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SUMMARY

A new indirect way of producing all-quad meshes is presented. The method takes advantage of a well
known algorithm of the graph theory, namely the Blossom algorithm that computes the minimum
cost perfect matching in a graph in polynomial time. The new Blossom-Quad algorithm is compared
with standard indirect procedures. Meshes produced by the new approach are better both in terms of
element shape and in terms of size field efficiency. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. Introduction

Quadrilateral surface meshes are sometimes considered as superior to triangular meshes for
finite element simulations. Discussions about if and why quadrilaterals are better than triangles
are usually passionate in the finite element community. We will not try to argue about that
thorny question here—but we assume that quadrilateral meshes are indeed useful and in this
paper we present a new way of generating such meshes.
Let us first briefly recall which kinds of methods can be used to build non uniform

quadrilateral meshes in an automatic manner. There are essentially two categories of methods.
In direct methods, the quadrilaterals are constructed at once, either using some kind of

advancing front technique [1] or using regular grid-based methods (quadtrees). Advancing front
methods for quads are considered to be non robust and quadtree methods usually produce low
quality elements close to the boundaries of the domain and are unable to fulfill general size
constraints (anisotropy, strong variations).
In indirect methods, a triangular mesh is built first. Triangle-merge methods then use the

triangles of the initial mesh and recombine them to form quadrangles [2, 3]. Other more
sophisticated indirect methods use a mix of advancing front and triangle merge [4].
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2 J.-F. REMACLE ET AL.

The method we present here is an indirect approach to quadrilateralization. We make use of
a famous algorithm of the theory of graphs: the Blossom algorithm, proposed by Edmonds in
1965 [5, 6], which allows to find the minimal cost perfect matching of a given graph. The new
method has some clear advantages: (i) it provides a mesh that is guaranteed to be quadrilateral
only, (ii) it is optimal in a certain way and (iii) it is fast.

2. Mesh quality measures

The aim of the mesh generation process described in this paper is to build a mesh made of
quadrilaterals that has controlled element sizes and shapes. We are interested in generating
non uniform quadrilateral meshes. Local information about sizes is given through the definition
of a mesh size field that returns, for every point ~x in the domain, a “characteristic” length
h(~x) that has to be fulfilled by the mesh.

Let ~a and ~b be two points of R3. The adimensional length of the vector
−→
ab with respect to

the non uniform size field h is defined as [7, 3]:
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An optimum mesh in term of the size is a mesh for which every edge i is of adimensional size
lhi equal to one. It is of course impossible to have such a perfect unit mesh. Here, we define the
efficiency index [7] τ of a mesh as the exponential of the mean value of the difference between
each edge length lhi and one:
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with di = lhi − 1 if lhi < 1, di =
1

lhi
− 1 if lhi > 1 and ne the number of edges in the mesh.

Surface mesh algorithms usually produce triangular meshes with typical values of τ around
τ = 85%, i.e., with non-dimensional sizes around 1/

√
2 ≤ lhi ≤

√
2.

Having the right sizing for the mesh is not enough: mesh generators should also provide
meshes with controlled element qualities. We then define a quality measure for quadrilateral
elements. Consider a quadrilateral element q and its the four internal angles αk, k = 1, 2, 3, 4.
We define the quality η(q) of q as:
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This quality measure is 1 if the element is a perfect quadrilateral and is 0 if one of those angles
is either ≤ 0 or ≥ π. In what follows, we will present statistics for the quadrilateral meshes:

• The efficiency index τ , which measures the adequacy of the mesh with the mesh size field.
The index τ is smaller or equal to one, and should be as close as possible to τ = 100%.

• The average element quality η̄ as well as the worst element quality ηw, which can be
important in the context of finite element simulations.
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QUADRILATERAL MESH GENERATION USING PERFECT MATCHING 3

3. Indirect quadrilateralization using a non-optimal matching algorithm
In §1 we have made the distinction between direct and indirect methods for the construction
of quadrilateral meshes. In the case of indirect methods, a triangular mesh is first constructed.
Then, triangles are recombined in order to produce quadrangles.

