
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

282

Blow-CAST-Fish: A New 64-bit Block Cipher

Krishnamurthy G.N†, Dr. V. Ramaswamy†, Leela G.H† and Ashalatha M.E†

†Bapuji Institute of Engineering and Technology, Davangere-577004, Karnataka, India

Summary: This paper attempts to develop a simple, stronger
and safer cryptographic algorithm which would not only be a
secure one, but also reduces total time taken for encryption and
decryption. The result of such an attempt is “Blow-CAST-Fish”,
a new secret-key block cipher that uses good features of CAST-
128 and Blowfish algorithms. An effort is made to enhance
performance of the resulting algorithm by parallel evaluation of
some operations within the round function. In order to show the
reduction in execution time, VHDL implementation is used and
tested to show percentage improvement in the performance of
the modified Blow-CAST-Fish.

1. Introduction

Blow-CAST-Fish is a simple classical Feistel
network[19] with 16 rounds and operating on 64 bit
blocks of plaintext to produce 64 bit blocks of ciphertext.
It uses key ranging from 32 bits to 448 bits. It uses good
features of Blowfish[1] and CAST-128[6] algorithms.

The good features that are taken from CAST-128[6]
algorithm include

1. Round dependent function operation.
2. Use of Circular shift operation in each round.

The good features that are taken from Blowfish[1]
algorithm include

1. Varying key length of up to 448 bits.
2. Key dependent substitution box(S-box) entries.
3. Key expansion procedure.

In order to understand the design of Blow-CAST-Fish it
is necessary to know about Blowfish and CAST-128
algorithms.

Blowfish[1] is a variable-length key block cipher
network, iterating a simple encryption function 16 times.
The block size is 64 bits, and the key can be any length
up to 448 bits.

CAST-128[6] is a design procedure for symmetric
encryption algorithm which has the structure of a
classical Feistel network with 16 rounds and operating

on 64 bit blocks of plaintext to produce 64 bit blocks of
ciphertext. It uses key of length 128 bits.

2. Design Requirements

This section summarizes the different design aspects:

1. Global structure and Number of rounds

Global structure: Our approach follows Feistel network
consists of dividing the input into two halves, and
applying a non-linear function only to the right half. The
result is added into the left half, and subsequently left
and right half are swapped. Ciphers following this
approach are called Feistel ciphers (Figure 1). The output
of one nonlinear function is input directly to the next one,
which increases the propagation of local changes.

Number of rounds: Most block ciphers obtain their
strength from repeating a number of identical rounds. In
the key paper of Luby and Rackoff [21] it is shown that a
3-round Feistel network can provide a provable secure
construction of a pseudo-random permutation from a
pseudo-random function.

2. Non-linearity

A nonlinear component is essential to every strong
cryptographic primitive. The goal of the designer is to
build a ‘large’ nonlinear primitive from smaller ones.
The design approaches differ in the choice of the basic
nonlinear component. A straightforward way to
implement simple nonlinear functions is to use S-boxes.

3. Diffusion

In order to restrict the complexity of the implementation,
nonlinear operations can only be applied to small parts of
the block. Several techniques are used to spread local
changes. One way to achieve this is to add the output of
several S-boxes, as is done for Blowfish and CAST.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

283

4. Key schedule

The key schedule is an important component of a block
cipher; it computes the round keys from the external key.

Other design strategies for Blow-CAST-Fish include

• 64 bit data input.
• An input key ranging from 32 bits to 448 bits.
• The operations used here are addition,

subtraction, XOR, left circular rotation and right
circular rotation. The rotation is based on the
last 5 bit values of subkey. The shift used here
is variable length.

• Precomputable subkeys: These precomputed
keys perform faster operation.

• This algorithm consists of 16 iterations.

3. Building Blocks

Key and Subkeys : Blow-CAST-Fish makes use of a
key that ranges from 32 bits to 448 bits (1 to 14 32bit
words). That key is used to generate 18, 32 bit subkeys.

The subkeys are stored in P –Array:

P1,P2,………P18.

 S-boxes (Substitution box): There are 4 S-boxes, each
with 256 entries and each entry is of 32-bit length. S-
box works as a multiplexer. The input to the S-box is 8-
bit and the output is 32-bit.

 S1.0,S1.1,………….…S1.255
 S2.0,S2.1,………….…S2.255
 S3.0,S3.1,…………….S3.255
 S4.0,S4.1,…………….S4.255

Operations: Blow-CAST-Fish uses 4 primitive
operations. Addition, Subtraction, Bitwise exclusive OR
and Left circular rotation(<<<).

