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Abstract—The inherent challenge within the domain of 

location-based services is finding a delicate balance between user 

privacy and the efficiency of answering queries. Inevitably, 

security issues can and will arise as the server must be informed 

about the query location in order to provide accurate responses. 

Despite the many security advancements in wireless 

communication, servers may become jeopardized or become 

infected with malicious software. That said, it is possible to 

ensure queries do not generate fake responses that appear real; 

in fact, if a fake response is used, mechanisms can be employed 

for the user to identify the query’s authenticity. Towards this 

end, the paper propose BLoom Filter Oblivious Transfer 

(BLOT), a novel phase privacy preserving framework for LBS 

that combines a Bloom filter hash function and the oblivious 

transfer protocol. These methods are shown to be useful in 

securing a user’s private information. An analysis of the results 

revealed that BLOT performed markedly better and enhanced 

entropy when compared to referenced approaches. 
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I. INTRODUCTION  

Owing to the proliferation of smartphones and similar 
mobile devices, location-based services (LBS) have found 
widespread use in recent years. In particular, the increasing use 
of smartphones has contributed to the growing popularity of 
LBS [1]. Consequently, new means of communication have 
been developed, and the information obtained from LBS has 
provided users with greater awareness of their surroundings 
[2]. Various iOS and Android applications enable users to 
download and use LBS and submit queries to LBS servers [3]. 

Users can receive LBS data through points of interest 
(POIs). For example, users can search for nearby stores or 
restaurants and check whether the data regarding the prices at 
these locations are accurate. Thus, LBS find increasing use in 
various applications. They provide simple solutions for 
location awareness and location sharing. Therefore, they are 
regarded as both helpful and advantageous [4]. 

While proven and demonstrated to be profoundly helpful, 
the inherent challenge of location-based services is one of 
juggling between two seemingly diametrically opposed 
requirements: user privacy and security and the efficiency of 
server response times when answering user queries. On one 
hand, the users demand accurate answers to their location-
based queries, and, on the other hand, these same users expect 
their personal information to remain private and secure. The 
quagmire is that a server simply cannot answer a location-
based query without having the location itself. More clearly, 

one cannot expect an answer to, “what are the nearest gas 
stations to XYZ address?”, unless they are willing to, 
somehow, someway, reveal the said address. In short, users 
want to have their cake and eat it too! The challenge, therefore, 
lies in finding a delicate balance between providing accurate 
and efficient responses to queries while maintaining an 
acceptable level of privacy for the user. LBS queries submitted 
by users must not only be efficient but must also ensure 
privacy; unfortunately, such queries often lead to security 
issues. The first issue is one of implementation: is it possible to 
make queries to a data store (service, database, or website) in a 
way that reveals the minimum amount of information about the 
data store while providing maximum utility to the user making 
the queries? For many years, these conflicting requirements 
were thought to be difficult, if not impossible, to satisfy. 
However, recent studies have shown that a variety of query 
protocols can, in fact, be used to achieve both goals, at least in 
a probabilistic sense [5]. 

Protection can be provided by a security protocol even in 
the presence of a malicious server, malicious eavesdropper, or 
malicious man-in-the-middle attacker. The development of “1-
in-q” algorithms (which are described in detail below) has 
facilitated the creation of security protocols that can provide 
probabilistic guarantees about the validity of response even in 
the presence of a compromised or actively malicious data store. 
Recently, a major cryptographic breakthrough was made, 
whereby the possibility of fully homomorphic encryption 
(FHE) was demonstrated [6]-[8]. In this scenario, the data store 
operates on opaque binary blobs of encrypted data and has no 
access to any unencrypted information. FHE makes it possible 
to assert that responses are unforgeable, not merely 
probabilistically unforgeable. 

The use of advanced cryptographic algorithms, such as 
FHE, has led to the third issue associated with privacy-
preserving queries: the question of efficiency. It is known that 
“1-in-q” algorithms exhibit runtime performance of the order 
of O(n) or even O(1); thus, the strength of the probabilistic 
guarantee is only limited by the user's privacy goals. The 
accuracy of the response can be increased by incurring a linear 
or even constant time computational overhead. Partially 
homomorphic encryption schemes, such as routing and 
spectrum allocation (RSA), may exhibit exponential 
computational growth. However, extensive experience with 
such algorithms has led to the development of some 
implementation heuristics that allow the computations to avoid 
the exponential neighborhood. Thus, the computations will 
take polynomial time, not exponential time, except with 
negligible probability [9], [10]. Efficient computation has not 
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been realized for FHE, thus far. At present, the implementation 
technology is immature and even a straightforward FHE 
computation may take several seconds [11], [12]. Obviously, 
current FHE performance is not compatible with end-user 
requirements [13], [14]. 