Consider a triangular mesh made of nt triangles ti, i = 1, . . . nt. In what follows, we consider
internal edges eij of the mesh that are common to triangles ti and tj . We define a cost function
c(eij) = 1− η(qij) that is associated to each graph edge eij of the mesh and that is defined as
the mesh quality of the quadrilateral qij that is formed by merging the two adjacent triangles
ti and tj . Usual indirect quadrilateralization procedures work as follows [3]. Edges eij of the
graph are sorted with respect to their individual cost functions. Then, the two triangles that
are adjacent to the best edge eij of the list are recombined into a quadrilateral. Triangles ti
and tj are tagged in order to prevent other edges that are adjacent either to ti or to tj to be
used for another quadrilateral forming. Then, the algorithm processes the ordered list of edges,
forming quadrilaterals with triangles adjacent to an edge as long as none of those adjacent
triangles are tagged. Fig. 1 shows an illustration of this procedure for a rectangular domain of
size 1× 3 and a mesh size field defined by

h(x, y) = 0.1 + 0.08 sin(3x) cos(6y).

Isolated triangles inevitably remain in the mesh and the resulting mesh is not made of
quadrilaterals only. The mesh is then said to be quad-dominant. In the example of Fig. 1,
the resulting mesh is made of 836 quads and 240 triangles.

A mesh composed of quadrilaterals can be build subsequently using a uniform mesh
refinement procedure [3]. Every quadrilateral of the quad-dominant mesh is split into four
sub-quadrilaterals and every triangle is split into three sub-quadrilaterals (see Fig. 2). In order
to fulfill the size criterion h(~x), the initial triangular mesh should thus be built using a size
field with twice the value (i.e. 2h) that is expected in the final mesh.

The recombination process just described is sub-optimal. It does not provide the best set of
edges to be recombined with respect to some general cost function. Indeed, the only optimality
property of this algorithm is that it ensures that the best triangle pair will be recombined.

The second part of the algorithm, namely the mesh refinement step, also has some drawbacks.
Splitting every element of the mesh produces a mesh that has half the size of the initial mesh.
It is of course possible to generate an initial mesh with double the required size. Yet, with real
geometries, the new vertices will have to be added on the geometry, which is not trivial. On
the other hand, the refinement step does not allow a sharp control of the mesh size. On Fig. 2,
the procedure ends with an efficiency index of 79%, which cannot be considered as good.

In [2] the authors propose a scheme for recombining triangular meshes that does not always
require the refinement step, using a kind of advancing front technique. The merging of triangles
starts at the boundary; when a front closes, the algorithm attempts to maintain an even number
of triangles on any sub-front. Again, this approach is sub-optimal because the result depends
on the ordering of elements and on the choice of the initial front.
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4 J.-F. REMACLE ET AL.

τ = 88.9% τ = 85.6%

Figure 1. Illustration of the quad-dominant algorithm. Left mesh is the initial triangular mesh and
right mesh is the quad dominant mesh, after smoothing (triangles are in grey).

4. The new Blossom-Quad algorithm

Here, our aim is to build a mesh generation scheme that starts with a triangular mesh and
attempts to find the set of pairs of triangles that form the best possible quadrilaterals with
the constraint of not leaving any remaining triangle in the mesh.

4.1. Blossom: a minimum cost perfect matching algorithm

Let us consider G(V,E, c) an undirected weighted graph. Here, V is the set of nV vertices,
E is the set of nE undirected edges and c(E) =

∑

c(eij) is an edge-based cost function, i.e.,
the sum of all weights associated to every edge eij ∈ E of the graph. A matching is a subset
E′ ⊆ E such that each node of V has at most one incident edge in E′. A matching is said to
be perfect if each node of V has exactly one incident edge in E′. As a consequence, a perfect
matching contains exactly nE′ = nV /2 edges. A perfect matching can therefore only be found
for graphs with an even number of vertices. A matching is optimum if c(E′) is minimum among
all possible perfect matchings.
In 1965, Edmonds [8, 5] invented the Blossom algorithm that solves the problem of optimum
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QUADRILATERAL MESH GENERATION USING PERFECT MATCHING 5

τ = 85.5% τ = 83.9% τ = 79.1%

Figure 2. A quad dominant algorithm using halgo = 2h followed by a one mesh refinement procedure
leads to a reduction of the efficiency index τ .

perfect matching in polynomial time. A straightforward implementation of Edmonds’s
algorithm requires O(n2

V nE) operations.
Since then, the worst-case complexity of the Blossom algorithm has been steadily improving.