4. Algorithm Description

Blow-CAST-Fish is a variable-length key, 64-bit block
cipher. The algorithm consists of two parts: a key-
expansion part and a data- encryption part. Key
expansion converts a key of at most 448 bits into several
subkey arrays totaling 4168 bytes.

Blow-CAST-Fish is a Feistel network consisting of 16
rounds. The input is a 64-bit plaintext and is denoted by
x.

Divide x into two 32-bit halves: xL, xR

For i = 1 to 16:
xL = xL XOR Pi
xL = xL <<< (Last 5bit value of Pi)
xR = F(xL) XOR xR
Swap xL and xR
Next i
Swap xL and xR (Undo the last swap.)
xR = xR XOR P17

 xL = xL XOR P18
 Recombine xL and xR

4.1 Encryption

 Fig 1: Fiestel network showing encryption

Function F ():
Divide xL into four eight-bit quarters: a, b, c, and d
The funcion F is defined as follows.

Rounds : 1,4,7,10,13,16
F=((S1[Ia] XOR S2[Ib]) – S3[Ic]) + S4[Id];

Rounds : 2,5,8,11,14
F=((S1[Ia] - S2[Ib]) + S3[Ic]) XOR S4[Id];

Rounds : 3,6,9,12,15
F=((S1[Ia] + S2[Ib]) XOR S3[Ic]) - S4[Id];

Decryption is exactly the same as encryption, except that
P1, P2,..., P18 are used in the reverse order.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

284

4.2 Subkeys Generation

Initialize first the P-array and then the four S-boxes, in
order, with a fixed string. This string consists of the
hexadecimal digits of pi (less the initial 3). For example:

P1 = 0x243f6a88
P2 = 0x85a308d3
P3 = 0x13198a2e
P4 = 0x03707344

XOR P1 with the first 32 bits of the key, XOR P2 with
the second 32-bits of the key, and so on for all bits of the
key (possibly up to P14). Repeatedly cycle through the
key bits until the entire P-array has been XORed with
key bits. (For every short key, there is at least one
equivalent longer key; for example, if A is a 64-bit key,
then AA, AAA, etc., are equivalent keys.)

Encrypt 64bit block of all-zeros using the current P and S
array, replace P1 and P2 with the output of the
encryption.

Encrypt the output of step (3) using the current P and S
array and replace P3 and P4 with the resulting ciphrtext.

Continue the process to update all elements of P and then
in order all elements of S using at each, the output of the
continuesly changing Blow-CAST-Fish algorithm.

4.3 Decryption

Decryption (Figure 2) works in the reverse order of the
encryption beginning with the ciphertext as input. The
sub-keys are used in reverse order. So the decryption
Blow-CAST-Fish algorithm is as follows:

 Figure 2: Blow-CAST-Fish Decryption

4.4 Function F in Blowfish

 Figure 3: Function F in the existing Blowfish.
Function F (Figure 3) [1] of Blowfish is implemented as
follows:-

Divide xL into four eight-bit quarters: a, b, c, and d

F(xL) = ((S1,a + S2,b mod 232) XOR S3,c) + S4,d mod 232

4.5 Function F in CAST-128

Figure 4: Function F in the existing CAST-128

The funcion F (figure 4) [6] in the CAST-128 is defined
as follows.

Rounds : 1,4,7,10,13,16
F=((S1[Ia] XOR S2[Ib]) – S3[Ic]) + S4[Id];

Rounds : 2,5,8,11,14
F=((S1[Ia] - S2[Ib]) + S3[Ic]) XOR S4[Id];

Rounds : 3,6,9,12,15
F=((S1[Ia] + S2[Ib]) XOR S3[Ic]) - S4[Id];

Where f1,f2, and f3 in the above diagram are one of the
+,-, XOR operations.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

285

4.6 Function F in Blow-CAST-Fish

 Figure 5: Function F in Blow-CAST-Fish

The funcion F (Figure 5) in the Blow-CAST-Fish is
defined as follows.

Rounds : 1,4,7,10,13,16

F=((S1[Ia] XOR S2[Ib]) – S3[Ic]) + S4[Id]

Rounds : 2,5,8,11,14

F=((S1[Ia] - S2[Ib]) + S3[Ic]) XOR S4[Id]

Rounds : 3,6,9,12,15

F=((S1[Ia] + S2[Ib]) XOR S3[Ic]) - S4[Id]

Where f1,f2, and f3 in the above diagram are one of the
+,-, XOR operations.