Finally, one must consider the requirements specifically 
imposed by location-based data. The response to an LBS query 
is not a single data item but an ensemble of data items [15], 
[16]. Thus, malicious actors, such as a man-in-the-middle 
eavesdropper, may find it easier to make correlations over 
multiple queries that lead to an unacceptable loss of privacy. 
Any privacy preserving solution to the query problem for 
location-based servers must take such behavior into account 
[17], [18].  

Many techniques have been proposed to provide an optimal 
solution for privacy-preserving queries in LBS, and there are 
many ways to create solutions for privacy issues. The ultimate 
objective is to ensure the efficiency and privacy of LBS and 
their queries. However, this requirement raises questions 
regarding the security of servers in general and that of LBS in 
particular. One of these issues is that servers could be 
compromised and may become malicious. Moreover, servers 
may produce queries that cannot have forged responses. If for 
some reason, there is a forged response, the recipient of that 
response will be able to recognize that it is a fake response. In 
[19], the authors proposed mobile online social networks 
(mOSNs), where a location sharing service was presented to 
the mOSNs. They examined the current problems of location 
sharing and proposed BMobishare as an enhanced security 
mechanism that ensures location privacy. Also, they employed 
the Bloom filter to provide greater security for sensitive data 
compared to other existing methods. 

To overcome the problems mentioned above, the paper 
proposes the BLOT approach, which combines oblivious 
transfer (OT) with Bloom filters (BF). Here, the sender is the 
LBS, while the receiver is the user. The user initiates a 
transaction by sending a set of q queries to the LBS. These 
queries cause a benign LBS to generate q responses, i.e., the 
messages m0 … m (q-1). The protocol proceeds as above. The 
benign LBS cannot guess which of the q queries were the 
relevant queries, except with probability 1/q; therefore, the 
expectation is that BLOT will enhance communication security 
between the client and the server against attacks. 

 The contributions can be summarized as follows: 

 The proposed method involves the creation of an 
entirely new type of cryptographic communication 
protocol in a problem domain and the development of a 
secure implementation that can be used in resource-
constrained systems, such as smartphones.  

 The amount of information exposed to attack is 
minimized. Hence, the BLOT transformation slows 
down information leakage from the BF from 0.5 bits 
per query to 0.5/N bits per query, on average, where N 
is arbitrarily large. Both OT (transformation 2) and BF 
can be used to reduce information leakage. 

 More entropy means less information leakage. Thus, it 
is more difficult for an attacker to learn anything by 
studying the encrypted responses. 

The remainder of this paper describes the approach to 
overcoming the challenges described above using OT and BF. 
A persuasive argument can be made that these diverse 
protocols can be successfully combined to yield solutions that 
are stronger than any individual approach. 

II. RELATED WORK 

Recently, many solutions have been proposed to protect the 
users of LBS. Information access control [20] is a technique 
that provides location privacy to LBS users. Specifically, it 
equips the LBS provider with a mechanism that enables the 
LBS users to control access to their location data. Toward this 
end, LBS providers enforce the access policy’s usage to control 
access to the users’ location data. The drawback of this 
technique is that the LBS providers could be potential 
adversaries who misuse the location data of the users. 

One method is based on a mix zone, i.e., it depends on an 
intermediate server to hide the user’s location [21]. The 
intermediate server assigns a pseudonym to the user when 
he/she enters a mix zone. The pseudonym is used by the user to 
send queries to the LBS server via the intermediate server. A 
new pseudonym is assigned to the user when his/her mix zone 
is changed. An important application area of the mix zone 
technique is road networks. The drawback of this technique is 
that the intermediate server is vulnerable to adversaries. 

The k-anonymity technique [22], [23] is based on the 
concept that a user cannot be distinguished from other k-1 
users. Toward this end, mobile users are grouped in clusters of 
k members. For each group, a bounding region is defined. Each 
user uses the bounding region of the group as his/her location 
and attaches this region for all the queries sent to the LBS 
provider. An intermediate server is required to construct the 
bounding region. An adversary can identify the location of the 
user with a maximum probability of 1/k. The drawback of this 
technique is that adversaries can compromise the intermediate 
server. 

