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Abstract 

Bloodstream infection (BSI) is defined by positive blood cultures in a patient with systemic signs of infection and may 

be either secondary to a documented source or primary—that is, without identified origin. Community-acquired 

BSIs in immunocompetent adults usually involve drug-susceptible bacteria, while healthcare-associated BSIs are 

frequently due to multidrug-resistant (MDR) strains. Early adequate antimicrobial therapy is a key to improve patient 

outcomes, especially in those with criteria for sepsis or septic shock, and should be based on guidelines and direct 

examination of available samples. Local epidemiology, suspected source, immune status, previous antimicrobial expo-

sure, and documented colonization with MDR bacteria must be considered for the choice of first-line antimicrobials 

in healthcare-associated and hospital-acquired BSIs. Early genotypic or phenotypic tests are now available for bacte-

rial identification and early detection of resistance mechanisms and may help, though their clinical impact warrants 

further investigations. Initial antimicrobial dosing should take into account the pharmacokinetic alterations com-

monly observed in ICU patients, with a loading dose in case of sepsis or septic shock. Initial antimicrobial combination 

attempting to increase the antimicrobial spectrum should be discussed when MDR bacteria are suspected and/or in 

the most severely ill patients. Source identification and control should be performed as soon as the hemodynamic 

status is stabilized. De-escalation from a broad-spectrum to a narrow-spectrum antimicrobial may reduce antibiotic 

selection pressure without negative impact on mortality. The duration of therapy is usually 5–8 days though longer 

durations may be discussed depending on the underlying illness and the source of infection. This narrative review 

covers the epidemiology, diagnostic workflow and therapeutic aspects of BSI in ICU patients and proposed up-to-

date expert statements.

Keywords: Sepsis, Bloodstream infections, Critically ill, Antibiotic, Antibiotic stewardship, Source control, Duration of 

therapy, Epidemiology, Multidrug-resistant pathogens, Rapid diagnosis

Introduction

Bloodstream infection (BSI) is defined by positive blood 

cultures in a patient with systemic signs of infection and 

may be either secondary to a documented source or pri-

mary—that is, without identified origin (https ://www.

cdc.gov/nhsn/pdfs/pscma nual/4psc_clabs curre nt.pdf 

accessed December 22th 2019). Bloodstream infections 

(BSI) represent 40% of cases of community-acquired 

(CA) and hospital-acquired (HA) sepsis and septic 

shock and approximately 20% of the ICU-acquired cases 

(Table 1). It is invariably associated with poor outcomes 

especially when adequate antimicrobial therapy and 

source control are delayed [1–3]. �is expert statement 

proposes key elements for early diagnosis and adequate 

therapy of both primary and secondary BSI (Table 2).
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Epidemiological features of bloodstream infection 
in ICU patients
BSI may complicate the course of a myriad of severe CA 

infectious diseases (Fig.  1). Escherichia coli, Staphylo-

coccus aureus, Klebsiella pneumoniae and Streptococcus 

pneumoniae account for more than 70% of all CA-

BSI though pathogen distribution varies substantially 

depending on infection foci and patient characteristics [4, 

5]. Of note, Pseudomonas aeruginosa causes up to 5% of 

community-onset BSI, essentially in patients with severe 

underlying conditions (e.g., immunosuppression) and/

or recent healthcare exposure and suffering from uri-

nary tract infection (UTI) or pneumonia—yet, causative 

strains remain usually susceptible to first-line antipseu-

domonal agents, with a restricted prevalence of multi-

drug-resistant (MDR) isolates [5, 6]. After a spectacular 

rise in the early 2000’s, the incidence of CA-BSI due to 

community-associated methicillin-resistant S. aureus 

(MRSA) now trends to plateau in the United States and 

most of other endemic regions [7]. Meanwhile, the global 

burden of CA-BSI due to extended-spectrum beta-lacta-

mase-producing Enterobacterales (ESBL-PE) is amplify-

ing steadily due to massive spread of these pathogens in 

the community [4, 8]. Nowadays, the prevalence of ESBL-

producing isolates commonly exceeds 5% in E. coli and K. 

pneumoniae CA-BSI secondary to UTI or intra-abdomi-

nal infection and may reach 20% in certain geographical 

areas, thereby equalling the proportion reported in HA-

BSI [9, 10].

HA-BSI in critically ill patients are imported (i.e., doc-

umented at ICU admission) and acquired in the ICU in 

roughly 25% and 75% of cases, respectively [2, 5]. Over-

all, ICU-acquired BSI occurs during 5–7% of admissions, 

corresponding to an average of 6–10 episodes per 1000 

patient-days [1, 3, 11–14]. Main risk factors for ICU-

acquired BSI include high severity indexes at admission, 

prolonged stay, immunosuppression, liver disease, surgi-

cal admission, and the requirement for invasive devices 

or procedures [11]. In the EUROBACT-1 international 

study (n = 1156), ICU-acquired BSI mostly ensued from 

catheter-related infections (21%), nosocomial pneumonia 

(21%), and intra-abdominal infections (12%)—strikingly, 

no definite source was identified for 24% of episodes [2].

In ICUs applying current prevention bundles for the 

insertion and maintenance of central venous catheter 

(CVC), CVC-related BSI occurs in 0.5–1.5% of exposed 

patients, with a median incidence density ranging from 

0.5 to 2.5 episodes per 1000 catheter-days [15–17]. 

Defective asepsis, a jugular or femoral insertion (versus 

the subclavian site) and the duration of catheterisation 

remain the leading risk factors for CVC-related BSI [18–

20]. �e hazard of arterial catheter-related BSI appears 

similar to what is observed with CVCs (that is, around 1 

episode per 1000 catheter-days), with a nearly two-fold 

risk increase with femoral accesses when compared to 

the radial site [21]. Lastly, patients under extra-corporeal 

membrane oxygenation (ECMO) are at major risk for 

ICU-acquired BSI with an incidence density reaching 20 

episodes per 1000 ECMO-days [22]. Most of BSIs in this 

particular population with extended mechanical venti-

lation and ICU stay are related to ventilator-associated 

Take-home messages 

This expert statement covers the available evidence on the epide-
miology, diagnosis and treatment of bloodstream infections in the 
ICU. Key elements are: knowledge of the local epidemiology and of 
the risk factors due to bacterial resistance and inadequate therapy; 
optimization of the antimicrobial dose and infection source control. 
The potential benefit of new rapid diagnostic tests, antibiotic de-
escalation and short duration of antimicrobial is also discussed.

