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BLOSSOMING BEGETS ß-SPLINE BASES
BUILT BETTER BY ß-PATCHES

WOLFGANG DAHMEN, CHARLES A. MICCHELLI, AND HANS-PETER SEIDEL

Abstract. The concept of symmetric recursive algorithm leads to new, s-
dimensional spline spaces. We present a general scheme for constructing a col-
lection of multivariate S-splines with k-l continuous derivatives whose linear
span contains all polynomials of degree at most k . This scheme is different
from the one developed earlier by Dahmen and Micchelli and, independently,
by Höllig, which was based on combinatorial principles and the geometric in-
terpretation of the ß-spline. The new spline space introduced here seems to
offer possibilities for economizing the computation for evaluating linear com-
binations of B-splines.

1. Introduction

Polar forms offer a unified approach to various algorithms for Bézier and
ß-spline curves [6, 7]. However, very little seems to be known about polar
forms for surface representation. This question has been raised lately by several
researchers. Some discouraging preliminary efforts seem to have cast doubt on
the efficacy of this approach to recursive evaluation of spline surfaces.

Recently, in [8], one of us focused on symmetric recursive algorithms and
polar forms for polynomial surfaces. This led to a new representation of a
polynomial surface in terms of B-patches. A ß-patch shares many properties
in common with Bézier patches and includes them as special cases. Recursive
evaluation of ß-patch representations of a polynomial is given in [8]. Also, as
for Bézier representations, the control points of a ß-patch representation of a
polynomial are obtained by evaluating its polar form at certain vectors which
generate the ß-patches.

The univariate analog of ß-patches on an interval are no less than pieces of
ß-splines which have support on the interval with knots at the points used to
generate the ß-patches [7].

Hindsight makes it clear now that the term ß-patch used in [8] was aptly
chosen. For, in fact, we will first prove that the s-dimensional ß-patch basis
functions do agree with the restriction of certain ¿-dimensional multivariate
ß-splines to certain regions of W. The exact prescription of the regions of
agreement and the collection of knots for building the ß-splines must be cho-
sen with great care.   However, when this has been done, we are led to the
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construction of a new multivariate spline space. As this space is rooted in sym-
metric recursive ß-patch algorithms, there is hope that efficient evaluation of
the multivariate splines will follow. The numerical implications of this con-
struction will be given in a forthcoming paper.

The initial setup of our method follows a pattern that two of us have used
earlier [2, 3]. Thus, we begin with a triangulation of W into simplices. With
each vertex we associate a cloud of k additional vertices. A rule for selecting
( k+s ) subsets of k + s + 1 vertices from the 5 + 1 clouds of a given simplex
must be given. Each such subset then gives a multivariate ß-spline of degree
k which is generically Ck~x . The linear span of all the ß-splines is then the
spline space of interest.

Two of us developed a rule for knot selection based on the geometric inter-
pretation of the multivariate ß-spline [3] (see also [4]). Briefly, we associated
with every nondescending path from (0, 0) to (s, k) on the lattice points in
[0, s] x [0, k] a knot set. The resulting spline space had a number of impor-
tant desirable properties. Specifically, for clouds concentrated around the corre-
sponding vertices, the ß-splines were locally linearly independent, and provided
a stable basis for the spline space. Moreover, the space contains polynomials of
degree k , and also a spline projector with maximal order of convergence was
constructed in [3].

In this paper we provide another spline space, by a totally different knot
prescription, which accomplishes all the above properties while also achieving
a simplicity not present earlier.

The new knot selection strategy is neither based on geometric nor combi-
natorial techniques but rather comes from matching the ß-spline recursion to
the symmetric recursive algorithm for ß-patches. This suggests that the com-
putation of linear combinations of these ß-splines can be carried out more
efficiently. Furthermore, we derive explicit representations of all polynomials
of degree k in terms of ß-splines of the same degree, which have an important
advantage over the analogous formulas derived in [3]. In fact, the coefficient of
each ß-spline is formed by evaluating the polar form of the polynomial at the
knots of the ß-spline. Specializing this formula gives a natural normalization
of the multivariate ß-spline, so that they provide a partition of unity on Rs.
In addition, we construct linear projectors which have optimal approximation
rates, and establish the stability of the ß-spline basis.

2.   ß-PATCHES AND  ß-SPLINES

We will begin by formulating the concept of polar forms and ß-patches
considered in [8], for a general ¿-dimensional setting. In order to do so, we
start with the concept of a simplicial algorithm that evaluates a polynomial
from given control points through successive affine combinations (see Figure
2.1). Let X = {x'^'J : 1 < / < k, 0 < j < s, ß £ Z5++i} c W be any
collection of points such that for any l < / < k and any ß = (ß0, ... , ßs) £
rk_i := {ß £ Zs+l :\ß\ = ß0 + --- + ßs = k-l} the (ordered) subsets

(2.1) X'-P -^{x'-P'J :j = 0,...,s}

are affinely independent. If we define for any ordered set W = {w°, ... , ws}
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^(2,0,0) C(1,1,0) C(0,2,0)

Figure 2.1. A simplicial algorithm for surfaces (s = 2)

of affinely independent points in W

(2.2) <w = det(j0 ;;; ¿)

and

(2.3) dj(lV\x) = det( \   '"       }_,    l       L    '"      ^ ;V I )\        \     I yw0       ...        ^,7     1       x      WJ+1       ...       y;iy   '

the barycentric coordinates of x with respect to the set X1 • ̂  are given by

(2.4) l,,fJ{x) = dj{Xl->\x)/d{X1-'),
i.e.,

* = ¿A/>/?,,(x).x'-^
7=0

and

Y*i>ßjW = l-
7=0

Also observe the simple fact that X¡^j(xl'P'm) = ôJ<m , j, m = 0, 1, ... , s,
which we will make use of later.