Using dummy locations is another technique for achieving 
location privacy [24], [25]. In this technique, the mobile user 
confuses the LBS server by sending his/her query many times, 
where one of them contains his/her real location whereas the 
others contain fake locations. The drawback of this technique 
is that adversaries can use the side information to analyze the 
user's sent locations and identify the dummy locations.  

In [26], the authors proposed an optimal approach to 
tackling current location-based query issues regarding the 
leakage of location data from a query database, generally 
known as points of interest (POIs). The authors focused on the 
sharing of location data by the owner with every user. Toward 
this end, a two-stage approach was proposed; the first step 
involves oblivious transfer, and the second step involves 
private information retrieval. The proposed method was 
implemented on a desktop system and a mobile device with the 
aim of examining its efficiency.  
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In [27], the authors proposed the use of oblivious transfer, k 
-anonymous oblivious transfer, deterministic encryption, and 
Bloom filters. The k*l-anonymous oblivious transfer protocol 
was combined with symmetric key encryption (block cipher) to 
prevent the server from determining which client data are being 
used. This approach provides anonymity and is beneficial when 
privacy is preferred over speed. 

In [28], the authors showed that oblivious transfer (OT) is 
essential regarding cryptography, and it is used in many 
protocols as a security measure for multi-party computation. 
There is a need for such protocols in the case of a hands-on 
application, and OT extensions allow the base OTs to be used 
to calculate a large amount of OTs at a low cost. Consequently, 
counterparts that use more efficient protocols are created. This 
model is safe when used in both the random oracle model and 
the standard model. If the efficacy of the OT extensions is 
enhanced, they become even safer. 

On the other hand, the paper [29], explored bloom filters 
and their setbacks. Hash functions provided issues for users, 
even though bloom filters seemed straightforward at first. This 
paper proposed a method to create independent and orthogonal 
hash functions while limiting information leaks. 

While in [30], presented a survey of the current trends of 
privacy methods used to protect users that had used LBSs. This 
paper showed the effectiveness, or lack thereof, of each 
technique showcased in this paper. It should be recommended 
that in the future, researchers should conduct a security 
analysis, using a simulation setup, which would evaluate their 
proposed algorithm using a modified Hilbert Curve. This 
would assure the effectiveness of the privacy in the proposed 
scheme.   

The flexibility of sharing location in privacy protection is 
key to social networking services. Opaque identities developed 
by Smoke Screen in 2007 [31] help share presence among 
trusted friends and untrusted strangers. Although the previous 
work [32] has resolved the problems of flexibility in location 
sharing in a privacy protecting way, the strictness of the 
method prevents a direct use. 

Recently a Mobishare mechanism [33], proposed by Wei et 
al. provides a flexible privacy-preserving location sharing to 
both trusted social relations and untrusted strangers in mOSNs.  
However, a Mobishare mechanism is actually an extension of 
Smoke Screen but use a dummy of technique like a real fake 
identity that prevents complete identities locations between 
LBS providers and social network providers. A later 
improvement by Liu et al. broadcast encryption to preserve 
users’ location privacy allowing users to add or removal of 
friends [34].  

Even with such improvements, multiple attacks on a 
location-based provider can essentially obtain all the friends’ 
relation of user plus the locations in real time. The Paillier 
Cryptosystem developed by Li et al. could, however, prevent 
this problem [35]. Li et al. proposed a mechanism that employs 
a private set intersection protocol to prevent named 
Mobishare+, that prevent the social network server from 
copying individual information. While not much is improved in 
terms of security, this scheme should achieve a lot more 

complex encryption and decryption operations that sustain 
computation overhead appreciably. There are still other 
encryption-based methods particularly in a cloud environment 
that used for privacy protection [36]-[38]. 

III. PRELIMINARIES 

A. Deficiency of BMobishare 

A dummy query is used, which allows services to protect 
their users’ real and fake entities. 

A Bloom filter serves as a bridge between LBS and social 
network servers. Although this approach safeguards private 
data, it is flawed, as there is a risk of leakage between users 
and servers, which may increase the overhead and decrease the 
entropy. 

B. Oblivious Transfer Scenario in LBS 

Create a data transfer protocol between an LBS client and 
an LBS server with the following properties: 

1) The protocol has 1-in-q capability. 