Table 1 Prevalence of bloodstream infections in selected recent randomized trials including adult patients with sepsis or 

septic shock

RCT  randomized controlled trial, BSI bloodstream infection, ICU intensive care unit, EGDT early goal-directed therapy

RCT Patient 
popula-
tion, N

Patients 
with BSI, n 
(%)

Registration no./reference

SMART (saline versus balanced crystalloids in ICU patients—secondary analysis focused on 
patients with sepsis)

1641 653 (39.8) NCT02444988
Brown et al. [124]

EUPHRATES (targeted polymyxin B hemoperfusion for patients with septic shock and 
elevated endotoxin level)

450 134 (29.8) NCT01046669
Dellinger et al. [125]

APROCCHSS (hydrocortisone plus fludrocortisone versus placebo for patients with septic 
shock)

1240 454 (36.6) NCT00625209
Annane et al. [126]

ARISE (EGDT vs usual care for patients with septic shock) 1591 601 (37.8) NCT00975793
ANZICS. [127]

ProCESS (protocol-based vs usual care for patients with septic shock) 1341 396 (29.5) NCT00510835
ProCESS investigators. [128]
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pneumonia or other infectious foci rather than cannula 

infection [23].

�e main pathogens responsible for HA-BSI in criti-

cally ill patients are listed in Table 3. �e epidemiology of 

MDR pathogens widely differs from one ICU to another 

according to case-mix, local policies for infection control 

and antimicrobial stewardship, and geographical loca-

tion—BSI due to non-fermenting Gram-negative bacilli 

such as P. aeruginosa and Acinetobacter baumannii are 

notably more prevalent in warm countries or during 

warm periods in temperate areas [24]. However, and as 

for other ICU-acquired infections, the incidence of BSI 

due to ESBL-PE, carbapenemase-producing Enterobacte-

rales, MDR P. aeruginosa, MDR Acinetobacter bauman-

nii, MRSA and methicillin-resistant coagulase-negative 

staphylococci is high and even continues to increase in 

most parts of the world [25]. Table 4 indicates the current 

resistance rates in major pathogens responsible for hospi-

tal-acquired infections—including HA-BSI—in large sur-

veillance networks. 

Table 2 Twenty key points for the management of bloodstream infection in critically ill patients

ESBLE extended-spectrum beta-lactamase-producing Enterobacterales, BSI bloodstream infection, CPE carbapenemase-producing Enterobacterales, XDR extensively 

drug-resistant, ICU intensive care unit, ECMO extra-corporeal membrane oxygenation, MDR multidrug-resistant, TDM therapeutic drug monitoring, ADE antibiotic 

de-escalation

Statements

1. The rising incidence of ESBLE is the most prominent matter of concern in community-acquired BSI

2. The rising incidence of CPE and XDR Acinetobacter baumannii in HA-BSI is a matter of serious concern

3. ICU-acquired BSI frequently occurs in critically ill patients, especially those with high severity indexes, immunosuppression, a surgical 
reason for admission, and the need for ECMO or other invasive procedures

4. Most of ICU-acquired BSIs are related to catheter infection, intra-abdominal infections, and ventilator-associated pneumonia though no 
definite source is identified for a substantial proportion of cases

5. Direct identification using Maldi-TOF or genotypic methods are accurate for bacterial identification especially for Gram-negative patho-
gens

6. Genotypic methods of bacterial detection and resistance mechanisms identification are accurate. These methods may positively impact 
the timing and adequacy of antimicrobial therapy in ICU patients with BSI though real-life clinical studies are still needed to appraise 
their input precisely

7. Choices about antimicrobials for treating critically ill patients with BSI should take into account several overlapped factors: (i) the empirical 
or targeted nature of the treatment; (ii) the presumed or proven origin site of the infection; (iii) the suspected or proven presence of 
antimicrobial resistance; (iv) immune status, and (v) the suspected or proven presence of candidemia

8. A reasoned choice of empirical agents should be based on the suspected pathogen/s and on the estimated individual and environmental 
risks of MDR infection

9. Recently approved, novel agents active against MDR organisms might be used, only if clearly, appropriate according to local epidemiol-
ogy, for empirical treatment in critically ill patients

10. In critically ill patients with BSI and increased distribution volume, loading dosages of hydrophilic antibiotics should be increased com-
pared to dosages usually prescribed in non-critically ill patients

11. Maintenance dosages should be adjusted according to fluctuations in the estimated renal function

12. TDM should be routinely performed for vancomycin and aminoglycosides, and whenever feasible for polymyxins. TDM of beta-lactams 
may be used, especially for preventing neurotoxicity, but further research and standardization are needed for clearly delineating advan-
tages and impact on patients’ outcomes

13. Continuing combination therapy in BSI due to XDR Gram-negative bacteria may have an outcome benefit in the most severely ill patients 
with septic shock

14. Source control including immediate removal of suspected intravascular catheters is always urgent in patients with septic shock

15. In life-threatening surgical site infections, a “damage control” approach is the safest way to gain time and achieve stability

16. ADE describes the initial re-evaluation of antimicrobial therapy when it targets decreasing the exposure to broad-spectrum antimicrobials. 
For treatment of BSI, it consists in stopping companion antibiotics or narrowing the spectrum of a pivotal antibiotic

17. The antimicrobial regimen should be re-evaluated for its spectrum and effectiveness every day after the blood culture becomes positive 
and new information becomes available

18. In ICU patients with uncomplicated BSI, duration of treatment can be matched to that of the source and the causative pathogen. In the 
absence of specific risk factors, a duration of when clinical stability is reached, shorter (≤ 7 days) should be proposed In the absence of 
specific risk factors, septic shock and if the source control is appropriate. preferred to longer antibiotic courses

19. Specific pathogens at risk of septic metastasis or treatment failure require duration of 14 days in cases of uncomplicated infections and up 
to 4–8 weeks for Specific sources such as bone and joint infections, empyema, septic metastasis or sources not amenable to adequate 
source control

20. Ongoing instability should not be a reason to blindly increase the duration of antimicrobial, but rather lead to investigate for insufficient 
source control, superinfection, drug-resistant pathogens or non-infectious causes of fever and shock. Continuing, escalating or stopping 
the antimicrobials accordingly should always be preceded by new microbiological specimens including blood cultures
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Early microbiological diagnosis in BSI
Culture-based methods remain the gold standard to 

identify the causative microorganism in sepsis, with a 

recommended sampling of at least two sets of aerobic 

and anaerobic blood cultures (10–20 mL per bottle) fol-

lowing rigorous skin disinfection [26]; yet the rhythm 

imposed by the growth time requirements of the latter 

is barely compatible with the ‘need for speed’ in the con-

text of sepsis (Fig. 2). It should be kept in mind that the 

initiation of empirical antimicrobial therapy significantly 

reduces the sensitivity of blood cultures drawn shortly 

after treatment initiation [27].

Molecular assays are increasingly deployed in bac-

teriology laboratories as rapid alternatives to culture-

based methods. Attempts have been made to directly 

detect pathogens and resistance markers by PCR 

on blood samples without prior incubation (Roche 

 LightCycler®SeptiFast, SeeGene  MagicPlex® Sepsis Test, 

Abbott Iridica); however, these tests have not met a broad 

success because of their medium sensitivity and specific-

ity (Table 5) and the lack of full automation. Furthermore, 

these tests only seek for a limited number of antibiotic 

resistance genes so that the probabilistic regimen can 

only be adapted according to the bacterial species. More 

recently, a magnetic resonance-based test (T2Bacteria 

Panel, T2Biosystems) was made available and showed a 

higher sensitivity (90%) than previous methods together 

with a shorter turn-around time (3.5 h vs. 5–8 h) [28].