Both Lawler [9] and Gabow [10] achieved a running time ofO(n3
V ). Galil, Micali and Gabow [11]

improved it to O(nV nE log(nV )). The current best known result in terms of nV and nE is
O(nV (nE + log nV )) [12].
There is also a long history of computer implementations of the Blossom algorithm,

starting with the Blossom I code of Edmonds, Johnson and Lockhart [6]. In this paper, our
implementation makes use of the Blossom IV code of Cook and Rohe [13]†, which has been
considered for several years as the fastest available implementation of the Blossom algorithm.

4.2. Optimal triangle merging

Consider now a mesh made of nt triangles and nv vertices. Consider a specific weighted graph
G(V,E, c) that is build using triangle adjacencies in the mesh. Here, every vertex of the graph
is a triangle ti of the mesh and every edge of the graph is an internal edge eij of the mesh
that connects two neighboring triangles ti and tj . Fig. 3 shows a simple triangular mesh with

†Computer code available at http://www2.isye.gatech.edu/~wcook/blossom4/.
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eij

ti

tj

Figure 3. A mesh (in black) and its graph (in cyan and red). The set of graph edges colored in red
forms a perfect matching.

its graph and one perfect matching.
Let us come back first to the non-optimal triangle merging algorithms of §3. In term of what

has just been defined, the subset E′ of edges that have been used for triangle merging in the
approach of [3] is a matching that is very rarely a perfect matching. The one of [2] is usually
a perfect matching, but not necessarily the optimal one.
Here, we propose a new indirect approach to quadrilateral meshing that takes advantage

of the Blossom algorithm of Edmonds. To this end we apply the Blossom IV algorithm to
the graph of the mesh. We intend to find the optimum perfect matching with respect to the
following total cost function

c =
∑

e∈E′

(1− η(qij)), (4)

that is, the sum of all elementary cost functions (or “badnesses”) of the quadrilaterals that
result in the merging of the edges of the perfect matching E′.

An obvious requirement for the final mesh to be quadrilateral only is that the initial
triangular mesh contains an even number of triangles (i.e., an even number of graph vertices).
Euler’s formula for planar triangulations states that the number of triangles in the mesh is

nt = 2(nv − 1)− nb
v, (5)

where nb
v is the number of mesh nodes on its boundary. So, the number of mesh points on

the boundary nb
v should be even. Here our algorithms are applied to general solid models that
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QUADRILATERAL MESH GENERATION USING PERFECT MATCHING 7

have a boundary representation (BRep) [14]. This means that model surfaces are bounded by
connected model edges that form edge loops and that the model edges are bounded by model
vertices. The mesh vertices of a model edge nbi

v are defined as the mesh vertices on that edge
minus the model vertices. The total number of mesh points on the boundary nb

v can thus be
written as:

nb
v =

NE
∑

i=0

(1 + nbi
v ). (6)

It is then easy to see that for nb
v to be even, it is sufficient for nbi

v to be odd. This means that a
sufficient condition for having an even number of triangles in the mesh is to have every model
edge bi discretized with an odd number of mesh vertices.

Fig. 4 shows the same illustrative example as Figures 1 and 2 using the Blossom algorithm for
recombining the triangles together with the optimization procedure that will be described in
§6. The final result is not only much better with respect to the efficiency index (with τ = 83%),
but also with respect to worst element quality (ηw = 0.405 instead of ηw = 0.310 for the mesh
of Fig. 2). The average quality is better as well.

τ = 88.9% τ = 83.9%

Figure 4. Illustration of the Blossom-Quad algorithm.

4.3. Alternative cost functions

Quadrilateral meshes are not isotropic by definition: this is an important difference between
quadrilateral and triangular meshes. In principle, the orientation of the mesh can be defined
through a “cross field”, i.e., a field of orthogonal tangent vectors to the surface. The cross field
can be used to orient the edges of the quadrilateralization [15].
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8 J.-F. REMACLE ET AL.