2) The LBS server cannot distinguish information-bearing 

queries. 

3) Even if an eavesdropper obtains all queries and 

responses, no information is leaked. 

4) A malicious LBS server can be detected with 

probability q. 

5) The probability q can be increased exponentially, close 

to 1, by increasing the queries. 

Oblivious transfer (OT) is a 1-in-q type of algorithm in 
which the sender transmits a series of messages to the receiver 
without knowing (except with negligible probability) which, if 
any, of these messages, contain information used by the 
receiver, will describe OT for the case of two messages, but it 
is obviously extendable to the case of q messages. Note that 
OT is typically built on top of a public key cryptosystem, such 
as RSA [39], [40], although there is no compelling reason why 
a system based on symmetric cryptography could not also be 
used [41]. 

The steps of the protocol are as follows. The sender has two 
messages, m0 and m1, and wishes to provide both messages to 
the receiver without being able to determine which message is 
actually used by the receiver. The sender generates an RSA key 
pair. Let M denote the modulus of this key pair; pe, the public 
exponent; and pd, the private exponent. The sender generates 
two random nonces, x0 and x1, and sends them to the receiver 
along with the RSA public key. The receiver generates a 
random bit b and uses it to set x = xb. The receiver then 
generates a large random large number L and computes the 
value V = (x + Lpe) mod M [42]. Then, the value V is 
transmitted to the sender. 

The sender cannot know (except with random probability) 
the value of b. Therefore, the sender computes two values, v0 = 
(V – x0)pd mod M and v1 = (V – x1)pd mod N. The sender 
can deduce that the value of L is either v0 or v1 [43]. The RSA 
cryptosystem is based on the presumed intractability of the 
discrete logarithm problem. Thus, the sender cannot know 
(except with random probability) which of these two values is 
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correct. The sender computes m0' = m0 + v0 and m1 = m1 + 
v1, and sends both to the receiver. The receiver knows the 
value of b and is thus able to determine which of m0' and m1' 
is valid. Note that no eavesdropper can obtain any information 
from the value pair (m0', m1’) except with negligible 
probability. In the 1-in-q generalization, the receiver has a 
secret index, i, and can receive a set of q messages from the 
sender such that the sender has no way of determining the 
value of i. 

In the OT implementation of an LBS, the sender is the 
LBS, and the receiver is the user. The user initiates a 
transaction by sending a set of q queries to the LBS. These 
queries cause a benign LBS to generate q responses, i.e., the 
messages m0 … m (q-1). The protocol proceeds as above. The 
benign LBS cannot guess which of the q queries are the 
relevant queries, except with probability 1/q. If N exchanges 
are performed, rather than one, the benign LBS cannot guess 
which is the relevant query, except with probability 1/qN [44]. 
Thus, by adjusting q and N, the user can achieve the desired 
degree of certainty. Note that a malicious LBS server will fail 
to produce a meaningful response, except with random 
probability; hence, in the worst case, a malicious LBS server 
can use the OT protocol to launch a denial-of-service attack. 
Such an attack can be readily detected by the user with 
probability (1 - 1/qN), with as much certainty as the user 
desires. 

C. Bloom Filter Scenario in LBS 

A protocol between a client, an LBS server, and a second 
server must have the following properties: 

1) The client and second server can send a query if there is 

something in the range of the LBS server. 

2) The original server can only determine one bit of 

information from a list of queries, and the second server 

cannot determine any of these data. 

3) No set of objects in the range of the server needs to be 

itemized. 

4) Any malicious LBS server can be detected with 

probability q. 

5) The probability q can be exponentially increased close 

to 1 by increasing the queries. 

The Bloom filter (BF) allows testing of a fixed membership 
and never reveals more than one bit of information regarding 
this set. If A is a reputed element of set S, then the BF creates a 
probabilistic algorithm to determine whether A is an element of 
S without going through the elements of S [45].  

The LBS includes a Bloom filter that uses location 
information encoded as bit vectors. The user creates q pairs 
(query, assertion). The queries will be sent to the LBS, which 
will create a bit vector of q values. If the i-th position of this 
vector is 0, then the pair (Qi, Ai) is absolutely inconsistent; if 
the i-th position of this vector is 1, then the pair (Qi, Ai) is 
probabilistically consistent [46]. If the server is benign, the 
evaluations will be accurate. However, if the server is 
malignant, the evaluations will be inaccurate. Because users 
can create pairs (Q, A) with a known state, the server will 
perform tests against known values. A false positive means that 

the server is malicious. False positives can be reduced with N 
iterations of q queries. Thus, a malicious server can be found 
with probability (1 – pN), where p is the legitimate false 
positive. Malicious servers cannot learn anything from these 
exchanges, except with a negligible probability due to the 
inverse Hk. 