Since then, PCR-based tests have re-focused on posi-

tive blood cultures (BC) (such as the BioFire FilmArray 

Blood Culture Identification and the Luminex Verigene), 

meaning that the test comes after a first culture-based 

test. �e multiplex PCR (mPCR) tests applied on positive 

blood culture have excellent performances and have been 

showed to decrease the time to an optimized antibiotic 

regimen (spectrum narrowing or broadening or even ces-

sation when a contaminant was identified) but not the 

mortality or the length of stay [29]. One major limitation 

of these genotypic methods is the limitation of the num-

ber of PCR probes. A negative PCR should be interpreted 

in view of the overall findings, possible source of infection 

and other available bacteriological results. Consequently, 

a solid expertise and strong collaboration between 

microbiologists and clinicians are needed [30]. Besides 

Bloodstream infection in critically ill patients

HAP/VAP
Intra-abdominal

infection

Catheter-related

infection
UTI

Surgical site

infection
Primary BSI

CAP/HCAP
Intra-abdominal

infection
UTI Meningitis Endocarditis SSTI

Enterobacteriaceae

P. aeruginosa

A. baumannii

S. aureus

Enterobacteriaceae

Enterococcus spp.

Candida spp.

Enterobacteriaceae

P. aeruginosa

Staphylococcus spp.

Enterococcus spp.

Candida spp.

Enterobacteriaceae

P. aeruginosa

Enterococcus spp.

Variable depending on

the site

Enterobacteriaceae

P. aeruginosa

Candida spp.

S. pneumoniae

Haemophilus spp.

Enterobacteriaceae

S. aureus

Enterobacteriaceae

(including ESBL-PE)

Anaerobes

Enterococcus spp.

Enterobacteriaceae

(including ESBL-PE)

S. pneumoniae

N. meningitidis

L. monocytogenes

S. aureus

Streptococcus spp.

Enterococcus spp.

S. aureus

β-hemolytic streptococci

Enterobacteriaceae

Anaerobes

Community-acquired BSI / Healthcare-associated BSI

Hospital-acquired BSI / ICU-acquired BSI

Fig. 1 Bloodstream infections in critically ill patients: main sources and leading pathogens. BSI bloodstream infection, CAP community-acquired 

pneumonia, HCAP healthcare-associated pneumonia, UTI urinary tract infection, ESBL-PE extended-spectrum beta-lactamase-producing Entero-

bacterales, SSTI skin and soft-tissue infection, HAP hospital-acquired pneumonia, VAP ventilator-associated pneumonia. Community-acquired BSI: 

BSI first identified [blood cultures sampling] less than 48 h following hospital admission in a patient without recent exposure to the healthcare 

system. Healthcare-associated BSI: community-onset BSI in patients requiring chronic haemodialysis, living in a nursing home, or recently exposed 

to antibiotics, in-home nursing care, or the hospital environment. Hospital-acquired BSI: BSI first identified more than 48 h after hospital admission. 

ICU-acquired BSI: BSI first identified more than 48 h after ICU admission. Primary BSI indicates BSI without identification of a definite source
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PCR, matrix-assisted laser desorption ionization–time 

of flight mass spectrometry (MALDI-TOF) can also be 

used to identify bacteria directly from positive BC after 

a purification protocol (not automatized yet), with good 

performances for Gram-negative bacteria (> 90% con-

cordance with subsequent culture) but not for Gram-

positive bacteria (~ 80% concordance) [31]. MALDI-TOF 

can also be used for antibiotic susceptibility testing, with 

Table 4 Current resistance rates in  major pathogens responsible for  hospital-acquired infections according to  World 

Health Organization regions—available data from large surveillance networks

WHO World Health Organization, ESC extended-spectrum cephalosporins, MDR multidrug-resistant

Data were extracted from the WHO Antimicrobial Resistance Global Report 2019 (http://www.who.int/antim icrob ial-resis tance /publi catio ns/surve illan cerep ort), 

National Healthcare Safety Network/Centers for Disease Control and Prevention Report 2015–2017 [130], European Antimicrobial Resistance Surveillance Network 

Annual Report 2016 (http://www.ecdc.europ a.eu/en/healt htopi cs/antim icrob ial_resis tance ), International Nosocomial Infection Control Consortium Report 

2010–2015 [131], CHINET Surveillance Network Report 2014 [132], and other references [133, 134]. Available resistance rates in the speci�c context of ICU-acquired 

infections are in the upper ranges of reported values for all geographical areas. Note that similar large-scale surveillance data are not available for the Africa region

Resistant isolates (%) among invasive isolates of a 
given species

WHO regions

Americas Europe Eastern Medi-
terranean

South-East Asia Western Paci�c

Escherichia coli/resistance to ESC 16–22 28–36 11–41 20–61 0–77

Klebsiella pneumoniae/resistance to ESC 21–56 41–62 17–50 53–100 27–72

Klebsiella pneumoniae/resistance to carbapenems 9–11 0–4 0–54 0–52 0–8

Pseudomonas aeruginosa/MDR phenotype 18–20 NA 30–36 34–43 30–35

Acinetobacter baumannii/resistance to carbapenems 47–64 0–23 60–70 26–65 62–72

Staphylococcus aureus/resistance to methicillin 42–55 33–95 13–53 2–81 4–84

Fig. 2 Current workflow of microbiological diagnosis in bloodstream infection. PCR polymerase chain reaction, CfDNA cell-free DNA, AST antibiotic 

susceptibility testing, BC blood culture. Biochemical tests such as C-reactive protein of Procalcitonin is most of time elevated in case of BSI but not 

sufficiently accurate to discard the diagnosis. A significant decrease of these biomarkers should be used to shorten the duration of antimicrobial 

therapy

http://www.who.int/antimicrobial-resistance/publications/surveillancereport
http://www.ecdc.europa.eu/en/healthtopics/antimicrobial_resistance
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the possibility to compare spectrum after a short incu-

bation (1–4 h) with or without antibiotics, or to directly 

detect peaks matching the resistance mechanisms [31]. 

While the proof of concept has been established, direct 

AST from BC using MALDI-TOF still needs standardiza-

tion to enter the routine workflow.

Recently, next-generation sequencing (NGS) meth-

ods and application of machine-learning methods have 

showed promising results in the diagnostic of BSI. Clini-

cal metagenomics (CMg) refers to the sequencing of 

the nucleic acids present in a clinical sample to identify 

pathogens and to infer their susceptibility to antimicro-

bials [32]. A variant of CMg is cell-free DNA (cfDNA) 

sequencing, i.e. the sequencing of extracellular cell-free 

DNA in clinical samples. It has been showed that the 

absolute concentrations of plasmatic cfDNA in patients 

with sepsis were elevated when compared to healthy 

volunteers and that the cfDNA sequences could identify 

potential bacterial pathogens missed by conventional, 

culture-based methods [33]. A recent work including 348 

patients reported a 93% sensitivity but only a 63% speci-

ficity for cfDNA sequencing [34]. Indeed, metagenomic 

sequencing identified much more bacteria than culture, 

with 62/166 samples negative with conventional meth-

ods but with microorganisms found in cfDNA sequenc-

ing. Of note, cfDNA sequencing results were delivered 

the day after the sample arrival. Another work based on 

metagenomic sequencing of plasma from immunosup-

pressed patients found similar results, with a 95% nega-

tive predictive value [35].