Let eJ — (ôjj)si=Q, j = 0, 1, ... , s, denote the coordinate vectors. Given
the sets X*'P above, a simplicial algorithm is a recursive algorithm of the form

(2.5) C¡(x) :=cß,       ß£Tk,
and

s

(2.6) Cß(x):=Yh,ß,j{x)Clß-+xei(x),        ß£Tk_,,
7=0
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that computes a polynomial C£ 0)(x) of degree k from given control points
Cß , ß £ Yk . Every simplicial algorithm has an associated multiaffine version
defined as follows: given any x1, ... , xk £ Rs, set

(2.7) c°ß():=cß,        ß£Tk,

and
s

(2.8)    4(x V.., *0 :=£ A/,,^(A^ (*',..., *'-'),     ßerk_,.
7=0

The maps cL(xl, ... , xl) are affine in every component and satisfy

c'ß(x,... ,x) = Clß(x).

Of particular interest are symmetric simplicial algorithms: A simplicial algo-
rithm is symmetric if and only if the maps cL(xl, ... , xl) that appear in the
multiaffine version of the algorithm are symmetric for all control points Cß,
ß £ Tk . In this situation, cL(xl, ... , xl) is the polar form or blossom of the
polynomial CL(x). Recall that the polar form p of a polynomial P of total
degree k on Rs is the unique symmetric k-affine function p(xl, ... , xk) de-
fined for x1, ... , xk £ Rs such that p(x, ... , x) — P(x), x £ Rs. Examples
of symmetric simplicial algorithms are the de Casteljau and de Boor algorithms
for curves and surfaces (cf. [6, 7, 8]). The following proposition characterizes •
the form of these algorithms.

Proposition 2.1. ^4 simplicial algorithm is symmetric if and only if the points
x''P'J, ./ = 0, \,...,s,oftheset Xl'ß only depend on ßj and not on I and
ßo, ... , ßj-i, ßj+\ ,-■-, ßs, that is,
(2.9) Xl,ßJ=yJ,ßj

for some set Y = {yj<' : 0 < j < s, 0 < / < k}.
Proof. Induction over / shows that the maps cL(xl, ... , xl) are symmetric if
and only if
(2.10) c'ß(xl, ... , x'~2,y, z) = c'ß(xl, ... , x'~2, z, y)

holds for all y, z £RS. Indeed, if (2.10) is valid for all / > 2, and for some
r > 2 the functions Cp~x(xx, ... , xr~l),  ß £ rjt_r+) , are symmetric, then
crß(xl, ... , xr) is symmetric by (2.8) and (2.10).

A repeated application of (2.8) yields the equation

c'ß(xl, ... ,x'~2,y, z)

(2'U) =E YhjAz)h-ufi+e>,j{y)tfei+el{xx,.-.,x1-2).
1=0   ;=0

This identity is valid for all x1, ... , x'~2 £ Rs and all control points Cß,
ß £ Fk . Referring back to (2.8), we may use induction on / to verify that

A(xi.ßmJi x''ßt[>'ji)
(2.12) Cß{X '•••'X '

= cß+en+...+ej,,     ß£rk_i, o<j¡<s, i = i,...,/,
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where ß(1) := ß , and for 2 < m < I, ß^ := ß + eJ< + • • • + e>'-«+2. Thus,
if we fix a choice of ß and j\, ... , j¡_2 , it is clear that the symmetric matrix
(cß+et+ej+eh+...+e/i-iYi 7=1 is completely arbitrary. Thus we can assert that the
symmetry relations (2.10) are equivalent to the system of equations

(2 13x ^i,ß,i(z)^i-i,ß+e',j(y) + Xi,ßj(z)Xi_uß+e,j(y)
= Xi,ßj(y)Xi_Uß+e,j(z) +Xiyfij(y)Xi_l¡p+ejj(z),

valid for all I = I, ... , k , i, j = 0,... , s , ß £ rk_¡, and y, z £ Rs.
Let us assume now that the algorithm is in fact symmetric, i.e., that the

system (2.13) holds. We first show that this implies

(2.14) XlJj(x'-l^+eJ'h) = 0   forhiUJ}.

We will distinguish two cases.

Case 1:  i — j. For i = j, equation (2.13) simplifies to

h,ß,Áz)^i-1,ß+e>,¡(y) = Xl,ß7i(y)X¡_!tß+e,t¡(z),

and setting y = xl~x'ß+e' •' and z = xl~l>ß+e' 'h , we obtain

Xi-l,ß+ei,i(y) = 1   and   Xl_uß+e,J(z) = 0,
and hence
(2.15) Xi,ß,i(x'-uß+e''h) = 0.

