reduce the number of features and thus the
computational burden. Baek et al.13 utilized a convolutional neural
network to extract these features automatically. The literature
reviewed presented a variety of different machine learning
architectures, including artificial and convolutional neural net-
works, linear regression models, and support vector machines. In
total, 15 articles based their BP-estimation on pulse wave analysis
(Table 1). Schoettker et al.12 validated blood pressure measure-
ments with the OptiBP smartphone app against reference
auscultatory measurements. For parameter training, BP was
measured invasively with a Philips IntelliVue MP50 monitor before
and during the induction of general anesthesia. Simultaneously,
the PPG signals were recorded using a smartphone via the contact
method. The algorithm was validated using auscultatory BP values
from a sphygmomanometer, as well as optical signals acquired by
a smartphone. First, derivative-based features were extracted from
the optical signal and nonlinearly combined using the trained
parameters. Then, a corrective offset was added to the uncali-
brated BP estimate. The approach presented by Schoettker et al.12

is the only data-based method among the analyzed articles that
requires calibration. To reduce dependency on a particular sensor,

Fig. 4 Construction of the phonocardiogram (PCG) and seismocardiogram (SCG) signal from recordings of heart sound and heart
vibrations. The workflows depicted in a and b correspond to the PCG and SCG signal respectively. After the data are recorded, they are
typically downsampled. Subsequently, a band-pass filter is applied. S1 and S2 are the two main heart sounds, representing the closure of the
mitral and tricuspid valves, and the closure of the aortic and pulmonary valves, respectively.

Fig. 5 Commonly extracted features from the PPG signal for BP estimation. The figure displays a representative PPG signal during a time
interval of two pulse waves, i.e., approximately two seconds.

L. Frey et al.

8

npj Digital Medicine (2022)    86 Published in partnership with Seoul National University Bundang Hospital



Datta et al.20 omitted noise prone and amplitude dependent
features or replaced them by ratios of PPG features. Instead of
combining existing features, Lamonaca et al.29 extracted features
according to two criteria: robustness to motion artifacts and
minimization of error in the training and production phase of the
artificial neural network (ANN). The ANN was set up and trained
offline using the Multiparameter Intelligent Monitoring in
Intensive Care database (MIMIC II) database. The algorithm was
tested with the PPG data acquired via a smartphone and validated
against the ABP spacelabs 90207 BP cuff. In the approach
presented by Banerjee et al.27, a total of seven features were
extracted based on the Maximal Information Coefficient after
approximating the acquired PPG signal for each cycle by a sum of
two Gaussian functions and removing outlier cycles based on K-
Means clustering. A 2-Element Windkessel model representing the
cardiovascular system in terms of resistance (R) and a capacitance
(C) was set up, and the parameters R and C were estimated based
on the Windkessel model and the PPG features using an ANN.
Another source of features that several articles make use of is the
frequency-domain representation of the PPG signal. Dey et al.16

for example, extracted a total of 233 features in the time and
frequency domain, including features from the first to fourth
derivative of the PPG signal and from the upslope and downslope
deviation curve. A Lasso regression model was applied first to
estimate diastolic BP. Along with the other features, this estimate
was then incorporated into another Lasso regression model to
estimate systolic BP. Subsequently, the data set was partitioned
according to physiological and demographic parameters (i.e., age,
gender, and BMI), and separate Lasso models were trained on
each partition. Gao et al.21 applied a discrete wavelet transform
(DWT) to the collected PPG and fed thousands of DWT
coefficients, combined with the systolic upstroke time and the
diastolic time, gender, and age, into a linear support vector
machine for feature extraction. Subsequently, a nonlinear support
vector machine was used to train the model. A support vector
regression machine was then used to predict BP from the given
data. Gaurav et al.22 extracted features for BP estimation not only
from the PPG signal and acceleration plethysmogram (APG)
waveform (the second derivative of the PPG signal), but also from
heart-rate variability. A weighted average of three ANNs for
systolic and diastolic BP was used to estimate each separately. The
approach presented by Luo et al.33 was the only one where the
extracted features are largely based on the TOI signal instead of
the PPG signal. In this method, 126 features were obtained from
facial transdermal blood flow signals. In total, 155 features were
extracted. These were grouped under categories of pulse
amplitude, heart rate band pulse amplitude, pulse rate, pulse rate
variability, PTT, pulse shape, and pulse energy. PCA was conducted
to reduce the number of features to 30 decorrelated eigenvectors

that were fed into a multilayered perception machine-learning
algorithm.