Finally, while molecular tests are interesting, the per-

formance of old-fashioned culture methods may be 

improved to provide more timely results. AST performed 

from the morning positive BC can be read at the end 

of the working day [36], but this would not apply to BC 

found positive later. In this perspective, the continu-

ous processing of samples through lab automation could 

break the barriers intrinsic to the lab workflow. Similarly, 

the Accelerate Pheno provides an automated solution to 

deliver identification and a phenotypic AST within 6–8 h 

[37].

Choice of antimicrobial therapy
Decisions on which antimicrobials should be employed 

for treating bloodstream infections (BSI) in critically ill 

patients depend on several, overlapped factors: (1) the 

empirical or targeted nature of the treatment; (2) the 

presumed or proven origin site of the infection; (3) the 

suspected or proven presence of antimicrobial resist-

ance (notably in healthcare settings with endemic MDR 

pathogens and/or in patients with recent exposure to 

antimicrobial drugs); (4) the suspected or proven pres-

ence of candidemia [25, 38–41]. Immunosuppression 

(e.g., neutropenia, HIV infection, or current or recent 

Table 5 Rapid diagnostic tools for early optimization of antimicrobial therapy in patients with bloodstream infections: 

methods, turn-around time and diagnostic performances

RT-PCR real-time polymerase chain reaction, ESI–MS electrospray ionization mass spectrometry, BC blood culture, FISH �uorescence in situ hybridization, AST antibiotic 

susceptibility testing, MALDI-TOF matrix-assisted laser desorption ionization–time of �ight mass spectrometry

a According to the target

b Identi�cation at the species level

Name Manufacturer Method Input TAT Sensitivity Speci�city References

MagicplexTM 
Sepsis Test

Seegene RT-PCR Blood sample 5 h 0.65 0.92 Carrara et al. [135]

0.29 0.95 Zboromyrska et al. 
[136]

0.47 0.66 Ziegler et al. [137]

T2Bacteria® Panel T2Biosystems Magnetic reso-
nance

Blood sample 3.5 0.9% (95% CI, 
0.76–0.96)

0.9 (95% CI, 
0.88–0.91)

Nguyen et al. [28]

FilmArray® Blood 
Culture

bioFire PCR Positive BC 1 h 0.92-1a 0.76-1a Altun et al. [138]

0.95 ND Bhatti et al. [139]

Verigene® Blood 
culture tests

Luminex PCR Positive BC 2.5 h 0.99 ND Bhatti et al. [139]

0.95 ND Kim et al. [140] 

Accelerate 
Pheno™

Accelerate Diag-
nostics

FISH and micros-
copy

Positive BC 1.5 h (identifica-
tion)

7 h (AST)

0.95 0.99 Lutgring et al. 
[141]

0.96 0.99 Charnot-Katsikas 
et al. [142]

VitekMS
Biotyper

bioMérieux
Bruker

MALDI-TOF Positive BC <1 h (identifica-
tion), < 1 h-4 h 
(AST)

Concordance for Gram-negativeb: 
0.83–1

Concordance for Gram-positiveb: 
0.32–0.89

Faron [31]
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immunosuppressive therapy) should also been taken into 

account since immunocompromised hosts are at increas-

ing risk of both infection with MDR bacteria—due to 

more frequent antimicrobial and healthcare exposure—

and non-bacterial sepsis, notably resulting from invasive 

fungal infection [26, 42, 43].

Considering that antimicrobials are mainly used empir-

ically in critically ill patients [44], both a reasoned admin-

istration of empirical agents on the basis of the suspected 

pathogen/s and efforts to pursue a rapid etiological diag-

nosis for allowing de-escalation are essential measures 

for treatment optimization [25, 45–47]. In this scenario, 

there is certainly a need for a balanced use of recently 

approved agents active against MDR organisms, in order 

not to delay the administration of an effective therapy 

and, on the other hand, not to accelerate the selection of 

further resistance using them indiscriminately [48, 49]. In 

addition, the availability of novel beta-lactams/beta-lac-

tamases inhibitor (BL-BLI) combinations, which express 

selected activity against MDR Gram-negative bacte-

ria expressing different determinants of resistance, has 

already started to change clinical reasoning at the bedside 

of septic patients. For example, the type of locally preva-

lent carbapenemases should now be taken into account 

when prompting empirical therapies [50]. Trying to bal-

ance all the above-reported factors, possible choices for 

treating BSI in critically ill patients, together with their 

activity against MDR pathogens and dosage recommen-

dations, are detailed in Table 6.

Role of therapeutic drug monitoring (TDM)
Useful pharmacokinetic (PK) parameters for deciding 

antimicrobial dosages are not routinely measurable in 

critically ill patients. However, albeit imperfect, some 

practical and immediately available proxies exist that may 

help optimizing dosages. First, higher loading dosages 

of hydrophilic antimicrobials are required in critically ill 

patients with a positive fluid balance indicating a high 

volume of distribution (Vd) [51–53]. Second, the facts 

that most antimicrobials used in ICUs are excreted by the 

kidneys, that either augmented renal clearance (ARC) or 

acute kidney injury (AKI) can be present in critically ill 

patients with BSI, and that renal replacement therapies 

(RRT) are not infrequently used in these patients imply 

that careful attention should be devoted to the adjust-

ment of maintenance dosages according to the fluctua-

tions in renal function during the course of treatment 

[25, 52, 54–56]. With regard to pharmacodynamics (PD), 

knowledge of the different PD index of choice (T > mini-

mum inhibitory concentration (MIC), Cmax/MIC, or area 

under the curve(AUC)/MIC) pertaining to the differ-

ent antimicrobial classes is crucial both for selecting the 

most appropriate type of infusion (e.g., continuous vs. 

intermittent) and for measuring the impact of suspected/

measured pathogens MIC on the probability of target 

attainment, taking into account possible variability in 

MIC measurements [25, 52, 57].

However, TDM remains desirable for antimicrobial 

treatments in critically ill patients, owing to the imper-

fect prediction of PK and PD in this population with-

out measurement, even when carefully taking into 

account both patients chronic and acute characteristics 

and the expected drug behavior [52, 58, 59]. Practically, 

TDM appears beneficial for minimizing toxicity and/

or improving clinical responses in patients treated with 

vancomycin or aminoglycosides [60, 61], while further 

evidence and standardization are needed to clearly delin-

eate and maximize any possible clinical impact of TDM 

on the use of beta-lactams [25, 62, 63]. For some antimi-

crobial classes with inherent variable serum concentra-

tions, technical difficulties and its frequent unavailability 

outside research laboratories prevent a widespread use 

of TDM (e.g., polymyxins, for which nonetheless TDM 

remains desirable whenever feasible) [58]. Detailed dis-

cussion on possible PK/PD targets (either for improving 

bacterial killing/clinical outcome or reducing toxicity) 

and sampling times for different antibiotic classes in criti-

cally ill patients undergoing TDM are available elsewhere 

[64, 65].