Case 2:  i¿j. Setting y = x'-L/>+*'../ and z = x'~l >P+e'-h in (2.13), we get

Xi-i>fi+e¡j(y) = l   and   X,_ltß+eJj(z) = 0,
and by Case 1 we also have

Xi,ßj(z) = XiJti(y) = 0.
Hence, equation (2.13) yields

Xt,ß,i(x'~i''1+e,'h) = 0,

which proves (2.14).
Now, fix h / j. From (2.14) and the fact that the barycentric coordinates

for a given /, ß sum to one, we infer Xiißj(x'~l'ß+e' 'h) = ôin . This, in turn,
implies that

xt-i,ß+eJ,h=xt,ß,h   forall h¿j

To finish the proof, we observe that a repeated application of the above identity
gives

xk-ß„,ßheh,h _ ... =xk-ßh-ßh-ßjm>ßhe*+ßheJi+...+ßjmeJn,h

whenever h $ {j\, ... , jm}. Consequently,

xk-ßh,ßheh,h =xk-\ß\,ß,h =xl,ß,h

Setting yj-1 :- xk~l-le' -j proves the assertion.
Conversely, let us now assume that the point xl'ß'J only depends on j and

ßj, i-e-,
xi,ßj=yj,ßi.
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Then each pair (y, z) := (yl'ßl , yJ'ßj) satisfies (2.13). To see this, we set

Gijrh:=ll,ß,i(yr'ß')ll-i,ß+e<j(yh'ßh)

and observe that Gijrh = ôirôjh if r / h. Hence (2.13) is satisfied for r ^ h
and also trivially for r — h . Since the points y',ßi, i = 0, ..., s, are affinely
independent, this carries over to arbitrary y, z £ Rs, and thus the proof of
Proposition 2.1 is complete.   □

Proposition 2.1 has some important consequences. First of all, it shows that
a symmetric simplicial algorithm is defined only by a collection X — {x''J : 0 <
i < s, 0 < j < k} cRs of points such that for any ß £T¡, 0 < / < k, the
subsets

(2.16) Xß = {xJ-*:j = 0,...,s}
are affinely independent. For a symmetric simplicial algorithm the recursion
(2.5), (2.6) then simplifies to

(2.17) C°ß(x) = cß,        ß£Yk,

and
s

(2.18) Clß(x) = Y*ß,Ax)C'ß~+ej(x)>        ß€ r*-/>
7=0

where

(2.19) XßJ(x) = dJ(Xß\x)/d(Xß)
are the barycentric coordinates of x with respect to Xß .

The dual algorithm to (2.17), (2.18) is given by
(2.20) ß(0)...i0)(x) = l,        xeR*,

and

(2.21) Bp(x) = Y*ß-eJj(x)Bß-ej(x),        \ß\>0,
7=0

so that for any 0 < / < k ,

(2.22) C(o,...,0)(x) =   Y  Bß{x)C'ß(x).
ßerk_,

The real-valued functions ß^(x) are called normalized B-weights. Here we use
the convention that the functions Xß(x) and ß^(x) are set to zero whenever ß
has a negative component. As a consequence, the nonzero summands appearing
on the right-hand side of (2.21) have a corresponding multi-index ß -ej whose
components are strictly less than k. Thus the normalized ß-weights ß^(x) are
for all ß £ Fk actually independent of the points xl>k , i = 0, ... , s. These
points x''k will only become relevant later when we relate ß-patches to ß-
splines.

Following the development in [8] for the bivariate case, we conclude that
Proposition 2.1 implies that the normalized ß-weights Bß(x), ß £ Tk , are
linearly independent. Specifically, if Cf0     0)(x) = 0, x £ Rs, then its polar
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form is also zero, ck0 0)(x', ... , xk) — 0, x1, ... , xk £ Rs. Therefore, from
(2.8) we get by induction on k - I that cj^x1, ... , xl) = 0, x1, ... , xl £ Rs,
ß £ Tk_i, and, in particular, Cß = 0 for all ß £ Tk . Since the cardinality
of Fk agrees with the dimension (k+s) of the space nfc(Rs) of all polynomi-
als of degree at most k on Rs, every polynomial P £ Uk(Rs) has a unique
representation

(2.23) P(x) = £caßa(x).
a€rk

Moreover, the control points ca, a £ Tk , in this representation are given by

(2.24) cQ=p(x°'0,...,x0'a°-1,...,xi'°,...,xi'as-1),

where p denotes the polar form of P.
Next, let us recall that for any set of points v°, ... , v" £ Rs the ß-spline

7W(x|i>°, ... , v") is defined by requiring that

I f(x)M(x\v°,...,vn)dx
(2.25) J*

= (n- s)\ /  f(r0v° + ■■■ + Tnv") dx\ ■ ■ ■ dxn
J&n

holds for every f £ C(RS), where

A„ = '|(to, ... ,t„):^t, = 1, t,>0, i = 0,...,n\

denotes the standard «-simplex. M(-\v°, ... , vn) is known to be a piecewise
polynomial of degree n - s , supported on the convex hull [v°, ... , vn] of its
knots v' whenever this convex hull has nonvanishing ¿-dimensional volume.
For more detailed information on the properties of the multivariate ß-spline,
the reader is referred to [2, 3, 4, 5]. Here we note that for the above normal-
ization one has

(2.26) M(x\v°, ... ,vs) = X[v°,...,vs](x)/ detL o   [.[    vs)   ,

and for V - {v°, ... ,v"}, n > s,

(2.27) M{x\V) = YdJ^ÏM(x\V\{viq),

where W = {v'°, ... , vls} is any subset of affinely independent points in V
[5].