D. BLOT Overview in LBS 

The ultimate objective of both protocols is to reduce 
information leakage. Both BF and OT can be used. We achieve 
this by applying a two-stage approach shown in Fig. 1. The 
first stage is based on Bloom filter and the second stage is 
based on an oblivious transfer.  

E. Security for LBS: The BLOT protocol 

This paper describes a new approach for LBS applications 
that provides a user with three security guarantees: (a) it will 
take at least Q1 queries for an eavesdropper to learn a single bit 
of information from the protocol exchange; (b) it will take at 
least Q2 queries for a malicious LBS provider to learn a single 
bit of information from the protocol exchange; and (c) the 
information leaked by the database handling the LBS 
information is at most Q3 bits for each query. In these 
statements Q1, Q2, and Q3 are adjustable parameters based on 
the specific implementation of the protocol. If the total number 
of queries that the user must make is A, and if the protocol can 
be adjusted such that A < Q1, A < Q2, and (A*Q3) < 1, then 
the security guarantees become absolute: no eavesdropper or 
malicious LBS provider can learn any information from the 
protocol exchange, except with negligible probability. 

First, describe the component technologies. BLOT 
approach is in the form of a framework. The LBS provider will 
always use one particular storage mechanism: Bloom filters. 
The protocol will be a pluggable protocol that can take any 
form as long as it satisfies the security guarantees stated above. 
In this paper, will consider the OT transfer protocol. Then, will 
show how it can be integrated to create the BLOT protocol. 
The construction of the Bloom filter hash functions enables us 
to demonstrate security guarantee (c).  Next, the precise steps 
in the BLOT exchanges are described in detail, with full 
mathematical justification, allowing us to demonstrate the first 
two security guarantees.  

In the remainder of this paper, the entity requesting LBS 
information will be known as the user or the receiver, whereas 
the entity giving out LBS information will be known as the 
provider or the sender. The terms client and server will not be 
used because the BLOT protocol does not require client/server 
architecture to be deployed. Toward the end of this paper, will 
explain how it is possible to deploy the BLOT protocol entirely 
on a mobile device, entirely within the LBS provider, or in 
some combination of both. 

 
Fig. 1. BLOT overview in LBS. 
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Fig. 2. BLOT architecture in LBS. 

F. BLOT System Architecture 

As shown in Fig. 2, the scenario of LBS consists of four 
entities in the mobile online network.  

 The mobile device user can access the Internet with 
wireless technology (such as 3G/4G) and then share his 
or location and inquire about the location of friends 
who are nearby. 

 SNS manages the user’s identity-related information 
(user profiles, friend lists, etc.). 

 LBS stores the user’s anonymized location information 
and provides LBS, as per the user’s request, with the 
real-time locations of people nearby. 

 CT aids the user’s communication with SNS and LBS. 

BLOT assumes that SNS, LBS, and CT are connected with 
links that are high-speed and secure. 

G. OT Standard 

The purpose of OT is to securely transfer information from 
a sender to the receiver such that both sides learn the minimum 
amount of information about the requested transfer. 
Specifically, suppose that the sender has N pieces of 
information, (I0 … IN-1), and the receiver has an index n in 
the range (0,N). The receiver wishes to receive IN without the 
sender knowing the value of n. The sender also wishes to 
ensure that the receiver will only be able to decrypt one of the 
received N encrypted messages. Both sides do not want an 
eavesdropper to learn any information. OT is a type of minimal 
knowledge protocol [47]. 

OT is typically built on top of some form of public key 
cryptography. The RSA protocol is typically used. The RSA’s 
security is based on the inversion of the discrete logarithm in 
polynomial time with negligible probability [48]. The 
algorithm below [49] shows the standard form for OT (note 
that this exchange shows the protocol for a single sender and a 
single receiver, as is typical for LBS transactions; however, OT 
can be extended to multiparty communications). 

1) The Sender generates RSA key pair, with the public 

modulus MO and the public exponent e. 

2) The Sender generates N random numbers rI. 