Single-drug or combination therapy 
for bloodstream infection in ICU patients
In an era of increasing resistance prevalence, the primary 

objective of an empirical combination regimen (usually 

a beta-lactam plus an aminoglycoside or a fluoroqui-

nolone) is to maximize the likelihood of administering at 

least one drug with activity against the causative patho-

gen. Yet, once antimicrobial susceptibility results become 

available, the benefit of continuing with a dual regimen 

rather than a single active agent remains equivocal owing 

to fragmentary or conflicting evidence.

First, experimental models suggest that antimicrobial 

associations may synergistically prevent or postpone 

the selection of resistant mutants, especially in P. aerug-

inosa and other non-fermenting Gram-negative patho-

gens [66]. However, clinical data are lacking to appraise 

the relevance of these findings and whether combina-

tion therapy effectively protects from the emergence of 

resistance at the infection site is still unsettled. Interest-

ingly, in a randomized controlled trial (RCT) including 

551 patients with sepsis, receiving a meropenem–moxi-

floxacin combination was associated with a lower risk 

of persistent or subsequent infection with meropenem-

resistant pathogens than meropenem alone (1.3% ver-

sus 9.1%, respectively, P = 0.04) [67]. �is endpoint was 
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Table 6 Characteristics of  antibacterial drugs indicated (or used o�-label in  selected cases) for  treating bloodstream 

infections (BSI) in critically ill patients

Antibacterials Activity against MDR pathogens Class, PD index of choice
Suggested dosage in critically–ill 
patients

Status

Amikacin Possibly active against MDR-GNB, 
although increased resistance to classi-
cal aminoglycosides has been reported 
[79, 143]

Aminoglycosides, AUC/MIC
25-30 mg/kg q24h
(modified according to TDM)

Approved

Aztreonam Active against MBL producers not 
expressing mechanisms of aztreonam 
resistance (e.g., other beta-lactamases, 
AmpC hyperexpression, efflux pumps)

Monobactams, T > MIC
1–2 g q8h

Approved

Aztreonam/
Avibactam

ESLBL-PE
CPE (all classes of carbapenemases, 

including MBL)

Monobactams plus BLI, T > MIC
6500 mg aztreonam/2167 mg avibactam 

q24h on day 1 followed by 6000 mg 
aztreonam/2000 mg avibactam q24h

In clinical development; potential indica-
tions according to phase-3 RCT are cIAI, 
HAP/VAP (NCT03329092) and serious 
infections due to MBL-producing bacteria 
(NCT03580044)

Cefepime Active against AmpC hyperproducer 
enterobacterales

Cephalosporins, T > MIC
2 g q8h or continuous infusion

Approved

Cefiderocol ESBL-PE
CPE (all classes of carbapenemases, 

including MBL)
MDR-PA
CRAB

Siderophore cephalosporins, T > MIC
2 g q8h

FDA Approved for cUTI caused by 
susceptible Gram-negative microorgan-
isms, who have limited or no alternative 
treatment options according to phase-3 
RCT are infections due to carbapenem-
resistant organisms in different sites 
(NCT02714595). Pivotal study on HAP/VAP 
finished (NCT03032380)

Ceftobiprole MRSA
VISA
hVISA
VRSA

Cephalosporins, T > MIC
500 mg q8 h

Approved for CAP and HAP (excluding VAP)
In vitro and/or limited clinical data reporting 

a possible use as salvage therapy in com-
bination with vancomycin or daptomycin 
for MRSA bacteremia

Ceftolozane/
Tazobactam

ESBL-PE
MDR-PA

Cephalosporins plus BLI, T > MIC
1.5 g q8h (3 g q8h for pneumonia)

Approved for cIAI (in combination with 
metronidazole) and cUTI

Approved by FDA for VAP/HAP, with the 
CHMP of EMA also recently adopting 
a positive opinion recommending a 
change to the terms of the marketing 
authorization, including also VAP/HAP 
among approved indications

Ceftaroline MRSA
VISA
hVISA
VRSA

Cephalosporins, T > MIC
600 mg q12 h

Approved for ABSSSI and CAP
In vitro and/or limited clinical data report-

ing a possible use as salvage therapy in 
combination with vancomycin or dapto-
mycin for MRSA bacteremia

Ceftazidime Cephalosporins, T > MIC
6 g q24h continuous infusion

Approved

Ceftazidime/
Avibactam

ESBL-PE
CPE (class A and class D carbapenemases)
MDR-PA

Cephalosporins plus BLI, T > MIC
2.5 g q8h

Approved for cIAI (in combination with 
metronidazole), cUTI, HABP/VABP, and 
infections due to aerobic Gram-negative 
organisms in adult patients with limited 
treatment options

Ceftriaxone Cephalosporins, T > MIC
1–2 g q24h

Approved

Colistin ESBL-PE
CPE (all classes of carbapenemases, 

including MBL)
MDR-PA
CRAB

Polymyxins, AUC/MIC
9 MU loading dose, 4.5 MU every 8–12 h
(modified according to TDM where 

available; higher dosages to be possibly 
considered in patients with ARC [58])

Approved
Recommended for serious infections due 

to susceptible bacteria when other treat-
ment options are limited

Daptomycin MRSA
VRE

Lipopeptides, AUC/MIC
8–10 mg/kg q24h

Approved for cSSTI and right-sided endo-
carditis
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Table 6 (continued)

Antibacterials Activity against MDR pathogens Class, PD index of choice
Suggested dosage in critically–ill 
patients

Status

Eravacycline MRSA
VRE
ESBL-PE
CPE
CRAB

Fluocyclines, AUC/MIC
1 mg/kg q12h

Approved for cIAI
To be possibly used for BSI due to MDR 

organisms in absence of dependable 
alternative options, in combination with 
other agents (expert opinion)

Ertapenem ESBL-PE Carbapenems, T > MIC
1 g q12 h

Approved for IAI, CAP, acute gynecological 
infections, and diabetic food infections

Fosfomycin ESBL-PE
CPE (all classes of carbapenemases, 

including MBL)
MDR-PA
MRSA
VRE

PEP analogues, unclear [144]
4–6 g q6h continuous infusion

Approved
For BSI used in combination with other 

agents for the treatment of MDR infec-
tions with limited treatment options (also 
for CRAB), although in lack of high-level 
evidence

Gentamicin Possibly active against MDR-GNB, 
although increased resistance to classi-
cal aminoglycosides has been reported 
[79, 143]

Aminoglycosides, AUC/MIC
5–7 mg/kg q24h
(modified according to TDM)

Approved

Imipenem/
Cilastatin

ESBL-PE Carbapenems, T > MIC
0.5–1 g q6h

Approved

Imipenem/
Relebactam

ESBL-PE
CPE (class A carbapenemases)
Some MDR-PA

Carbapenems plus BLI, T > MIC
500 mg/250–125 mg q6h

FDA approved for the treatment of cUTI 
and cIAI. The phase-3 RCT are HAP/VAP 
(NCT02493764) is ongoing.