Now let us assume throughout the following that the set

(2.28) £\:=int(  f| [Xß]\
\\ß\<k I

satisfies

(2.29) voli(fl*)>0.
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Figure 2.2. The set Q2

In order to show that each ß-weight agrees with some ß-spline on the region
Çlk , we will make use of the following simple facts.

Lemma 2.1. If (2.29) holds, then there exist a £ {-1, 1} such that

(2.30) Oß\=s&vd(Xß) = o  forallß£Yi, 0<l<k.
Proof. Suppose for some ß £ Tk and some /, 0 < i < s, we have ß, > 0. By
(2.29), [Xß] n [Xß_e,] contains some neighborhood in R*. Hence, the vertices
xl'ß< and x''^'_1 are both located on the same side relative to the hyperplane
spanned by the vertices xj! 'ß>, 7 = 0, I, ... , i - I, i + I, ... , s . Therefore,
Oß = Oß_e,. Applying this fact repeatedly to each positive coordinate of ß
implies Oß — tro , which finishes the proof of Lemma 2.1.   D

Defining for ß £ T,, I < k, the sets Vß := {x''i : j = 0, ... , ß,■, i =
0, ... , ¿}, we have Vß_e, = Vß\{x]'ß>} whenever ß} > 0. Thus, it will be
consistent to use the convention that Vß_e, does not contain any knot from the
group xs'', I - 0, ... , k, when ßj = 0.

Lemma 2.2. Suppose that for some ß £ Tk we have ß}■ — 0. If (2.29) holds,
then 0.kr\[Vß_el] = 0.
Proof. Define

Wr.= [{xJ'!:l = 0,...,k, j = 0,...,s, ;#/}]

as well as
C, :=[{x''m:m = 0, ... ,k}),        i = 0,... ,s.

We will show first that

(2.31) QnWi = 0,        i = 0,...,s.
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To see this, observe first that y £ W¡ implies that there exists a hyperplane H
containing y such that

(2.32) //nCj/0   forj¿i.
Without loss of generality, let i = 0 and suppose that

k
(2.33) y:=Y^x°'nerV0nCo

n=0

for some r\¡ > 0, Y.%0 *lj: = " ■ This implies the existence of nonnegative reals
ßj t n such that

s       k s       k

7=1   n=0 7=1   «=0

Thus, defining

(2.34) V=5>.«
k

n=0

and

y>:-
(Y,Lot*j.nXJ'")/Xj   ifXj^O,

[xJ-nJ ifA,=0,

for some n¡ < k, we clearly have y> £ C¡ and

confirming (2.32). Next, we will show that one can find a hyperplane H con-
taining y and satisfying (2.32) so that, in particular,

(2.35) yi = x*-n>,        j=\,...,s, j ¿I,

for some / £ {1, ... , ¿} and some n¡ < k. Let K := {j : 1 < j < s,
y}= xJ • "'}. If #K — s- 1 , we are finished. So assume that H does not satisfy
(2.35) yet. In fact, K could be empty initially. So let p, q f K and pick
some point xp •r in the pth group of knots which minimizes the distance from
H. Let z £ H C\CP be the closest point to xp ■r, and denote for í e [0, 1 ]
the hyperplane passing through y, y1, /= I, ... , s, I / p, q , and through
yp(t) := tz + (l-t)xp>r by H(t). Clearly, by construction, H(\) still intersects
all the sets C,, j = 1, ..., s, j ¿ q. If H( 1 ) also still intersects Q , we
replace H by H( 1 ), where the cardinality of the corresponding new set K has
increased by at least one. If H(\) does not intersect Q anymore, there must
exist some to £ (0, 1) such that H(to) is a supporting hyperplane of Cq , and
hence must contain some extreme point xq ■ "« of Cq. Thus, replacing H by
H(to) in this case, we have again increased K. We may repeat this process
until #K = ¿ - 1 , which is (2.35). So we may assume that H satisfies (2.35).
We consider now two cases: Suppose first that the point y £ Cç, already agrees
with some point x0m. Note that, by (2.16), H does then not contain any
of the points x' •m . Thus, H must intersect the interior of Ci, which means
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that there exist two points x''m[, x''mi located on different sides relative to
H. But by (2.16), the two simplices [{x°'m, xl-m<, xj'n¡ : j = 1, ... ,¿,
7 ^ /}], i'=l,2, must both contain Q.k . However, since by construction, their
respective interiors are separated by H, we arrive at a contradiction. If y does
not agree with any knot in the set {x0,0, x0, ',..., x0'''}, we argue similarly
as above and pick a point x° ■m which minimizes the distance to H. Let again
z e H n Co be closest to x° 'm, and define for t £ [0, 1 ] the hyperplanes
spanned by the points y(t) := tz + (l- t)x°<m , xj'n>', j = 1, ..., s, j ¿ I. If
H(l) still intersects Q , we replace H by H (I), obtaining a contradiction by
the first case. Otherwise, there must be a to £ (0, 1) such that H(t0) contains
some extreme point x1'"1 from C¡. Interchanging the roles of 0 and /, we
are again in the situation described by the first case and obtain a contradiction.
This proves (2.31).