3) The Sender sends MO, e, and all the ri to the Receiver. 

4) The Receiver selects the random number rn where n is 

the index of the desired message. 

5) The Receiver generates a random number z and 

computes: v = (rn + ze) mod MO. 

6) The Receiver sends v, known as the RSA blind value of 

rn, to the Sender. 

7) The Sender computes all N values vi = ( v -  ri ) d mod 

MO, where d is the private exponent. 

8) The Sender computes all I‟i = Ii + vi and sends all I‟i to 

the Receiver. 

9) The Receiver computes the correctly decrypted value In 

= I‟n  -  z. 

     The Sender has a 1-in-N chance of guessing the value n. 
Thus, from a security standpoint, both parties would like to 
make N as large as possible. However, from a performance 
standpoint, the transfer time increases linearly with the value of 
N. LBS often involve a large number of data transfers. Hence, 
the performance issue can be partially offset by modification of 
the messaging protocol; nevertheless, linear performance 
degradation will occur as the security of the system enhances.  

       Although we can assume that the receiver (the user) is 
honest, the same may not be true for the sender (the LBS 
provider). A dishonest sender could deliberately send weak 
RSA values, as well as weak random numbers, to improve the 
odds of guessing the value n. The selected system architecture 
is summarized in Table I. 

The selected notations are summarized in Table II. 

In the next section, will describe the BLOT protocol, which 
significantly improves the security of the system by combining 
BF with OT.  

TABLE I.  SYSTEM ARCHITECTURE 

Symbol Description 

User (receiver) Mobile user 

LBS Location-based server (backing storage db) 

SNS (sender) Social network server 

CT Cellular tower 

ID An authorized user's unique ID 

qf Distance threshold in friends' locations query 

df                  User's friend-case distance 

qd1 Friends' locations query 1 

qd2 Friends' locations query 2 

TABLE II.  NOTATIONS 

Symbol Description 

IDA User A's unique social network identifier 

PubMOA Public modulus 

Pub eA Public exponent 

IDCT Cellular tower's identifier 

PubKey Public key encryption-decryption 

Skey (AES) Symmetric key encryption-decryption 

ds User's strange-case distance 

BFf Bloom filter with inserted friend-list 
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Fig. 3. BLOT Querying friends’ locations. 

IV. BLOT MECHANISM 

A. BLOT Querying Friends‟ Locations  

OT builds a security mechanism between users and the 
SNS, which ensures privacy while avoiding leaks. BF creates a 
security mechanism between LBS and SNS, and these protect 
each other’s privacy. Fig. 3 shows methods for discovering 
friends’ locations: 

Mobile User: First, the user must submit a friend’s location 
query (IDA, qd1, qd2) to CT. 

CT: The appropriate entry < IDA, dfA > for IDA will be 
read in its table. The sequence number and identifier are 
appended, and the query is forwarded as (IDA, tag) to SNS, 
where tag = (IDCT, qd1, qd2, seq) and seq is a sequence 
number. 

B. Bloom Filter Stage BL 

1) First, BF initializes itself and updates itself using the 

file (DataListforBF.txt). 

2) This file contains the list of words that will be set in BF 

for fast searches in the data structure. 

a) In the filter, Add Element(line) method in the 

initializing function will operate adding the BF element. 

b) It uses two hash functions, “FNV” and “MURMUR,” 

to generate the two indices for an element and sets the bit to 1 

at the selected indices [50]. 

3) Now, with another file, “DataToQuery.txt.”. This file 

has the list of words that the receiver (USER) is going to query 

from the SNS.  

4) Then, the SNS sends the query to the LBS and asks 

about the two words (QueryData1"qd1" and 

QueryData2"qd2). 

5) The LBS takes these 2 words and searches in the BF. It 

again generates the indices using the same FNV and 

MURMUR hash functions and checks whether the bit is set 

to 1.   

6) If it does not find the data in the BF, then it sends a 

message to the receiver (USER): “Element (QueryData) is not 

here.” 

Otherwise, if it finds the data in the filter, it confirms the 
same by searching for the data in the LBS having backing 
storage. The backing storage, in this case, is the same file 
DataListforBF.txt. It has been used here as a database. 

7) If both sets of data are found in the backing storage in 

the LBS, they are forwarded to the SNS, and then the process 

of OT is initiated for transferring the desired encrypted data to 

the mobile user. 