Wave propagation methods
Pulse transit time is defined as the time needed for a pulse
pressure wave to propagate a certain length through the arterial
tree between a proximal and a distal measurement site, where the
proximal site is closer to the heart32. It is noteworthy that
compared to pulse wave analysis, BP estimation using PTT
requires measurements to be taken at two sites simultaneously.
Together with the pre-ejection period (PEP), PTT sums up to the
pulse arrival time (PAT), as follows:

PAT ¼ PEP þ PTT; (2)

where PEP is the time difference between the ECG R-wave and the
aortic valve opening, which is captured in the PCG and SCG
signal18,56. According to Wang et al.18 and Zhang et al.57, PAT is
not an accurate measure to estimate BP since it includes PEP
which is influenced by the nervous system activity and is variable
up to tens of milliseconds. The PPG waveform foot (also referred
to as the diastolic point, onset, or minimum of the PPG signal)
represents the preferred feature for the estimation of PTT58.
Among the analyzed articles, Nemcova et al.15 calculated PTT as
the time difference between S1 peak of the PCG signal and the
systolic peak (maximum) of the PPG signal, and also in Patil et al.32

the peaks of the proximal and distal PPG signal are used to
estimate PTT. Wang et al.18 and Junior et al.24,25 used the onset of
the PPG wave for PTT estimation. PTT is known to be inversely
correlated with systolic and diastolic BP.58 This correlation serves
as a basis for PTT-related BP monitoring. In the literature, the
mathematical relationship from PTT to BP is typically defined
using physical models or empirical regression models.58 Nemcova
et al.15 employed a linear model in the form BP= a⋅PTT+ b to
relate PTT to systolic BP. The model depicted in the top right
corner of Fig. 6 was used by Wang et al.18 and was also
recommended by Mukkamala et al.58, who examined different
models in their article. Estimating BP from PTT requires a
calibration of PTT in msec to BP in mmHg59. To this end, multiple
simultaneous measurements of PTT and reference BP need to be
obtained over a wide range of BP values to estimate the unknown
parameters of the calibration curve, i.e., the applied model58. This
process is depicted in Fig. 6. Generally, the more measurements
that are available for the calibration, the more accurate the fitted
model. However, the number of available measurement pairs
needs to be equal or larger than the number of unknown
parameters. This calibration curve between PTT and BP is subject-
specific and changes over time, which necessitates a frequent and
individual re-calibration58. In sum, PTT-based BP measurement is
based on the following steps: measurement of waveforms at

Fig. 6 Workflow of PTT-based BP estimation. PTT stands for pulse transit time, PCG for Phonocardiogram, and BP for blood pressure. First,
PTT needs to be defined based on the available signals, where different combinations can be used (a). Then, multiple measurement pairs of
PTT and BP need to be obtained (b). With these measurements, the unknown parameters of the calibration curve can be estimated (c).
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proximal and distal sites, PTT estimation from the waveforms, and
calibration of PTT to BP based on several measurement pairs of
PTT and BP58. Five of the 25 articles based their BP estimation on
PTT. In Nemcova et al.15, the quantities ejection time (time
difference between S1 and S2), heart rate, age, height, weight, and
an individual calibration constant (q) were required to calculate
BP. Systolic BP was calculated based on q and PTT. Diastolic BP
was measured using the additional quantities systolic BP, stroke
volume, body surface area, and pulse BP as well as age, height,
and weight. Instead of using the microphone, Wang et al.18