By (2.31), for any j £ {0, ... , ¿}, there exist exactly two common supporting
hyperplanes H\, H2 of the sets C,, i ^ j, which 'sandwich' the set W¡.
Suppose they are spanned by the sets Y\ := {x'-"' : i ^ j}, Y2 := {x''m/ :
i ^ j}, respectively. Fixing xj'm , we claim that one of the hyperplanes must
separate xJW from W¡. If this were not the case, the two simplices 6\ :=
[{xJ'm}uYi] and 32:=[{xJ'm}UY2] are by (2.16) nondegenerate and intersect
only in xj,m , contradicting (2.29). So we may assume that H\ separates x;,m
from Wj. Since [Vß_eJ] ç W¡ whenever ß}■ — 0, and since 6\ contains Ùk ,
the proof of Lemma 2.2 is complete.   D

We are now ready to state the main result of this section.

Theorem 2.1. Suppose (2.29) holds. Then

Bß(x) = oßd(Xß)M(x\Vß)   forallx£Çlk,  ß£Yk,

where Vß = {x'-J : j = 0, ... , ß(, i = 0, ... , s}.
Proof. We will proceed by induction on k . Since fio = [Xq] , the assertion for
k — 0 readily follows from (2.20) and (2.26).

Suppose it holds for k - 1 . By Lemma 2.2 we know that the interiors of the
sets [Vß_eJ] and £lk are disjoint whenever ßj = 0. Consequently, M(x\Vß_ei)
vanishes for x £ Qk , and, by convention, so does Bß_e,(x) (in fact for all
x £ Rs). Thus, we may rewrite the right-hand side of (2.21) for any ß £ Tk
and x £ Qk as

(2.36) Bß(x)= Y d}jfy~A%ß-e1d(Xß_el)M(x\Vß_eJ).
j=0      a\Aß-ei)
ß,>0

But since dj(Xß_ei\x) = dj(Xß\x) whenever ß} > 0, the right-hand side of
(2.36) reduces, in view of (2.30), for x £Ülk to

aßd(Xß)Y^ßj(x)M(x\Vß\{XJ'^}) = aßd(Xß)M(x\Vß),
7=0

where we have used (2.27) in the last step. This completes the proof of Theorem
2.1.   a
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Setting cß = 1 in (2.23) readily gives, in view of (2.18) and (2.22),

i = y Bß(x)
ßerk

and hence, by Theorem 2.1,

Y °ßd(Xß)M(x\Vp) = l,      xeflfc.
ßerk

This suggests introducing the following normalized ß-splines:

(2.37) Nß(x):=oßd(Xß)M(x\Vß),        ß£Tk,
which therefore form a partition of unity on Qk . Also, the linear independence
of the polynomials Bß , ß £ Yk , readily assures the following fact.

Corollary 2.1. The B-splines Nß , ß £ Tk , are locally linearly independent on
every subdomain of £lk .

3.  A POLYNOMIAL IDENTITY FOR   ß-SPLINES

The previous discussion suggests the following scheme for constructing lin-
ear combinations of ß-splines on all of RJ (or on some bounded domain in
Rs). Given points X = [x'-i, i £ Z, j = 0, ... , k}, let T = {A(/) =
[x!°>°, ..., x's'°] : I = (i'o, • • •, is) e 9" ç Zs+'} define a triangulation of R*.
This means that Rs = U/&^ A(/), while for any two /, / e ST, A(7) n A(/)
is empty or is a common face of A(I) and A(J). In particular, any (s - 1)-
dimensional facet of some A(7) £ T is the common face of exactly two sim-
plices A(7) and A(/), say. We will adhere to the notation of the previous
section, indicating the reference to a particular simplex A(7) throughout by an
additional sub- or superscript /. For instance, Vl := {x'"' : / = 0, 1,..., ßj,
7 = 0, 1, ... , ¿} is the set that determines the (normalized) ß-splines Nj¡(x),
ß £ Tk , associated with the simplex A(7), I £¿7~.

Note that the polar form of the polynomial (a + to • x)k with respect to the
set Vl = {x''>' : I = 0, ... , ßj , j = 0, ... , s} is given by

(3.1) *¥,,ß(a,(o) = Y[  Hia + m-x'"1),
7=0    1=0

where, in agreement with our previous convention on the set Vß_eJ when ßj =
0, it is to be understood that the factor nf=o~ (a+co-x'j-1) is interpreted as one.
Hence, we readily conclude from Theorem 2.1 and the properties of ß-patches
derived earlier that the identity

(3.2) (a + ta-x)k= £ ^(a, «)/V¿(x)
ßeTk

holds for all x e Slik , where we will assume throughout the following that

(3.3) vols(ClI>k)>0,       !£?.
It is also clear that every element

s(x) = Y Yc'ßNßW
ie.7 ßen

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



108 WOLFGANG DAHMEN, C. A. MICCHELLI, AND H.-P. SEIDEL

of the space
Sr\{X) := span{iV¿ : ß e Tk, I e ¥}

on Qj k reduces to ¿Zßerk cißNß(x). This suggests the following claim.