4.7 Modification to the function F in Blow-
CAST-Fish to reduce execution time

Figure 6: Modified Function F in Blow-CAST-Fish

The modified funcion F (Figure 6) in the Blow-CAST-
Fish is defined as follows.

Rounds : 1,4,7,10,13,16

F=(S1[Ia] XOR S2[Ib]) + (S3[Ic]) - S4[Id]);

Rounds : 2,5,8,11,14
F=(S1[Ia] - S2[Ib]) XOR (S3[Ic]) + S4[Id]);

Rounds : 3,6,9,12,15
F=(S1[Ia] + S2[Ib]) - (S3[Ic]) XOR S4[Id]);

Where f1,f2, and f3 in the above diagram are one of the
+,-, XOR operations

This modification shows parallel evaluation of different
operations within the function in order to reduce the
execution time. It reduces number of computation levels
from three to two. This is repeated in all the 16 iterations
during the function evaluation.

4.8 Flowchart for the Algorithm

Following diagram (Figure 7) shows Flowchart for
encryption operation of Blow-CAST-Fish. The 64-bit
input is denoted with x, P-array is denoted with a Pi
(where i is the iteration), left 32bit data with xL and right
32bit data with xR.

Figure 7: Flowchart showing Blow-CAST-Fish encryption

5. Hardware Implementation using VHDL

The improvements suggested to the algorithm stated
above cannot be seen using software implementation. So,
we have demonstrated this improvement using VHDL

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

286

implementation to show enhancement of performance of
the modified algorithms in terms of total delays for
encryption and decryption.

5.1 About VHDL

The VHSIC Hardware Description Language is an
industry standard language used to describe hardware.

The following are some of the building blocks of VHDL.

1. Entity: All designs are expressed in terms of
entities. An entity is the most basic building
block in a design. It specifies the name of the
entity, ports of the entity, and entity-related
information. All designs are created using one
or more entities.

2. Architecture: All entities that can be simulated
have an architecture description. The
architecture describes the behavior of the entity.

3. Configuration: A configuration statement is
used to bind a component instance to an entity-
architecture pair.

4. Package: A package is a collection of
commonly used data types and subprograms
used like a parts list for a design.

Using these building blocks we have implemented the
original and modified algorithms to demonstrate the
improvement in time, as shown in the waveforms at the
end.

 6. Implementation steps and Testing

 The Blow-CAST-Fish algorithm is block cipher
consisting of a standard Fiestel network with 16 rounds,
plus some initial and final encryption functions. The
main feature that sets it off from other similar algorithms
is that the non-linear substitution boxes (S-boxes) are
key-dependent. Because of this, there is an expensive
initialization step required on every key change,
requiring the equivalent of 520 encryptions to initialize
the S-boxes.

In any implementation, there are several separate circuit
pieces that can be identified. First is the encryption core
that implements the actual Fiestel network. Second is the
function F(xL) that cipher relies on for each round of the
Fiestel network. Third is a generated array of sub-keys,
called the p-array, which is also used by cipher in each
round. Fourth are the four key-dependent s-boxes that are
read by the F(xL) function also in each round. Fifth
would be any control logic necessary to initialize the p-
array and s-boxes.

6.1 Inputs and Outputs

Below is a description of the inputs and outputs and how
they are used.

6.1.1 Inputs

clk : 1 - The input clock signal.

key : The key length is 448bits. If less than a 448 bits
key is desired, this signal must be padded up to 448 bits.

Input data : The input data is 64bit. In encryption mode,
this is the plaintext. In decryption mode, this is the
ciphertext. This is only read when the ready signal is
asserted.

new_data : 1 - This signal should be asserted when new
data is presented on the data_in port. This signal is
ignored when the circuit is not asserting ready. This
should not be asserted at the same time as new_key.

new_key : 1 - This signal should be asserted when a new
key or key_size is presented. This signal is ignored when
the circuit is not asserting ready. This should not be
asserted at the same time as new_data.

encrypt : 1bit - This signal toggles between encryption
and decryption operation. 1 means encrypt, 0 means
decrypt. This signal is only read the same cycle that
new_data is asserted and read.

6.1.2 Outputs

data_out : The output data is 64bit. In encryption mode,
this is the ciphertext. In decryption mode, this is the
plaintext.