It is possible to define an alternative cost function c that is based on the information
contained in the cross field. Consider a graph edge eij that is tangent to the surface with
a unit vector ~eij . Assume that the cross field at the mid point of eij is defined through two
orthogonal unit tangents ~t1 and ~t2. Edges that are aligned with one of the directions of the cross
field should not be used for triangle merging. This leads to the the alternative cost function

c(eij) =
1

1−
√
2/2

(

max(|~eij · ~t1|, |~eij · ~t2|)−
√
2/2
)

. (7)

This edge cost function is maximum (c(eij) = 1) for graph edges aligned with one of the
directions of the cross field and is minimal (c(eij) = 0) for graph edges that are aligned with
the bisector of the cross field. For this minimal value of edge cost function, the mesh edges will
then be aligned with the orthogonal unit tangents ~t1 and ~t2. Fig. 5 compares two meshes of

Figure 5. Comparison of meshes generated by Blossom-Quad using cost functions (4) and (7). Initial
triangular mesh is on the left. Middle mesh has been generated using (4) and right mesh uses (7).

the rectangle with a uniform size field h = 0.1. The first mesh makes use of the cost function
(4). The elements of this mesh are mainly oriented with the x an y axes. Yet, some patterns
of elements are oriented differently. The use of the alternative cost function (7) with a cross
field that is aligned with the coordinate axes allows to have a quasi perfect orientation of the
mesh. A mix of both cost functions could also be an alternative.
One can use curvature for aligning the quadrilaterals: it is well known that quadrilateral

meshes can be aligned in an optimal way for approximating surfaces, depending on the sign
of the two eigenvalues of the local curvature tensor. Again, it is possible to find an objective
function that takes that into account.
The issue of choosing both an optimal cost function and a suitable cross field are currently

under investigation, and we see in these choices many perspectives for further improvements
of the Blossom-Quad algorithm.
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QUADRILATERAL MESH GENERATION USING PERFECT MATCHING 9

5. Existence of perfect matchings

If for some graphs it is possible to find different perfect matchings, there is in general no
guarantee that even one single perfect matching exists in a given graph. Consider the meshes
of Fig. 6. It is obvious that no perfect matching exists for the coarsest one. The following
result, known as Tutte’s theorem, proves that none of the two meshes of Fig. 6 contains a
perfect matching.

Figure 6. Triangulations that have no perfect matching.

Tutte’s theorem : A graph G = (V,E) has no perfect matching if and only if there is a set
S ⊆ V whose removal results in more odd-sized components than the cardinality nS of S, i.e.,
the number of elements in S [16, 17].

In other words, Tutte’s theorem says that there is no perfect matching in a triangulation if
and only if it is possible to remove nS triangles from the mesh and create more that nS non
connected regions that have an odd-sized number of triangles. Let us use Tutte’s theorem to
prove that none of the two meshes of Fig. 6 has a perfect matching. Let us consider the set S of
triangles that have their tip pointed downwards. In the coarsest mesh, nS = 1 and 3 odd-sized
components are created, which proves that no perfect matching exists. In the second one, 6
triangles are removed and 10 odd-sized components are created. This simple pattern can be
repeated to produce meshes of arbitrary sizes that have no perfect matchings.

The general problem of counting the number of perfect matchings in a general graph is
#P-complete‡. In other words, there is no hope to find the number of perfect matchings in
a general graph. (There is a way to find out, in polynomial time, wether a perfect matching
exists by detecting a breakdown in the Blossom algorithm.)

There are however some interesting special cases.

‡Sharp p-complete, i.e. much harder than NP-complete.
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5.1. Planar Graphs

A graph is said to be planar if it can be drawn in the 2D plane in such a way that its edges
intersect only at its vertices. There exists an efficient algorithm (i.e., in polynomial time) that
counts perfect matchings in a planar graph. In planar graphs, graph edges form closed non
overlapping loops that form the graph faces. Let G be a planar graph. Then G can be oriented
efficiently so that each face has an odd number of lines oriented clockwise (this orientation is
called a Pfaffian orientation of G) [18]. It can be proven that counting the number of perfect
matchings can be done by computing the determinant of the Kasteleyn matrix K:

(# of perfect matchings of G)2 = det(K), (8)

where the Kasteleyn matrix K(G) is an adjacency matrix defined as follows. Consider an edge
eij . If eij is oriented positively, then Kij = 1 and Kji = −1. If eij is oriented negatively, then
Kij = −1 and Kji = 1. If no edge exists between i and j, then Kij = Kji = 0.
Here, the computation of the determinant can be done in polynomial time so that it is quite

easy to count matchings in a triangular mesh. It is therefore possible to compute wether a
perfect matching exists in any planar graph. Yet, finding out that no perfect matching exists
does not help us a lot at this point. Moreover, the mesh of a whole torus does not lead to a
planar graph§.