Proposition 3.1. Suppose (3.3) holds. Then for any a £ R and x, co £ Rs we
have
(3.4) (a + co.x)k=Y   E^./^'^W-

ie.7 ßerk

Under the assumption (3.3) it is also clear, in view of Theorem 2.1, that
any element of S"k(X) can be evaluated efficiently by means of the recursive
scheme (2.17) and (2.18) on any of the regions Q/jt • The proof of Proposition
3.1 is based on studying to what extent this recursive evaluation persists for
x outside the regions Q¡ k . The essential observation may be formulated as
follows.
Lemma 3.1. Suppose the sequence {C[ß}i€^rß€rk has the following property. For
any two adjacent simplices A(7) and A(J) £ T whose common face is

r„to,0 r/m_i,0     r!m+i,0 y'i-°l

_rY7o,0 v-7,-2,0     y7,,0 yh.O-t—   [.A ,   . . .   ,   .A. ,^V ,...,^V J,

and for any ß, y £Tk such that
y¡- ßj,       j = 0, ..., m - 1, j = q, ... ,s,

(3.6) yq_l=ßm = 0,
Yj = ßj+i,        j = m, ... ,q-2,

one has
(3.7) cltß = cj,y.
Then
(3.8) Y   EC'.^X)=E     E   cMß(x)N'ß(x),

¡er ßerk ¡er ßer,k-1

where

(3.9) cMß(x):=Y^ß(x)ci,ß+eJ-
7=0

Proof. By (2.37) and (2.27) we obtain

E c,jNß(x) = E   E ^.ßd{X'ß)c,,ßX'ßt](x)M(x\Vß1_eJ)
ßerk 7=o ßerk

= EÍE + Y)c'-ßa'.ßd(xßWßjWMwvß-«)
7=o Vert    fler/

ßj>0     ß,=o

Y   (ílar,fi+ejd(Xp+eJ)c¡tfi+ejX'p+eJJ(x))N(x\V^)
er*_, \=o yß^k-i

V

+ Yr'jW-
7=0
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Here, R¡j(x) is defined to be

Rrj(x):= Y cI,ßGIjd(XIß)XIßJ(x)M(x\V^_eJ).
ß&rk
ßj=0

Noting that by (3.3) and Lemma 2.1, Oß+e, = Oß , ß £ rk_{, we obtain

E 0l>ß^e>d(XßJrei)C¡>ß+ejXß+eJ j(x)
7=0

~       ^„ Atvl      ^dJ^Xß+ej}Xl
= aI,ß ¿^Cl>ß+ejä{Äß+ej)    j,yi-r-

7=0 a\Aß+eJ>

s

= a¡,ßYCl-ß+ei dj(Xß+ej\x) - Ojj y jcI_ß+ejdj(Xß\x)
7=0 7=0

s

= oi,ßd(Xß)y JCi,ß+ejXß,j(x),
7=0

which, in view of (2.37), proves that

(3.10) Yc'.ßNßW=   £   c^ß(x)N'ß(x) + YRi,Ax)-
ßtrk ß€rk_t 7=o

Hence, to finish the proof of Lemma 3.1, we have to show that, under the
assumption (3.7), (3.6),

(3.11) E (é*/.yW) =0.
/ey \7=0 /

To this end, note that for 0 < m < s the term R¡tm(x) consists of summands
of the form

Ci,ßCtItßdm(XIß\x)M(x\VßI_en)

for some ß £ Tk , where ßm = 0. Hence, there exists exactly one adjacent
simplex A(J) in T such that the common face of A(7) and A(J) does neither
contain x'""° nor x-,«1'° £ A(J). Thus, for this ß £ Yk , with ßm = 0,
we choose y £ Fk as defined by (3.6). Then the sum Rj,?_i(x) contains the
summand

cj, yOj, ydq-1 (Xf \x)M(x\ VyJ_eq_, ).

Since VyJ_eQ_, = V¡_em, we have M(x\VyJ_eq_,) = M(x\Vßl_em), and also the
determinants dq-\(X^\x) and dm(Xß\x) have the same absolute value, since
the sets X^\{xJi-''0} and Xß\{x'""0} are identical. These functions are zero
only on the hyperplane 77 spanned by the set ^\{x'm-0}. Moreover, we
observe next that

(3.12) oj,ydq-X{XJ\x) = -o,,ßdm(X<ß\x).
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In fact, it follows from Lemma 2.2 that x'""° and xJi-<,0 are separated by the
hyperplane 77 defined above. Hence,

(3.13) Xy>q_x(x      )- ajyd{XJ) <ü-

On the other hand, since ßm = 0, one has

o¡ ßdm(X'\x'">>°)H 141 i-;7      -     'p    v   ß'
(i-14) l-^,m-       aitßd(X')       ■

Since the denominators in (3.13) and (3.14) are both positive, (3.12) must hold.
Thus, (3.11) follows by (3.7), cj,y = c[ß, thereby completing the proof of
Lemma 3.1.   O