C. OT Stage 

1) For OT, consider the following parameters: 

   int g = 7; // public exponent 

   int MO = 101;//public modulus 

int N = 2; // number of encrypted packets to send 

int C = 0; // indicates that message to be selected by 

sender SNS (it could be 0 or 1) 

2) The Sender (SNS) generates a random number „a‟ 

between 1 and 5. 

3) Based on the generated random number, SNS calculates 

the following and sends it to the user: 

    Double Sender = (long long int) pow(g,a) %  MO; 

4) After receiving the SNS input, the Receiver (user) 

performs the following mathematical operations and sends it to 

the SNS: 

int   b = rand()  % 5 + 5;//generate random number 

between 5 and 10 

   if (C == 0) Receiver(user) = (long  int) pow(g,b) % 

MO; 

   else if(C == 1) Receiver(user) = Sender SNS *(( long  

int) pow(g,b) % MO); 

5) The Sender (SNS) does not know which message the 

Receiver (user) is going to decrypt. Hence, it will encrypt both 

pieces of data and send it to the user. 

a) SNS generates two different keys using the “sha256” 

key generator. 

b) Using these keys, it encrypts both data1 and data2 

and sends it to the user. For encryption, it uses “AES256-

ECB” 

6) After receiving the data, the Receiver (user) generates a 

key based on the value of “SNS” received from the user. The 

key is generated using the same “sha256” key generator. 

7) The Receiver (USER) then uses this key to decrypt data. 

The user will only be able to decrypt one of the two datasets 

correctly. 

Fig. 3 shows how friends’ locations are queried for BLOT 
sequences in LBS. 
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V. BLOT PERFORMANCE MEASURES 

We have already discussed the three performance measures 
(Q1, Q2, and Q3) that will use as measures for the security of 
the system. Also introduce a functional performance measure, 
namely the performance entropy (PE). Both of the protocols 
have packets that flow between the user and the LBS server as 
well as in the reverse direction.   

Entropy is related to the length (L) of the messages [51], 
we can divide the contents of each packet into message-
carrying information and non-message-carrying information. If 
the total length of all packets in a single exchange is L, then we 
can write L = C + N, where C is the sum of the lengths of the 
message-carrying subset, and N is the sum of the lengths of the 
non-message-carrying subset. Then, define the performance 
entropy of the protocol exchange as 

                                        PE = N/L                                   (1) 

The larger the value of PE, the higher is the entropy. Thus, 
for a practical system, want this measure to be as small as 
possible. For example, if all data was transmitted in the clear, 
then N = 0 and PE = 0; there is no entropy. Of course, this 
situation is completely insecure [51], so it is important to 
minimize this performance measure for the two encrypted 
protocols described in this paper. 

VI. PERFORMANCE ENTROPY CALCULATION OF 

BMOBISHARE 

To calculate the performance entropy of BMobishare, 
considered the same scenario as that considered in BLOT, i.e., 
querying a friend’s location can be divided into two steps: 
service registration and authentication, and querying a friend’s 
location. The selected sizes of information (bits) are 
summarized in Table III. 

A. Service Registration and Authentication 

This scenario involves some message exchanges between 
the user, SNS, and CT, as shown in the message sequence chart 
(MSC). Based on MSC and Table III, the number of bits 
exchanged is calculated first, and then PE is calculated. Fig. 4 
shows the MSC. 

Service registration and authentication involve 6192 bits of 
information exchanged, which is considered to be non-
message-carrying information.  

B. Query a Friend‟s Location 

Querying a friend’s location involves 7936 bits of 
information exchanged between User, CT, SNS, and LBS, as 
shown in Fig. 5, shows how friends’ locations are queried. 

The sizes of message-carrying information (C) and non-
message-carrying information (N) are listed in Table IV. 

TABLE III.  SIZE OF INFORMATION (BITS) 

S. No. Information Size of information (bits) 

1 PubKey 2048 

2 Skey (AES) 128 

3 dfA 64 

4 dsA  64 

5 IDA 64 

6 Time stamp (ts) 64 

 
Fig. 4. Message Sequence Chart (MSC). 
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By using (13), (shown in the Appendix at the end of the 
paper), we can calculate entropy as [51]: 
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                 (5) 

While, 

( )BLOTH Avg  has been calculated from simulation founds to 

be = 0.9756           (6) 

 
Fig. 5. Querying friends’ locations. 