5.2. Cubic Graphs

Cubic graphs, also called trivalent graphs, are graphs for which every node has exactly 3
adjacent nodes. Every cubic graph has at least one perfect matching [19]. It can be proven
that the number of perfect matchings in a cubic graph grows exponentially with nV .

In a finite element triangulation, most of the triangles of the mesh have three neighbors.
Only the triangles that are on the boundary of the domain have less than three neighbors.
Thus, in general, a finite element mesh is close to be trivalent. We then expect intuitively
that perfect matchings will exist in most finite element triangulations. Even though most of
the triangulations that we have tried have a perfect matching, the Blossom algorithm has
encountered a break down for some of the meshes we have tried.
Since cubic graphs always have many perfect matchings, we propose in the Blossom-Quad

algorithm to add some extra-edges to the graph with the aim of creating a graph topology
that is close to be trivalent, and thus increase the chance of finding perfect matchings.

5.3. Extra-edges

In our approach, we propose to add edges (that we call “extra-edges” in what follows) in
the graph of the triangulation in a way that maximizes the chance of existence of a perfect
matching. Consider two successive mesh edges on the boundary of the domain. If those edges
are like e1 and e2 (Fig. 7), their neighboring triangles are not connected in the graph. At this
point, we add an extra-edge for every pair of triangles that are adjacent to those edges that
are successive in the boundary of the domain. Those new connexions are represented as dotted
cyan lines in Fig. 7.

§The mesh of a complete sphere is planar, even though it is not intuitive.
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e4

e1

e5

e3

e2

Figure 7. A mesh (in black) and its graph (in cyan). Dotted cyan lines are the extra-graph edges that
have been added in order to ensure that the graph has perfect matchings.

Some of those successive mesh edges correspond to triangles that are already connected,
like e3 and e4, or e2 and e5 in Fig. 7. This implies that some of the graph nodes have two
neighbors; those ones are rounded in red in Fig. 7. Some others have four neighbors: those are
rounded in green in Fig. 7. Yet, there is no node of the graph that has only one adjacent node.

We have not been able to prove that the graph with those extra-edges has always a perfect
matching. Yet, in our experience, the addition of those extra-edges allows to find a perfect
matching in every example that we have tried.

Technically, we assign a high value (typically 1000) to the “badness” of those extra-edges
so that an extra edge belongs to the optimal perfect matching only if there exists no perfect
matching in the original graph. We propose two manners of post-processing those extra-edges
when they belong to the perfect matching.

5.3.1. Edge swap. The first algorithm is applied essentially when the extra-edge connects two
triangles t1 and t3 that surround one single triangle t3 (see Fig. 8). Edges that are colored in
red in the graph belong to the perfect matching. If e13 belongs to the matching, then edge e24
belongs to the matching as well. It is therefore possible to swap the mesh edge that connects
t2 and t4 and build an all-quad configuration. Note that the concave quadrangle that has been
created will be removed through topological optimization (see §6).

5.3.2. Vertex duplication. The second algorithm consists in duplicating the boundary vertex
(see Fig. 9). This algorithm is applied when the two triangles that are connected by the extra-
edge are surrounded by more than one quad.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–6
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e24

t2

t3

t1
t4

e13

Figure 8. Edge swap algorithm for building an all-quad mesh when an extra edge such as e13 belongs
to the matching. Example for a configuration with two triangles and two quads.

Figure 9. Vertex duplication algorithm for building an all-quad mesh when an extra-edge is in the
matching.

In the next paragraph, we will show how to optimize the quality of the quadrangles of those
all-quad meshes using local mesh modifications.