We are now in a position to complete the proof of Proposition 3.1. By virtue
of (2.26), (2.37), and Theorem 2.1, the assertion holds trivially for k = 0.
Suppose it has been verified for k - 1 . Note that for any /,7eJ such that
A(7) and A(J) share an (¿ - l)-face, and for any ß, y £ Tk , related by (3.6),
the coefficients c¡ j := ^¡^(a, co) and cji7 := xYj^y(a, co), in view of (3.1)
and by our above convention, are both composed of the same factors involv-
ing only knots from the groups corresponding to 7 n J . Hence, *¥ji7(a, to)
and *F/jj(ú!, co) coincide under the assumption (3.6) and thus satisfy (3.7).
Moreover, for any ß £ r¿_i,

E4W*'.í«'(fl' w) = (a + co-x)y¥hß(a, co),
7=0

so that (3.4) is an immediate consequence of Lemma 3.1.
Since any polynomial of degree at most k can be written as a linear combi-

nation of polynomials of the form (a + co • x)k for appropriate choices of a £ R
and co £RS, Proposition 3.1 leads us to the main result of this section:

Theorem 3.1. Let P be any polynomial of degree k, and let p denote its polar
form. Then the following identity holds for all x £RS :
(3.15) 7>(x) = E   E^-*'0,0' ■•• >xio'ß<>-1, ... ,xh'°, ... ,xh'ß>-{)N'ß(x).

i€J ßerk

4. Approximation properties
In this section we derive further consequences of Proposition 3.1. Specifi-

cally, we will provide approximation properties of the spaces S%(X) and also
prove the stability of the ß-spline bases constructed above.

Setting co = 0, a — 1 in (3.4) gives

1 = E E^w*    *eRS>
ia.9- ßerk

i.e., the ß-splines form a partition of unity. More generally, differentiating both
sides of (3.4) with respect to co, evaluating at co = 0, and putting a = 1 yields
for every a £ Zs+ , \a\ < k ,

(4.1) k---(k-\a\+l)x"=Y    £(#"¥/, fi(l,<»)la>=o)A^«,
le.r ßerk
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which also confirms that

(4.2) Uk(Rs)C^k(X).

Next, we will discuss a multivariate version of the Schoenberg operator.  For
any affine function L £ ni(Rs), its polar form (as a polynomial of degree k)
is /(x1, ... , xk) := L(¡f (x1 H-h xk)), and so, specializing Theorem 3.1 to
affine functions, yields

(4.3) L(x) = Y   EL(&./0^(*)'        x£Rs,
ieJ ß&rk

where

(4-4) É/,* = rE(E*';,m)>      ß^-
7=0  \m=0 J

Consequently, a standard argument implies that the operator

(Sf)(x):=Y   E^'./î^W
ief ßerk

realizes for any compact set Q estimates of type

\\sf - f luí«) < ch2 max \\Daf \unT),
\a\=2

where h := max/€^ diam A(7) and Qr := \J{[X'ß] : ß £Tk, A(I) nfl/0}.
The usual way of obtaining better approximation rates is to construct opera-

tors that reproduce higher-order polynomials. We briefly sketch this procedure
in our case by again exploiting the identity (3.4).

Expanding

Vi,ß{a-tO'TI,ß,a>)= Yak~Mcl,ß°>a>
\a\<k

where  r¡ ß  is some fixed point in  Q.¡ k , we define the functional p¡ ß  on
Ck(n,,k)by

(4.5) p,j(f) := E CÍ-'^J2!Í1d-/(t,.#)
M<*

and observe that

HIyß((a + (0-*)k)= Y C,a><icoa(a + co-x, ,ß)k~^ =V, ,ß(a, co).
\a\<k

Hence, the operator

(Qf)(x):=Y   Y/t'-ßWßW
ia¿7 ßerk

reproduces all polynomials in n^(Rs).
Moreover, since for 7 ^ J , by Lemma 2.2 and (2.31), supp(/V/)nQ/<k - 0

and pi ß is supported in ñ¡ k , so that Hi j(N^) = 0,  J / 7, ß, y £ Tk ,
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and since by Corollary 2.1 the ß-splines Nß , ß £ Tk , are linearly independent
over f2/ k , one readily concludes

(4.6) ßi,ß(NyJ) = oIJoßy,       l,Jef, ß,yerk,
i.e., the ßiß establish a dual basis for S^k(X).

The main step needed to characterize the approximation properties of the
spaces S?k(X) and to confirm the stability of the ß-spline basis {NÍ : ß £ rk ,
I £ J} is to bound the dual functionals p.¡ ß (4.5). This can be done by follow-
ing well-established lines. However, the normalization (2.37) of the ß-splines
arising in the present setting provides us with two results, one on approxima-
tion and the other on stability, which are valid under less restrictive assumptions
than for the corresponding ß-spline spaces of [3, 4]. For the convenience of
the reader, we sketch the main steps leading to these facts.

To this end, let D{ ß denote the smallest ball containing the knot set Vl.
Define, as usual, the norm

,,,,, (Q)      Í esssupxen|/(x)|, /? = oc,
UI]P(   ]     \(fQ\f(x)\"dx)^,        l<p<oo,

and Lp(Q.), the corresponding space of functions / over Q with ||/||p(fí) <
oc.

Lemma 4.1. There exists a constant c depending only on s and k such that

(4.7) \ßi,ß(P)\ < cvoUDur^WPKDu)
for all P £ Uk(Rs), ß £Yk,and I £j.