Meropenem ESBL-PE Carbapenems, T > MIC
1–2 g q8h or extended infusion (over 4 h)

Approved

Meropenem/
Vaborbactam

ESBL-PE
CPE (class A carbapenemases)

Carbapenems plus BLI, T > MIC
4 g q8h

Approved for cUTI, cIAI, HAP, VAP, and 
infections due to aerobic Gram-negative 
organisms in patients with limited treat-
ment options

Piperacillin/
Tazobactam

Possibly active against ESBL-PE, although 
the results of the MERINO trial discour-
age the use of piperacillin/tazobactam 
for severe ESBL-PE infections [145]

Penicillins plus BLI, T > MIC
4.5 g q6h continuous infusion

Approved

Plazomicin ESBL-PE
CPE (all classes of carbapenemases, 

including MBL, although resistance has 
been described in NDM-1 produc-
ing strains, owing to co-expression of 
plazomicin-inactivating methyltrans-
ferases [146])

MDR-PA
CRAB

Aminoglycosides, AUC/MIC
15 mg/kg q24h

An application has been recently submitted 
to EMA for approval of plazomicin for cUTI 
and other severe infections (plazomicin is 
approved by FDA for cUTI)

Tigecycline MRSA
VRE
ESBL-PE
CPE (all classes of carbapenemases, 

including MBL)
CRAB

Glycylcyclines, AUC/MIC
100–200 mg loading those, then 

50–100 mg q12h

Approved for cSSTI (excluding diabetic foot 
infections) and cIAI

For BSI used only in combination with other 
agents for infections due to MDR organ-
isms in presence of limited alternative 
therapeutic options

Vancomycin MRSA Glycopeptides, AUC/MIC
15–30 mg/kg loading dose, 30–60 mg/kg 

q12h, or continuous infusion (modified 
according to TDM)

Approved

ABSSSI acute bacterial skin and skin-structure infections, ARC  augmented renal clearance, AUC  area under the concentration curve, BLI beta-lactamases inhibitors, 

BSI bloodstream infections, CAP community-acquired pneumonia, CHMP Committee for Medicinal Products for Human Use, cIAI complicated intra-abdominal 

infections, CPE carbapenemase-producing Enterobacterales, CRAB carbapenem-resistant Acinetobacter baumannii, cSSTI complicated skin and soft-tissue infections, 

cUTI complicated urinary tract infections, EMA European Medicines Agency, ESBL-PE extended-spectrum beta-lactamase-producing Enterobacterales, FDA Food and 

Drug Administration, HAP hospital-acquired pneumonia, MBL metallo-beta-lactamases, NDM New Delhi metallo-beta-lactamase, L-AmB liposomal amphotericin B, 

MDR multidrug-resistant, MIC minimum inhibitory concentration, MRSA methicillin-resistant Staphylococcus aureus, MU million units, PA Pseudomonas aeruginosa, 

PD pharmacodynamics, PEP phosphoenolpyruvate, RCT  randomized controlled trials, TDM therapeutic drug monitoring, VAP ventilator-associated pneumonia, VRE 

vancomycin-resistant enterococci
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unfortunately not addressed in the gut microbiota—

that is, the main reservoir of MDR Gram-negative bac-

teria in ICU patients. Intuitively, adding a second drug 

to a broad-spectrum beta-lactam may amplify the eco-

logical side-effects on commensal ecosystems and the 

routine use of combination therapy can probably not be 

justified on the sole basis of preventing resistance at the 

infection site.

Next, several meta-analyses failed to demonstrate 

that the use of a beta-lactam/aminoglycoside associa-

tion reduces fatality rates in patients with BSI—includ-

ing those with neutropenia or sepsis—when compared 

to a monotherapy with the same beta-lactam [68–70]. 

Besides, adding an aminoglycoside to a beta-lactam-

based regimen has been consistently linked with an 

increased hazard of acute renal failure at the acute 

phase of infection [68, 69, 71]. On a pathogen-specific 

approach, there is currently no evidence that a double-

active regimen impacts the outcome of patients with 

BSI due to methicillin-susceptible S. aureus (except 

in those with implanted devices) or Enterobacterales, 

including AmpC-hyperproducers and ESBL-PE [72–

75]. Along this line, the benefit of a polymyxin-based 

combination has not been convincingly proven in 

patients infected with carbapenem-resistant A. bau-

mannii though this strategy may perform better than 

polymyxin alone in patients with BSI and/or when 

high-dose colistin regimen are administered (i.e., ≥ 6 

MUI per day) [76–79]. Controversies equally persist 

about the prognostic effect of combination therapy in 

P. aeruginosa BSI [73, 80, 81]; yet, no survival improve-

ment was demonstrated in a meta-analysis of RCTs 

comparing beta-lactam plus aminoglycoside or fluo-

roquinolone versus beta-lactam alone in patients with 

this condition [82]. It should be emphasized, however, 

that most of available studies are relatively ancient, 

include a limited number of ICU patients, and display 

substantial heterogeneity in terms of antimicrobial 

administration schemes, sepsis definition, and severity 

indexes at BSI onset.

�e benefit of combination therapy could actually 

be restricted to the most severely ill patients. Indeed, 

in a meta-regression analysis of observational stud-

ies and RCTs, combination therapy was associated 

with improved survival in patients with a baseline risk 

of death > 25% [odds ratio (OR) for death 0.51, 95% CI 

0.41–0.64], while a harmful effect was strikingly observed 

in less severe patients (OR 1.53, 95% CI 1.16–2.03) [83], 

putatively due to toxic and/or ecological adverse events. 

Similar results were reported in a cohort of 437 patients 

with BSI due to carbapenemase-producing Enterobac-

terales (mostly KPC-producing K. pneumoniae), with 

a survival benefit of combination therapy in those with 

a high probability of death (OR 0.56, 95% CI 0.34–0.91) 

but not in the lower mortality stratum [84]. Pending for 

confirmatory studies to definitely solve this essential 

issue [85], combination therapy remains recommended 

in patients with septic shock but should not be routinely 

prescribed for the definite treatment of those with other 

severe infections, including sepsis without circulatory 

failure [26].

Early appropriate source control
�e search for the source of BSI (that is, secondary BSI) 

should be guided by the patient clinical presentation. 

�e most common conditions that may require a specific 

approach for source control are obstructive UTI, skin 

and soft-tissue infections and intra-abdominal infections 

for secondary CA-BSI, and vascular device and surgi-

cal site infection for secondary HA-BSI. Source control 

to eliminate infectious foci follows principles of damage 

control and should be limited to drainage, debridement, 

device removal and compartment decompression in case 

of hemodynamic instability and organ failures [86].