6. Optimization

In order to enhance the quality of the final mesh, we first apply a standard vertex smoothing
procedure [20] to the nodes of the mesh, taking into account the gradation of the size field.
Next, we apply two topological optimization operators specifically tailored for quadrilateral
meshes.
The topological optimization operators are local deletion operators: a quad-vertex-merge

(see Fig. 10) and the doublet collapse (see Fig. 11) operation [21]. Those operators allow to
remove local mesh structures that have a bad topology. More precisely, the quad-vertex-merge
operator replaces two mesh nodes that have 3 quadrilateral neighbors by one mesh node with
4 neighbors and the doublet collapse removes a vertex that has two neighbors.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–6
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QUADRILATERAL MESH GENERATION USING PERFECT MATCHING 13

Figure 10. Illustration of quad-vertex-merge optimization operation.

Figure 11. Illustration of doublet collapse optimization operation.

7. The Blossom-Quad algorithm

In this section, we summarize the different steps of the new Blossom-Quad algorithm. This
algorithm has been implemented in the open source mesh generator Gmsh [14]¶ and examples
of how to use it can be found on the Gmsh wiki‖.

1. Starting from a solid model with a BRep representation, mesh every model edge bi
with an odd number of mesh vertices nbi

v (6). Then mesh the model faces with any 2D
triangulation algorithm. According to the Euler equation (5), there will then be an even
number of mesh triangles.

2. From the produced mesh, build a weighted graph G(V,E, c) (see Fig. 3) where the cost
function associated to each graph edge c(eij) is given either by (4) or by (7). This
weighted graph has then an even number of graph nodes which is a necessary condition

¶http://geuz.org/gmsh/
‖https://geuz.org/trac/gmsh/wiki (username: gmsh and password: gmsh)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–6
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14 J.-F. REMACLE ET AL.

for a perfect matching to exist.

3. Enrich the graph with extra-edges such as explained in §5.3. Those extra edges are given
a very high value of cost function: c(eij) = 1000.

4. Run the Blossom algorithm to find the perfect matching for the given graph.

5. If the perfect matching contains no extra-edges, go to step 6. If it contains some, apply
the edge swap algorithm and the vertex duplication algorithm (see §5.3).

6. Optimize the resulting all-quad mesh as explained in §6.
Fig. 12 shows the global Blossom-Quad procedure applied to an initial triangular mesh.

Initial Raw Blossom Vertex Topological Final
triangulation application smoothing optimization mesh

Figure 12. Illustration of the whole Blossom-Quad algorithm.

8. Examples

In this section we present the results obtained by applying the new Blossom-Quad algorithm
in different contexts. First, we present meshes of simple planar geometries using analytical
mesh size fields. Then, we present quadrilateral meshes generated over complex solid models,
defined either by a CAD∗∗ or an STL†† triangulation. Finally, we show a complex quadrilateral
mesh used for multiscale ocean modeling.

∗∗Computer Aided Design
††stereolithography
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8.1. Planar quadrilateral meshes with analytical isotropic size fields

This test case has been proposed by [3]. The domain is a unit square with a circular hole
of radius 0.15 centered at (0.75, 0.75). The mesh size field is taken to have a value of
h(x, y) = 0.003 along the medial axis of the domain and to have a linear grow-up from the
medial axis to the interior of the domain.
The uniform refinement step that is applied in the recombination algorithm of [3] has two

consequences. On the one hand, it naturally creates a mesh that has a better connectivity. On
the other hand, it reduces the efficiency index τ of the mesh. As the recombination algorithm
of [3] includes a mesh refinement step, we propose here to generate three meshes with the
Blossom-Quad algorithm. The first one applies Blossom to a triangular mesh of size h. The
second one applies the Blossom algorithm to a mesh of size 2h, with one subsequent uniform
refinement. The last one applies the Blossom algorithm to a mesh of size 4h, with two uniform
refinements.
Fig. 13 compares the quad-mesh obtained by [3] and the three meshes obtained with the

presented Blossom-Quad algorithm. For the problem with size h, the Blossom-Quad algorithm
takes 1.38 s on a MacBook Pro clocked at 2.66 GHz. The new algorithm provides meshes that
are of better quality close to the boundaries of the domain. The new algorithm also provides
a smoother gradation of the mesh. This is due to the fact that no mesh refinement phase is
required in the new algorithm.
Table I compares the quality of the four meshes. We also present some statistics about the

degree of the vertices di, i.e., the number of quads surrounded by a vertex. The new Blossom-
Quad algorithm always produces meshes with better element qualities. The application of the
Blossom-Quad procedure to the mesh of size h is the best in terms of the efficiency τ . Yet, it
has less nodes with the optimal topology, i.e., with 4 neighbors. Applying the Blossom-Quad
to a mesh of size 2h seems to be, at least for this test case, a good compromise. The efficiency is
still acceptable and the quality of the mesh is optimum, both in term of topology and element
quality. Using an initial triangular mesh of size 4h does not seem to be a good option, especially
in term of the efficiency τ .