collected data from the camera and the accelerometer subsys-
tems. Subsequently, the temporal difference between the aortic
valve opening (AO) from the chest SCG and the onset of the finger
PPG was computed to obtain the desired PTT. Calculating BP from
the PTT required an individualized calibration for each subject.
Junior et al.24,25 measured the PAT at the proximal point using a
smartphone’s microphone as a low-cost phonocardiogram. PAT at
the distal point was computed from the PPG signal. PTT was then
calculated using the detected fiducial points from the ensemble
averaged signals. As the only approach that acquired the PPG
signals in a non-contact fashion, Patil et al.32 calculated the PTT
from the temporal differences of local maxima between the two
PPG signals from the forehead and right cheek. It was then shown
that a strong correlation exists between the systolic BP measure-
ments and the acquired PTT. However, no absolute BP numbers
were estimated, and no information on diastolic BP was given.

Further methods for blood pressure estimation
In addition to the 15 articles that estimated BP based on
waveform analysis and another five that calculated the PTT for
BP estimation, five articles proposed methods that differ from the
two common approaches. Three of these articles are noteworthy.
Yamakoshi et al.10 based their BP estimation on the hemodynamic
Ohm’s law, i.e., the cardiac output (CO) multiplied by the total
peripheral resistance (TPR) results in mean BP. CO and TPR are
linearly correlated with pulse rate (PR) and mNPV, respectively,
which can both be measured using smartphone sensors. However,
this correlation only holds true for subjects who are in a resting
position and inactive. With an initial calibration, both systolic and
diastolic BP values can be calculated based on Ohm’s law and the
assumption of approximate proportionality outlined above.
Another approach was presented by Matsumara et al.17 who
derived an exponential transformation of the linear polynomial
equation based on heart rate (HR) and modified normalized pulse
volume (mNPV) to calculate BP. Peng et al.26 estimated BP using
only heart sound signals. Compared to the approaches outlined in
the previous sections in which heart sounds were combined with
PPG signals to calculate PTT, this method took advantage of the
correlation between the second heart sound (S2) and BP. First, S2
was identified using the Shannon energy envelope of the acquired
signal. Then, features were extracted from the frequency domain
of the heart sound signal, i.e., its sequences around S2. A support
vector machine (SVM) was then used to estimate systolic, diastolic,
and mean BP.

Incorporation of demographic information
As outlined in the section on the subjects, demographic
information provides valuable information on a multitude of
anatomical and physiological characteristics that can influence
the signals acquired from subjects’ bodies, and hence the
subsequent BP estimation. Research has also shown that
demographic and physiological characterization improves BP
prediction16. However, as Mukkamala et al.60 state, demographics
alone are also known to correlate with BP. Consequently, if the
prediction accuracy depends largely on the additional demo-
graphic information, the BP measurement method itself might
not add much value. In this review, only 11 of the 25 analyzed

articles included demographic information such as gender, age,
or weight in their models (Table 1).

Calibration
The methods found in the literature that propose BP measure-
ment with only a smartphone can be categorized into cuff-
calibrated and calibration-free approaches60. Typically, approaches
based on waveform analysis allow a calibration-free BP estimation,
whereas the methods based on PTT require calibration (Table 1).
Cuff-calibrated methods only track BP changes and rely on inter-
and intraindividual BP variations for the calibration and evalua-
tion60. Possibilities to invoke changes in BP during measurement
include exercise, cold pressor test, mental test, and drug effects, or
variations that occur naturally during daily life, such as rest, stress,
meal, activity60. However, recording data that contains BP changes
in subjects can be difficult. First, most methods that propose BP
estimation based on PTT require a second measurement to be
taken at the chest, which is very susceptible to motion artifacts.
Thus, exercising is not well suited to invoke BP changes for the
evaluation of such methods. Second, interventions for changing
the subject’s BP can pose a risk to some individuals60. Eight of the
25 articles reviewed required initial calibration to generate
absolute BP values9,10,12,15,18,24,25,31. The need for calibration raises
the question of practicality. The main advantage of BP monitoring
with only a smartphone is the reduction in the dependency of
patients on clinical care, allowing for cost-effective, unobtrusive,
and remote BP monitoring throughout the day. The necessity for
frequent or at least initial calibration undermines this advantage.
Furthermore, there is neither consensus on the frequency of re-
calibrations nor is it clear whether such re-calibrations attain the
required level of accuracy when performed by patients11. The
need for at least an initial calibration is an inherent disadvantage
of PTT-based BP estimation methods.