An important body of the literature argues for a sys-

tematic catheter removal in case of catheter-related BSI 

in critically ill patients [87–89]. However, the device 

is actually the source of sepsis in less than half of those 

with a suspected catheter-related infection [90]. �e sys-

tematic removal should thus be balanced with a more 

conservative attitude in the absence of septic shock but 

remains the rule in case of septic shock, immune sup-

pression, or persistent bacteremia under appropriate 

antimicrobial therapy.

For BSIs related to surgical site infection, source con-

trol is a major determinant of outcome [91]. However, 

the optimal delay for source control is debated—from less 

than 6 to less than 12 h [91–94]. Indeed, the cost–benefit 

ratio of an immediate drainage in unstabilized patients or 

a hemodynamic and physiological stabilization-first and 

secondary source control is a matter of debate. Immedi-

ate damage control using less risky, minimally invasive 

surgical debridement and/or percutaneous drainage 

(delaying the need for definitive surgery until the patient 

is stabilized) is probably the best option [95]. It should be 

discussed with anesthetists and surgeons on an individ-

ual basis.

Key elements of surgical source control include drain-

age, debridement, cleansing, irrigation, and control of the 

source of contamination [95]. Yet, the quality of source 

control is difficult to evaluate [96], somewhat subjective 

and depends on the surgeon’s perception. A standard-

ized reporting file of the operative procedure may help. 

A closed collaboration between surgeons and intensivists 

during the patients’ follow-up is, therefore, fundamental.
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De-escalation strategy
Antimicrobial de-escalation (ADE) is a component of 

antimicrobial stewardship strategies (AMS) aiming at 

both reducing the spectrum of antibiotic therapy and 

decreasing the emergence of antimicrobial resistance 

[97].

ADE is variably defined, and usually includes narrow-

ing the spectrum of a pivotal antibiotic, often a β-lactam, 

and/or decreasing the number of agents [98, 99]. �ose 

components should be scrutinized separately but in gen-

eral ADE is part of the re-evaluation of the antimicrobial 

regimen that happens 2–3  days after the infection was 

diagnosed when results of microbiological specimens 

become available. BSI is very particular as it is the only 

kind of infection where the pathogen is always known 

(by definition), and as such a perfect candidate for this 

re-evaluation.

Where the source and the pathogen of the BSI are 

known, it can be safely recommended, even in immu-

nocompromised patients [99, 100], to stop companion 

antibiotics intended to broaden the spectrum of therapy. 

Indeed, for a Gram-negative BSI, anti-MRSA or anti-

fungal agents should not be continued longer than it is 

needed to know those are not in cause.

�e case of the pivotal antibiotic is more complex 

because of multiple factors:

  • While resistance to carbapenems may increase after 

extended courses, a lot of the harm has already been 

done after 1–3 days of therapy [101].

  • Ranking the spectrum of antibiotics is complex and 

yields variable results depending on the method, the 

region of the world and the priorities that are consid-

ered [98, 102, 103].

  • Whether narrowing the clinical antimicrobial spec-

trum decreases the emergence of resistance has 

not been adequately studied, and while it has some 

rationale, in some cases, the opposite may be true 

[104].

  • Some ADE regimens such as switching a beta-lactam 

for a fluoroquinolone may be useful in the ward to 

allow for oral treatment and discharge from hospital. 

�is potential benefit does not exist for ICU patients, 

and those regimens are likely to cause additional 

emergence of resistance.

  • Caution is important for sources that are frequently 

polymicrobial such as intra-abdominal infections. 

A positive BC may yield a single pathogen, while 

specimens from the source may identify multiple 

pathogens. Furthermore, there may be other impor-

tant pathogens that were not cultured and require 

the broad-spectrum antimicrobial that was initially 

started.

  • In silico PK/PD modeling has warned that with con-

ventional dosing strategies narrower spectrum beta-

lactams may have higher risks of non-target attain-

ment than their broad-spectrum alternatives [105].

  • Some narrower spectrum alternatives are more effec-

tive than broad-spectrum regimens. For instance, 

oxacillin or cephazolin are superior to piperacillin/

tazobactam in S. aureus BSI [106].

  • Risk exists that ADE may cause an increase in the 

total duration of antimicrobial therapy [107]. Mul-

tiple studies on different sources of infection lead to 

recommend shorter rather than longer duration of 

antimicrobial therapy and this may be a more impor-

tant target than changing molecules within a treat-

ment [108, 109].

  • In ADE, it is particularly important to not increase 

the duration of treatment because of days where 

treatments overlap. We recommend that a stop date 

and time is calculated from the time of effective 

treatment and that this is maintained for the treat-

ment after ADE.

We recommend consideration is given to all or a com-

bination of those reasons before deciding if narrowing 

the pivotal antimicrobial is the appropriate course of 

action in critically ill patients with a BSI. ADE should 

be an integral part of the global AMS strategy, target-

ing the optimization of the treatment of patients with an 

infection. ADE is part of the clinical and microbiological 

re-evaluation that should happen for every patient with 

a BSI every time the laboratory provides new informa-

tion. �ose time points include the alert for positivity 

and Gram stain, the speciation and sensitivities of the 

pathogen.

Duration of therapy
Sufficient duration of antimicrobial therapy is required 

to prevent clinical failure and relapse. It should, how-

ever, not exceed what is required to achieve that target 

as longer courses may cause adverse events, toxicity, 

emergence of antimicrobial resistance, increase costs and 

resource use.

Duration of therapy should be defined as starting on 

the first day after an adequate antimicrobial is admin-

istered, and the source has been treated, and the blood 

cultures have become negative. To define clearance of the 

bacteremia, we require at least one set of negative blood 

cultures obtained 2–4 days after the infection [110]. Sam-

pling more than one follow-up sets of blood cultures 

is preferable to avoid the skip phenomenon. �is was 

described for S. aureus as when persisting bacteremia 

may be missed if insufficient follow-up cultures are per-

formed [111].
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From a recently published cohort study of 1202 ICU 

patients with BSI, we learn that current practice con-

sists in extended duration of treatment for those patients 

with a median of 14 days (IQR, 9–17.5 days) [112]. After 

proper adjustment and excluding early deaths, dura-

tion of treatment showed no association with either 

survival or bacteremia relapse [15]. Most importantly, 

data extrapolated from observational studies on dura-

tion of treatment should be analyzed with extreme cau-

tion in populations with an inherently high risk of death. 

In survivor bias, the patients who have died early have 

had less days alive where the treatment could be given, 

hence received a shorter course of treatment. �is artifi-

cially increases the risk of death associated with shorter 

courses and may have led clinicians to favor unnecessar-

ily longer treatments.

A multicenter RCT involving 3598 ICU patients with 

BSI to 7 vs 14  days of antibiotics is ongoing (planned 

enrollment of 3598 patients). Results will not be available 

until 2022 (Balance trial-NCT03005145) and, until then, 

we will need to rely on a lower quality of evidence from 

uncontrolled or underpowered randomized trials that are 

described below.