Algorithm Mesh size Quad quality Degree vertices Efficiency
halgo ηw η̄ d4(%) dmin dmax τ

Borouchaki [3] 2h 0.30 0.73 91 3 6 –
Blossom-Quad h 0.32 0.77 72 3 6 85.6%
Blossom-Quad 2h 0.39 0.85 94 3 6 82.3%
Blossom-Quad 4h 0.31 0.87 98 3 7 75.4%

Table I. Quality of the quad meshes for the test case with the medial-axis based mesh size field h. The
algorithms are run with an initial mesh size halgo that is subsequently refined to reach the prescribed
mesh size field h. We present values for the minimum quality ηw, mean quality η̄, percentage of vertices

of degree 4, minimal and maximal values for the degree of vertices, and efficiency index τ .

8.2. Quadrilateral mesh generation applied to STL models

In this section, we present quad meshes for complex solid models represented only by a
triangulation in STL format.
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Figure 13. Comparison of both the quadrilateral mesh generation algorithm of [3] (top,left) and the
Blossom-Quad algorithm (other meshes). The top-right mesh has been done using Blossom on a
triangular mesh of size h. The bottom-left mesh has been generated with the Blossom algorithm
applied to a triangular mesh of size 2h, with one subsequent uniform refinement. The last mesh uses

the Blossom algorithm on a mesh of size 4h, with two uniform refinements.

The first triangulation represents the solid model of the Stanford bunny model and the
second represents a cerebral aneurysm‡‡. The latter triangulation is the output of an image
segmentation procedure performed from medical data (CT-scan). For the quad-remeshing
procedure, we first compute an automatic triangular remeshing procedure based on a conformal
parametrization as described in [22] and then run the presented Blossom-Quad algorithm.

‡‡The STL triangulation of the aneurysm can be found on the INRIA web site http://www-roc.inria.fr/
gamma/gamma/download.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–6
Prepared using nmeauth.cls

http://www-roc.inria.fr/gamma/gamma/download
http://www-roc.inria.fr/gamma/gamma/download


QUADRILATERAL MESH GENERATION USING PERFECT MATCHING 17

Fig. 14 shows two curvature-adapted remeshed STL surfaces and Fig. 15 presents the quality
histograms of those meshes. The curvature-adapted meshes are computed by defining the mesh
size h(~x) as follows:

h(~x) =
2πR(~x)

Np

, with R(~x) =
1

κ̄(~x)
(9)

where κ̄(~x) is the mean curvature that is computed from the initial nodes of the STL
triangulation with the algebraic point set surface method (based on the local fitting of algebraic
spheres [23]) and Np is the number of points chosen for the radius of curvature (Np = 50) .

τ = 84.3% τ = 85.6%

Figure 14. Isotropic mean-curvature based quad-meshes of 13, 000 elements for the stl bunny model
(left) and 17, 000 elements for the aneurysm model (right).

The overall remeshing procedure for both STL examples takes 21s: 16s for the automatic
triangular remeshing procedure and only 5s for the blossom-Quad algorithm. The remeshing
was performed on a MacBook Pro clocked at 2.66 GHz. This quad-remeshing procedure is
extremely fast compared to the quad-dominant meshes of Levy et al. [24] for which the
remeshing of the Stanford bunny takes 271s.