To prove (4.7), one observes first that

j\   Y   C'a'ßojP= (^-\v,j(a-co-x,j,co)\a=o

= E nw'(x"''-Tu)-
r       I

where the number of summands depends on ¿, k , and j, and each summand is
a product of k - j factors co • (x'r 'l — ti,ß). Therefore, it follows immediately
that
(4.8) \C'a'ß\<Ch^ßt
where hrß := max{||T/ ^ - xl"l\\ : r = 0, ..., s, 0 < / < ßr} and the con-
stant C depends only on ¿ and k . Using the equivalence of norms on finite-
dimensional spaces, standard scaling arguments, and Markov's inequality, one
obtains that
(4.9) \\DaP\UDrß) < Cp-^-s/"\\P\\p(D^ß)
for all P £ Ylk(Rs), where p := diamTJ)/ ß and the constant C depends only
on ¿ and k. Since h¡ j < p, (4.8) and (4.9) yield

\m,ß(p)\< Y\c*'ß\{k~k\al)]lDap{"'ß)l
\a\=k

<Cp-s'p\\P\\p(DItß),
confirming (4.7).
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By the Hahn-Banach Theorem, p¡ _ ß has a norm-preserving extension to all
of Lp(Q), which we also denote by Hij ■ Thus, the operator Q defined above
is a projector from LP(RS) onto 5^k(X) for 1 < p < co.

One expects that the approximation properties of Q depend on how far the
knots x'l-1 are allowed to deviate from A(7). To describe this in detail, let

y (I) = {/€J: DjjV\A(I) £ 0 for some ß £ Yk}

and
U(I):=\J{DJifinA(I)¿0,  JeF,  ß£Yk}.

Of course, keeping the elements of Vl sufficiently close to A(7) would assure
that J £ &~(I) corresponds to an adjacent simplex A(J) for which / n 7 ^ 0.
In general, we will assume

(4.10) N := sup #y(7) < oo,

where #¿7~(I) denotes the cardinality of S~(I).
We are now in a position to prove the following result.

Theorem 4.1. Suppose (2.29) holds. For any f £ LP(RS) one has

(4.11) \\f-Qf\\p(A(I))<C    inf    \\f-P\\p(U(I)),
r€lik(Rs)

where for p = oo the constant C depends only on s and k. For 1 < p < oo,
it also depends on N given by (4.10), which is assumed to be finite.

Using standard estimates for local polynomial approximation, one derives
from (4.11) estimates in terms of moduli of continuity or Sobolev semi-
norms, confirming optimal (local or global) convergence rates cf(hk), h =
max{diamA(7) : 7 € ¿F}, whenever the /cth-order derivatives of / are bounded
in LP(RS).

To prove (4.11), one may use the estimate [1]

(4.12) l|M(.|F/)||p<Cvoli([F/])-1+^,
where C depends only on ¿ and k.

Hence, by (2.37), one concludes

||A^<Cvoli([F;])1/'\

giving

||ß/||„(A(/))<    E     E \l*J,ß(f)\\\Nß\\p
(4.13) Je^(i) \ß\=k

<C\\f\\p(U(I)),
where now C depends also on N when p < oo. Since Q reproduces all
polynomials in n^(Rs), we may apply the local boundedness of Q (4.13) to

||/ - ß/||p(A(7)) < ||/ - P\\P(A(I)) + \\Q(f - P)\\P(A(I)),
which yields (4.11).
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The second important application of Lemma 4.1 is concerned with the sta-
bility of the ß-spline basis. To this end, one needs first an appropriate Lp-
normalization of the ß-splines, namely

(4.14) /V;i/j(x):=|^)|-1/"yV;(x),

so that 7V¿ ß(x) = NUx) and N( ß(x) = M(x\V').
Defining for c = {cr,ß}Ie^,ßeTk.

t/P

\\ck ■■=   E E 1e'./
\izsr ßerk

one obtains the following result.

Theorem 4.2. Suppose (3.3) holds. Then for any sequence c = {cij}i€^ j€rk >
the estimate

y\\c\\i </It      11 in    — E E^Ä
icít ßerk

< \\c\\i

holds for some constant y which for p = oo depends only on s and k, and in
addition on N, see (4.10), when 1 < p < oo.
Proof. Let I + i = 1. Then (4.14) yields

E £^,s
i€f ß€rk

= Í (E Yc'-ß\^x'ß)\'"PNß^lPNlß^lq\ dx
jRS \i€tr ßen J

if (E E^^n^^r'^w) (E E^«
J*s \i€.T ß&rk J  \ie.r ßerk

Since the NÍ form a partition of unity, the right-hand side reduces to

(4.15) E   E \ct,ß\p\d(X'p)\-' I N'ß(x)dx = \\c\\lp,

pIq
dx.

/e^ ßerk

where we have used again the fact that /Rs M(x\ V) dx - 1 and the normaliza-
tion (2.37).

Conversely, given S(x) = zZie? 2^ßerk ci,ßNp,ß(x) > one has

\H,fiis)\= E Y^-^x^'^'-ß^
J€.r   v&Yk

= \cI,ß\\d(XIßT1/».
Since, on the other hand, Lemma 4.1 says that

\ßi,ß(S)\ < Cvols(D,,ß)-^\\S\\P(D,,ß),
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we obtain

<4'16) ^^iC(^§7j)m''{D,']-

In view of (4.15), the assertion follows now from (4.16).   D
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