TABLE IV.  THE TOTAL SIZE OF NON-/MESSAGE-CARRYING 

INFORMATION 

S. No. Function C N 

1 Service registration and authentication 0 6192 

2 Query friends’ locations 1600 6336 

 Total 1600 12528 
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Fig. 6. Performance entropy comparison. 

VII. ANALYSIS OF RESULTS AND DISCUSSION 

The total number of information exchanges in BLOT is 
around 960 bits as per simulation, which is much smaller than 
that of BMobishare. Fig. 6 shows the performance entropy 
comparison. The average performance entropy of BLOT is 
0.9756, which is greater than that of BMobishare 0.5105, 
because BMobishare uses a large number of anonymous 
messages for increasing security, whereas BLOT ensures 
security by using an encryption algorithm (AES256). 

Based on the result, we can realize a significant entropy 
value, which means less information leakage. Further, can 
confirm the effectiveness of the BLOT mechanism as well as 
low overhead and high performance owing to the avoidance of 
massive numbers of fake IDs, in contrast to BMobishare. 

VIII.  PERFORMANCE RESULTS 

Note: In the given paper on BMobishare, the author did not 
mention what he means by “connection performance” or 
“computing performance”. The conclusion below is based on 
the assumption that “connection performance” and “computing 
performance” have the following definitions: 

A. Connection Performance 

The time a sender takes to establish a connection to the 
receiver to start further secure communication using any 
protocol. Connection performance of BLOT would be better 
than that of BMobishare because BMobishare establishes the 
connection before querying the friend’s location using the 
service registration and authentication mechanism. In BLOT 
there is no need for service registration and authentication. 
Hence connection time is 0s. In BMobishare, average 
connection time is 1.5s. 

Therefore, we can conclude that the connection 
performance of BLOT is better while computing performances 
are comparable. 

B. Computing Performance 

The time a computer takes to execute a 
code/algorithm/protocol. Computing performance can be 
calculated based on the number of packets communicated in 
each protocol because a higher number of packets involved 
means more computation required to process them. 

a) In BLOT, a total of 7 messages need to be 

communicated to query a friend‟s location. 

b) In BMobishare, 7 messages are communicated to 

query a friend‟s location. 

C. Computing Performance Measurement 

In BLOT average computation time measured from the 
simulation is 10 ms. while the BMobishare shows that the 
average computing time is 1.75s. 

But the author of BMobishare measured the time with a 
processor of 1.2 GHz and 1GB RAM. 

While in BLOT have measured time over 2.5 GHz and 
4GB RAM. As the protocol code is not very large, RAM 
cannot be a factor in execution time. 1GB RAM is also enough 
to accommodate the code data as well. Here we can see that the 
BLOT processor is twice the speed of the BMobishare 
processor. Therefore to make the comparison fair, we can 
assume that if run BLOT on a 1.2 GHz machine, it will double 
the execution time. (That is, it would multiply the time by a 
factor of 2. 10ms x2 = 20ms can give us the time if the code 
runs on a 1.2 GHz machine). The following table shows the 
performances result in Table V. 

TABLE V.  PERFORMANCE RESULTS IN SUMMARY 

S. No. Protocol Computation time (ms) Connection time (s) 

1 BLOT 20 0 

2 BMobishare 1.75 1.5 
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IX. CONCLUSION 

In this paper, is described the BLOT mechanism, which 
combines two protocols that attempt to address the security 
deficiencies commonly found in current LBS application 
environments. In particular, BLOT addresses the security of 
backing storage information, information that is visible to an 
eavesdropper, or information that is vulnerable to a malicious 
presence on the LBS provider machine. Also, it enables a user 
to perform consistency checks on the LBS provider. 

Each component individually provides high security, while 
the deployment of both components significantly enhances the 
security using either transfer approach. Analyzed the 
performance entropy of BLOT and found it greater than the 
solution by BMobishare; additionally, the performance was 
more efficient. 

X. APPENDIX 

A. Entropy Derivation 

By the definition of Shannon’s entropy [51]: 

 ( )    ∑   ( )     (  ( ))  
                                       (7) 

 ( )   ∑   ( )      ( )      (  ( )   
                       (8) 

 ( )   ∑   ( )     (
 

  ( )
)  

                                            (9) 

In BLOT, case n=2 

                                                    (10) 

                                             (11) 

Therefore the above equation becomes: 
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Equation (13) has been used to calculate the entropy. 
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