6.2 Initialization

To properly initialize the circuit, new_key and
new_data must be low before the first rising edge of the
clock. After the first clock cycle, the circuit will assert
ready and it can then be used. If this constraint is not
met, the circuit will still initialize, but can take up to
21106 clock cycles before ready is asserted. However,
any time that ready is asserted after the first clock cycle,
the circuit is usable.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

287

6.3 Timing

The following timing is given as a reference. Generally,
in interfacing with this implementation, it is not
necessary to keep track of any timing or have any
external counters--it is sufficient to assert the proper
signals, then wait for the ready signal to come back on
before performing the next operation.

Time from when new_key is asserted and read to when
ready is asserted again (i.e. time to initialize the
algorithm with a new key): 21106 clock cycles.

7. Limitations

Every project will have one or the other limitations. The
limitation of our Blow-CAST-Fish include

• Blow-CAST-Fish is not suitable for applications

where the secret key changes frequently.

• Blow-CAST-Fish is not appropriate for applications

with limited memory such as smart cards.

The data to be encrypted should be plain text only.

8. Result Analysis

The results shown below in the form of waveforms, give
a clear picture of time taken by Blowfish, CAST-128,
and Blow-CAST-Fish algorithms.

8.1 Blowfish Encryption

The figure above shows Encryption operation using Blowfish
algorithm. The starting and end points of the operation are

shown by two yellow lines. From the diagram we can observe
the following.

Time at which Encryption operation initiated = 359 ps.
Time at which Encryption operation completed = 1140 ps.

So, time taken for Encryption = 1140 – 359 = 781 ps.

8.2 Blowfish Decryption

The figure above shows Decryption operation using Blowfish
algorithm. The starting and end points of the operation are
shown by two yellow lines. From the diagram we can observe
the following.

Time at which Decryption operation initiated = 2062 ps.
Time at which Decryption operation completed = 2843 ps.

So, time taken for Encryption = 2843 – 2062 = 781 ps.

8.3 CAST-128 Encryption

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

288

The figure above shows Encryption operation using CAST-128
algorithm. The starting and end points of the operation are
shown by two yellow lines. From the diagram we can observe
the following.

Time at which Encryption operation initiated = 270 ps.
Time at which Encryption operation completed = 1285 ps.

So, time taken for Encryption = 1285 – 270 = 1015 ps.

8.4 CAST-128 Decryption

The figure above shows Decryption operation using Blowfish
algorithm. The starting and end points of the operation are
shown by two yellow lines. From the diagram we can observe
the following.

Time at which Decryption operation initiated = 2072 ps.
Time at which Decryption operation completed = 3087 ps.

So, time taken for Encryption = 3087 – 2072 = 1015 ps.

8.5 Original Blow-CAST-Fish Encryption

The figure above shows Encryption operation using Blow-
CAST-Fish algorithm. The starting and end points of the
operation are shown by two yellow lines. From the diagram we
can observe the following.

Time at which Encryption operation initiated = 1306 ps.
Time at which Encryption operation completed = 365 ps.

So, time taken for Encryption = 1306 – 365 = 941 ps.

8.6 Modified Blow-CAST-Fish Encryption

The figure above shows Encryption operation using Blow-
CAST-Fish algorithm. The starting and end points of the
operation are shown by two yellow lines. From the diagram we
can observe the following.

Time at which Encryption operation initiated = 1146 ps.
Time at which Encryption operation completed = 356 ps.

So, time taken for Encryption = 1146 – 356 = 790 ps.

9. Time Considerations

9.1 Original Blow-CAST-Fish

Original Data

Encrypted Data

 Delay
(in ps)

Decrypted Data

Delay
(in ps)

55555555667788

33F4311A13C20FF1

941

55555555667788

 941

Total Time Taken = 941+ 941 = 1882 ps

9.2 Modified Blow-CAST-Fish

 Original Data

 Encrypted Data

Delay
(in ps)

 Decrypted
 Data

 Delay
(in ps)

55555555667788

CA95D29946FA239D

790

55555555667788

 790

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

289

Total Time Taken = 790 + 790 = 1580 ps

Difference = Existing – Modified = 1882 – 1580 = 302 ps

Percentage difference = (302/1882)*100 = 16%

10. Areas of Applications

A standard encryption algorithm must be suitable for
many different applications:

Bulk encryption: The algorithm should be efficient in
encrypting data files or a continuous data stream.

Random bit generation: The algorithm should be
efficient in producing single random bits.

Internet based applications (network security)

File Encryption Utility: Blowfish suits file encryption
utility because the key does not change. The entire file is
encrypted with the same key.

Packet encryption: The algorithm should be efficient in
encrypting packet-sized data. (An ATM packet has a 48-
byte data field.) It should be implementable in an
application where successive packets may be encrypted
or decrypted with different keys for different packets.