Evaluation protocol
For the clinical use of medical devices, an evaluation based on
established validation protocols is a must. The evaluation of BP
measuring devices constitutes strict guidelines on the reference
BP measurement and validation procedures, including specifics
about the participant pool, the chronology of measurements, the
reference BP monitors, and evaluation metrics. Accurate measure-
ment of blood pressure is pivotal to the reliable diagnosis and
efficient treatment of hypertension61. Therefore, only BP measur-
ing devices, which have been successfully validated by using an
established protocol, should be used62. In the past, several
protocols developed by scientific organizations have been used
for the clinical validation of electronic BP monitors62. In 2018, an
international initiative was taken by the US Association for the
Advancement of Medical Instrumentation (AAMI), the British
Hypertension Society, the European Society of Hypertension
(ESH) Working Group on Blood pressure agreed to develop a
universal standard for device validation63. This universal standard
is now in use and referred to as AAMI/ESH/ISO Universal Standard
(ISO 81060-2:2018). Key aspects of the AAMI/ESH/ISO Universal
Standard (ISO 81060-2:2018) are the validation study efficacy
measure, sample size, cuff-size stratified subgroups, general
population and special populations studies, method for BP data
collection, reference BP measurement and validation procedure,
validation criteria and reporting, validation of other BP monitors,
and quality and reliability of validation study reports63.
To date, there is no validation protocol available for BP

measurement using only a smartphone. The existing validation
protocols are not intended for cuffless BP measurement
methods60. First of all, PTT-based BP estimation methods require
several measurements at different BP levels for calibration,
whereas the existing protocols, i.e., the AAMI/ESH/ISO Universal
Standard (ISO 81060-2:2018), require stable BP throughout the
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measurement procedure. In case of BP estimation based on
remote PPG, clear guidelines for data acquisition are needed,
including illumination of the face and robustness in the
presence of motion artifacts. More significantly, the current
gold standard (auscultation) only delivers intermittent BP
measurements and is thus not capable of assessing the accuracy
of continuous BP readings. Therefore, invasive BP measurements
are needed to verify the capability of the proposed methods to
follow quick BP changes64.
The reference BP measurement and validation procedures used

for performance assessment vary widely among the analyzed
articles. A total of four articles based their validation procedure on
existing protocols from AAMI, ESH, and ISO9,11,12,19. In four
articles, a measurement procedure is used that induces changes
in BP. Peng et al.26 caused a BP perturbation by exercising the
patients during measurements. Baek et al.13 measured subjects’
BP during resting, sleeping, and exercising while Junior et al.24,25

asked the subjects to perform the Valsalva–Weber maneuver65 to
induce changes in BP during measurement. As discussed above,
in the Subjects subsection, the proposed methods are evaluated
using a wide range of sample sizes. Furthermore, different
evaluation metrics are applied to assess the accuracy of the BP
estimation.

Gold standard
According to the AAMI/ESH/ISO Universal Standard (ISO 81060-
2:2018)63, reference BP measurements need to be performed with
mercury sphygmomanometers or accurate non-mercury devices
that were validated to an established international standard. As
Alpert et al.66 state, auscultation requires a lot of training and
maintenance of quality control to avoid inaccuracies. Furthermore,
mercury is being banned in a growing number of countries due to
presumed environmental and health effects66. Therefore, oscillo-
metric devices have become the clinical standard66. Of the 25
articles, 18 used a sphygmomanometer for performance assess-
ment. Of these 18 articles, 4 performed the reference BP
measurement with an auscultatory (mercury) sphygmoman-
ometer9,12,15,16, another ten used an oscillometric sphygmoman-
ometer11,18–21,23,27,29,31,32, and four reported the use of a
sphygmomanometer without further information on the
type10,17,28,30. In one article, a Finometer with a finger cuff was
used to measure the reference BP26. Luo et al.33 measured
reference BP with a continuous BP monitor based on a finger cuff
that was approved for medical use by the US Food and Drug
Administration (FDA). Four articles did not provide any informa-
tion on the reference BP values used13,14,24,25. Another article
relied on the MIMIC II database for comparison22.