�e safety of a shorter antibiotic therapy for Gram-

negative uncomplicated BSI was recently shown in a 

RCT including 604 patients across 3 centers. �e authors 

enrolled hemodynamically stable patients without fever 

for at least 48 h at day 7 after the BSI onset �ey estab-

lished non-inferiority of 7 against 14  days of treatment 

for a primary composite outcome of mortality, clinical 

failure, readmissions and extended hospitalization at day 

90 [113]. �e validity of these results in Pseudomonas 

aeruginosa BSI and in population with higher sever-

ity or prevalence of immunosuppression was suggested 

in a multicenter cohort of 249 patients included from 

5 hospitals [114]. �ey used a causal inference model 

with adjustment on the inverse probability of treatment 

weighting. �e composite outcome of recurrent P. aerugi-

nosa infection at any site or mortality at 30 days was sim-

ilar in both groups (OR 1.06; 95% CI 0.42–2.68; p = 0.91). 

Recurrent infections occurred in 7% of the short course 

and 11% of the prolonged course groups, thereby invali-

dating the reasoning to continue antibiotics beyond the 

recommended duration to prevent relapse [114].

�is is in line with the findings of a meta-analysis of 

short versus long antibiotic treatments in patients with 

bacteremia caused by the most common infectious syn-

dromes [108]. Only one trial conducted in children with 

acute nephronia—that is an intermediate stage between 

acute pyelonephritis and renal abscess—favored longer 

compared to shorter antibiotic courses [115]. For other 

trials and in pooled results, there was no difference in 

survival, clinical or microbiological cure with owing to 

treatment duration.

Trials investigating the infectious syndromes causing 

BSI in the ICU are important as in most cases, it may be 

the source that should guide our treatment rather than its 

consequence (the bacteremia). Short treatment should 

safely be used for ventilator-associated pneumonia (VAP) 

[116], or post-operative intra-abdominal infections pro-

vided source control was optimal [109].

When judging of duration of antibiotics, there is this 

second time point at 5–7  days. �e decision of esca-

lation/de-escalation/no change or dose adjustments 

should be taken after 2–3  days when microbiologi-

cal specimens became available [98]. �e effectiveness 

of therapy should be judged after 1  week of treatment 

on clinical and microbiological resolution of the infec-

tion. �is will include defervescence and resolution of 

organ failures and shock, negative follow-up cultures, the 

absence of endocarditis or metastatic sites of infection 

and no implanted prosthesis which are all required to 

define an uncomplicated infection [110]. Problems with 

source control and/or superinfections at the source will 

also uncover around that time point. If those are resolved 

and the pathogen or the source is not specifically requir-

ing extended treatments antibiotic regimen can be safely 

stopped.

For some pathogens, such as S. aureus or in cases of 

uncomplicated candidemia, treatment should be con-

tinued for 14  days after the first negative blood culture 

[110, 117]. Some particular source of infections where 

the pathogen is quiescent or living in biofilms, the pres-

ence of an untreatable source, septic metastasis or 

micro-abscesses also require prolonged therapy. Trans-

thoracic/transoesophagal echocardiograph and fundus-

copy should be performed before deciding the duration 

of therapy. Indeed, short-term therapy (15  days) was 

shown to be effective only in selected cases of uncom-

plicated S. aureus right-sided infectious endocarditis 

or left-sided native valve infectious endocarditis due to 

highly susceptible streptococci. Most current recommen-

dations emphasize prolonged antibiotic administration 

(4–6 weeks or even 8 weeks) for S. aureus prosthetic valve 

endocarditis. Valve cultures should be taken into account 

to decide how long to continue antimicrobial therapy 

after valve replacement [118]. Longer therapies are also 

needed for bone and joint infections (4–8 weeks), brain 

abscesses (8 weeks), empyema (4–6 weeks) or, in general, 

when the source control is impossible or incomplete. It 

is especially the case when infected devices or prosthesis 

are left in place.

�e major limitation of systematically shortening the 

duration of therapy in uncomplicated infection is the 

lack of controlled trials confirming its safety. Importantly, 
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the stabilization of the infection process may be difficult 

to define and often subjective. �e use of individualized 

follow-up of procalcitonin (PCT) levels might be help-

ful in certain CA infections [119]—indeed, available data 

suggest that a PCT-driven reduction of treatment dura-

tion in patients with otherwise improving clinical status 

does not result in increased mortality, including in those 

with BSI [120, 121]. In case of incomplete source con-

trol, the duration of therapy might be guided by repeated 

morphological exams such as leucocyte scintigraphy, and 

PET scans.

�e case of ongoing instability or clinical worsening 

is complex and may be due to multiple different causes. 

Often combined, interconnected and leading to diag-

nostic dilemma with a very high risk of death. Failure of 

treatment at the source, superinfection with a different 

or the same pathogen that has become resistant to the 

ongoing antimicrobial therapy, residual infected tissues 

or material at the source or at other sites via hematog-

enous dissemination will all require new specimens, pos-

sibly new percutaneous or surgical control, optimization 

and sometimes escalation of antibiotics. �e duration will 

need to be recalculated from that point in time. Further-

more, it is always important to suspect infections related 

to the high intensity of care, such as VAP, CLABSI, or a 

CAUTI. Peripheral blood cultures, specimens of each 

clinically suspected source and changing the CVC, arte-

rial line and any indwelling material with sending cath-

eter tips for microbiology are most often necessary as 

part of the treatment and diagnostic workup. While in 

patients without shock, there are hints to a benefit for 

waiting for results of such investigations [122]. In cases 

with high severity, worsening shock and the risk of an 

untreated infection, it is often required to escalate the 

antimicrobial regimen in the meantime. �e new regi-

men should take in account colonization and the most 

frequent pathogens and resistance patterns according to 

the source and patient category and always be preceded 

by new blood cultures and specimens of any potential 

source.

It is, however, important to always remember that non-

infectious causes of fever may complicate the clinical pic-

ture, most prevalently drug reactions or antibiotic related 

fever and venous thromboembolism [123]. It is only with 

meticulous review of the history, available microbiology, 

clinical examination and targeted investigations that the 

decision can be taken to escalate the spectrum, extend 

the duration or sometimes stopping the antimicrobi-

als altogether to allow for an effective microbiological 

workup.

Concluding remarks
Community-acquired and healthcare-associated BSIs are 

common situations to manage in ICU patients and are 

associated with impaired outcomes, especially in case of 

sepsis/septic shock, immune deficiency, and delayed ade-

quate antimicrobial therapy and/or source control. �e 

prevalence of MDR pathogens is high or even increasing 

in healthcare-associated BSI, thereby strengthening the 

need for prospective clinical evaluation of novel diag-

nostic tools that enable earlier identification of resistance 

markers. Pending for such data, the choice of empirical 

regimen depends on a variety of clinical parameters, with 

the patient’s individual risk of MDR pathogen being the 

leading one. Double-active regimen might improve sur-

vival in the most severely ill patients yet further studies 

should be focused on this essential issue. Antimicrobial 

de-escalation should be considered once culture results 

become available and the source of BSI is identified and 

controlled. Treatment duration longer than 5–8 days may 

be indicated only in certain clinical scenarios and/or in 

BSI due to particular pathogens such as S. aureus.
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