8.3. Quadrilateral mesh generation applied to parametric CAD models

We consider the solid model of a human bone. The model contains 11 NURBS surfaces. The
mesh size field is based on surface curvature: we use formula (9) with Np = 35. The total time
for surface meshing was 26 seconds for generating 10, 134 quadrilateral elements. The time for
computing all 11 perfect matchings and doing optimization does not exceed 10 seconds. The
average quality of the finite element mesh is η̄ = 73.3% and the efficiency is τ = 80.2%. The
model still contains 1 element of bad quality, with η = 0.01 (see Fig. 16).
Gmsh allows direct access to the CAD model, allowing to compute exactly the principal

directions of curvature together with minimal and maximal curvature. This allows to define an
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Figure 15. Quality histograms (element quality η (3) and normalized edge length lh (1)) for the
Blossom-Quad remeshing of the bunny and the aneurysm models.
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Figure 16. Isotropic quad mesh of the bone geometry with a quality plot.

anisotropic mesh size field [7]. Here, we use formula (9) with Np = 35 in each of the directions
of principal curvature. An anisotropic triangular mesh is initially built using the anisotropic
metric provided by the curvature. Then, the Blossom-Quad algorithm is applied as it. The
resulting mesh is presented in Fig. 17. The quadrilateral mesh naturally aligns itself to the
principal directions of curvature, allowing to build an anisotropic quadrilateral mesh without
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effort.

Figure 17. Anisotropic mesh of the bone geometry.

8.4. Quadrilateral meshes for ocean modeling

Our research team has developed the first multiscale hydrodynamic model of the whole Great
Barrier Reef. The Great Barrier Reef is on the continental shelf of the Australian northeastern
coastline and contains over 2500 coral reefs in a strip that is about 2600 km in length and
200 km in width. The mesh size field h(~x) is defined as a function of the bathymetry and the
distance to the shore.

We have performed 24 hours of simulations of the water circulation on the Great Barrier
Reef shelf. The physical model is described in [25]. The equations are descretized with PDG

1

discontinuous finite elements combined with a second order multirate explicit Runge-Kutta
temporal integrator as in [26]. A plot of the velocity vectors and the sea surface elevation
is presented on Fig. 18. Tidal jets and eddies due to the interaction of the flow with the
topography near the open-sea boundary are clearly visible. The same simulation on a triangular
mesh (≃ 250,000 triangles) was 2.7 times slower than on the corresponding Blossom-Quad
quadrilateral mesh (≃ 119,000 quads).

9. Conclusions

The main contribution of this paper is to have introduced a well known result of graph theory
(the Blossom algorithm for minimum cost perfect matching) in the domain of unstructured
quadrilateral mesh generation. We have presented a new algorithm—dubbed Blossom-Quad—
that takes advantage of this result to produce high-quality quadrilateral meshes in a robust
and efficient manner, and we have applied it in different contexts: from planar geometries to
parametric CAD models to STL remeshing to multiscale ocean models.

Possible further improvements to the proposed algorithm are numerous. For example, the
cost function that has been used could be modified in order to align the quadrilateral mesh
with some preferred directions. (We have already presented a simple example to that effect in
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Sea Surface Elevation and Velocity

Figure 18. Quadrilateral mesh of the Great Barrier Reef. Two successive zooms of the Withsundays
Inslands Archipelago. Sea surface elevation (color levels) and bidimensional velocity field (arrows).
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Figure 19. Blossom-Quad algorithm applied to a triangular surface mesh that has been smoothed
using the Lp centroidal Voronöı tesselation technique of [24].

§4.3.) Also, in this paper we have used as input to the recombination procedure triangulations
with vertices distributed fairly uniformly. Recent developments [24, 27] allow to align those
vertices with some prescribed directions. Coupling both approaches could potentially lead
to even higher quality quadrilateral meshes. As an example, we have applied the Blossom-
Quad algorithm (without optimization) to a triangular surface mesh that has been smoothed
using the Lp centroidal Voronöı tesselation technique of [24]. The resulting mesh is presented
on Fig. 19. There, quadrangles do not form patches that are randomly aligned but follow a
regular pattern.

In the longer run, the very challenging problem of automatic generation of hexahedral-
dominant meshes could be approached using an indirect technique of this kind. In this case,
more than two tetrahedra have to be merged in order to form one hexahedron. Here again, we
think that graph theory could maybe help us in finding some kind of optimal matching.
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of the Université catholique de Louvain for the discussions and hints about graph theory.

Authors also acknowledge P. Frey of Université Paris VI for authorizing us to include one
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