Evaluation metrics
The publications analyzed in this review utilized different methods
of performance assessment. In 16 of the articles, the accuracy of
the proposed BP estimation was determined by mean (absolute)
Bland–Altman agreement for systolic and diastolic BP. In 11 of the
articles, a correlation coefficient, either Pearson or Spearman, was
presented as the accuracy measure. Three articles, including the
two that classified BP values into bins, gave percent accuracy. Five
articles did not report the accuracy of their method compared to a
reference BP (Table 1). Six articles satisfied pass-fail criterion 1 of
the AAMI/ESH/ISO 81060-2:2018 norm, i.e., mean systolic and
diastolic BP difference and their standard deviation smaller or
equal to 5 ± 8 mmHg9,10,12,22,26,33. However, it is important to note
that passing criterion 1 alone is not sufficient for successful
validation of the tested method, as all other requirements of the
protocol need to be fulfilled. The validation information from all of
the articles is summarized in Table 1.

DISCUSSION
The purpose of this review is to assess the current state in the
literature and guide future research dedicated to BP monitoring
using only a smartphone. To that end, we conducted an extensive
literature search to identify previous studies in the field of BP
measurement with only a smartphone. Although numerous
articles propose cuffless BP monitoring methods involving a
smartphone, a majority incorporates additional devices, such as
wristbands, chest bands, ECG sensors, or a second smartphone. It
is particularly striking that there have been such a small number of
studies focusing on non-contact smartphone-based BP estimation.
Most articles dedicated to noncontact BP estimation rely on an
advanced camera setup.
The detection, diagnosis, and monitoring of hypertension as

performed today is subject to several limitations. First, the
worldwide prevalence of hypertension, paired with a lack of clear
and distinctive symptoms, lowers the chance of early detection.
Second, BP monitoring is usually conducted in clinical settings.
However, according to O’Brien et al.67, BP monitoring in an
ambulatory setting has several advantages over clinical BP
monitoring. These include the possibility of acquiring a BP profile
in the patient’s usual daily environment, a larger number of
readings taken over a longer time period, and assessment of BP
variability over 24 h. Furthermore, ambulatory BP monitoring is a
stronger predictor of cardiovascular morbidity and mortality than
clinical BP monitoring. Third, once hypertension is detected, it is
most commonly monitored in an ambulatory setting using a cuff-
based BP monitor. However, such cuffs are obtrusive and
uncomfortable to wear and deliver only intermittent BP measure-
ments. Given the prevalence of hypertension, the deployment of
BP cuffs on such a large scale does not seem realistic in terms of
cost and feasibility. Measuring BP with a smartphone has great
potential for alleviating the current limitations in BP monitoring.
As a device with unparalleled ubiquity, it has the potential to serve
as a cost-effective and unobtrusive BP monitor, paving the way for
long-term ambulatory BP monitoring on a large scale. Two main
facets of BP estimation with only a smartphone were identified in
the literature: video-based non-contact methods where all the
information is extracted from a facial video sequence and contact
methods that require direct contact between the measurement
site and the sensor. As seen in our analysis, non-contact methods
based on facial videos have the advantage of not being limited to
a single measurement site, making them less susceptible to
physiological irregularities. The possibility of acquiring signals
simultaneously from multiple ROIs with the same sensor, i.e., the
camera, is another asset to the non-contact approach, as it
enables the estimation of PTT without the need of an additional
signal from another sensor. Furthermore, acquiring the signal in a
contactless manner avoids the deformation of the arterial wall
caused by pressing the finger on the camera, which can lead to
inaccurate measurements due to changes in the optical properties
of the tissue induced by deformation, or due to a hampered blood
circulation in the arteries and capillaries underneath the skin. The
forgoing analysis of the existing literature has shown that BP
monitoring with only a smartphone is not ready for clinical use
yet. First, only six of the 25 studies satisfied the accuracy threshold
for clinical acceptance. Second, clinical validation with a clear
protocol that sets strict guidelines for experimental design
remains missing. We identified a large variety of experiment
designs and participant pools, which complicates the comparison
of the performance of different approaches. Furthermore, testing
and validating the methods with small sample sizes is an
unreliable performance indicator, as results may differ consider-
ably when tested on larger samples. Third, most experiments were
conducted in lab environments that do not represent real-life
situations. Based on our findings throughout this review, we
recommend the following:
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● Future research must pay more attention to the underlying
data that they use. First, the participant sample sizes should be
chosen in accordance with the guidelines provided in
established validation protocols. For an AAMI/ESH/ISO valida-
tion study, at least 85 subjects are required. Second, the
inclusion and exclusion criteria should be clearly commu-
nicated. Third, the participant sample must include a broad
spectrum of subjects representative of a possible target
population. This includes subjects with different hypertensive
status, skin tone, age, gender, and comorbidities.

● Incorporating demographic information into BP estimation
models can improve accuracy. Future articles should take
advantage of such information that can easily be collected
from the subjects. Especially in data-driven methods, prior
research has shown that categorizing the dataset according to
physiological and demographic information improves estima-
tion accuracy.

● Investigating pregnant populations is particularly important,
as detecting hypertension at an early stage and relevant
measures for it can slow down or prevent disease progres-
sion19. The same holds for pediatric populations.

● In order to be applicable in clinical use, future articles need to
validate their methods in real-world environments beyond a
fixed lab setup. Non-contact BP measurement methods need
to be robust to environmental changes, such as alternating
lighting conditions and motion artifacts. The same holds true
for contact methods susceptible to noise, given that they rely
on heart sound signals to estimate BP.

● Future research must scrutinize the calibration of smartphones
for BP monitoring. It is important to know how accuracy
evolves over time, i.e., how frequently a smartphone needs to
be calibrated and whether a calibration can be carried out by
the patients themselves.

Our literature search has shown a clear increase in research
activity in the field of BP estimation with only a smartphone over
the last decade. Methods of estimating BP through pulse wave
analysis have especially gained momentum. Technical advance-
ments in smartphone cameras and processors and an ever-
growing demand for video-based communication technology
have made an imminent breakthrough in non-contact BP
monitoring likely. Weaving BP monitoring unobtrusively into our
everyday lives as we face screens throughout the day has the
potential for cost-effective early detection and large-scale
monitoring of hypertension. Contact-based BP measurement, on
the other hand, may prove useful in settings where screen time is
considerably lower. Despite these promising tendencies, the
proposed approaches are not yet ready for clinical validation.
Indeed, not a single smartphone application for BP measurement
has been approved for medical use yet. Of the 25 articles, six
satisfied the pass-fail criterion 1 of the AAMI/ESH/ISO 81060-
2:2018 norm, i.e., mean systolic and diastolic BP difference and
their standard deviation smaller or equal to 5 ± 8mmHg. None-
theless, further research is necessary to improve the accuracy and
robustness of BP estimation using only a smartphone. Moreover,
as there is no established validation protocol available for
smartphone-based BP measurement technologies at present,
establishing an internationally accepted protocol for clinical
validation is a pivotal step towards the clinical use of such
technology. Data security is another issue that needs to be dealt
with once the technology is ready for use. In conclusion,
smartphone-based BP monitoring has the potential to make
regular long-term BP monitoring accessible to a large section of
society, thus contributing substantially to the immense challenge
of detection, diagnosis, and monitoring of hypertension. Much
further study is needed, however, to make this a reality.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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