Hashing: The algorithm should be efficient in being
converted to a one-way hash function.

11. Linear and Differential cryptanalysis

Till now, there is no attack on full 16 round Blowfish
and CAST-128 algorithms which is practically feasible.
There is a differential attack[9,10] against five round
Blowfish in V. Rijmen's Ph.D. thesis. Vaudenay[20] in his
paper “On the weak keys of Blowfish”, has shown it is possible
to blowfish key when key used is weak. But only a minute
fraction of the keys will be weak. When the good features of
Blowfish and CAST-128 are combined, the result is more
secure Blow-CAST-Fish, and is open for cryptanalysis. Blow-
CAST-Fish uses key dependent S-boxes, round dependent
function and circular shift based on subkey value. This gives a
strong shield against linear and differential cryptanalysis. Since
S-boxes are unknown and are key dependent the situation
becomes still worst for the cryptanalyst.

12. Conclusion

Blow-CAST-Fish is a simple, fast, variably secure
algorithm as it uses variable key length of 32 to 448 bits
and hence meets basic design criteria of any block cipher,
i.e., simple, fast and secure. The execution time of Blow-

CAST-Fish lies in-between that of Blowfish and CAST-
128, but offers higher security compared to both. After
modification to its function, the time of execution
reduces by more than 16%, which is almost equal to
execution time of Blowfish, which is lesser than
execution time of CAST-128. This modification does not
make Blow-CAST-Fish vulnerable as security depends
to a greater extent upon S-boxes and its values, key
scheduling, and round dependent functions. This
modification is done so as to perform parallel evaluation
of some operations of function, without changing the
basic operations. The only drawback of the algorithm is
that, it does not suit for applications where key is
changed very often.

References

 [1] B. Schneier, “Description o f a New Variable-Length Key,

64-Bit Block Cipher (Blowfish)”, Fast Software Encryption,
Cambridge Security Workshop proceedings (December
1993), Springer-Verlag, 1994, pp. 191-204.

[2] B. Schneier, Applied Cryptography: Protocols, Algorithms,

and Source Code in C, 2nd ed., John Wiley & Sons, 1995.

[3] W. Stallings, Cryptography and Network Security:

Principles and Practices, 2nd ed., Prentice Hall, 1999.

[4] Dr.V.Ramaswamy, Kishnamurthy.G.N, Leela.G.H,

Ashalatha M.E, “Performance enhancement of Blowfish
and CAST-128 algorithms and Security analysis of
improved Blowfish algorithm using Avalanche effect”,
International journal of Computer Science and Network
Security, Vol. 8, No. 3, pp. 244-250.

[5] Kishnamurthy G.N, Dr.V.Ramaswamy and Leela.G.H,

“Performance Enhancement of Blowfish algorithm by
modifying its function” Proceedings of International
Conference on Computers, Information, System Sciences
and Engineering 2006, University of Bridgeport, Bridgeport,
CT, USA., Springer, pp. 240-244

[6] Adams, C. The CAST-128 Encryption Algorithm. RFC

2144, May 1997.

[7] Anne Canteaut(Editor) “Ongoing Research Areas in

Symmetric Cryptography” ECRYPT, 2006.

[8] Dr.V.Ramaswamy, Kishnamurthy.G.N, Leela.G.H,

Ashalatha M.E, “Performance enhancement of CAST –128
Algorithm by modifying its function” Proceedings of
International Conference on Computers, Information,
System Sciences and Engineering 2007, University of
Bridgeport, Bridgeport, CT, USA, Springer, to be published.

[9] Lausanne, Statistical Cryptanalysis of Block Ciphers,

Doctoral Thesis, EPFL, 2005.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

290

[10] Orr Dunkelman, Techniques for Cryptanalysis of Block

Ciphers, Doctoral Thesis, Haifa, 2006

[11] L. Knudsen, "Block Ciphers: A Survey", State of the Art

in Applied Cryptography: Course on Computer Security
and Industrial Cryptography (Lecture Notes in Computer
Science no. 1528), Springer-Verlag, pp. 18-48, 1998.

[12] C.M. Adams, “Simple and effective key scheduling for

symmetric ciphers,” Proceedings of SAC’94, workshop on
Selected Areas in Cryptography, pp. 129–133.

[13] C.M. Adams, “Constructing symmetric ciphers using the

CAST design procedure,” Designs, Codes, and
Cryptography, Vol. 12, No. 3, November 1997, pp. 71–104.

[14] C.M. Adams, S.E. Tavares, “The structured design of

cryptographically good Sboxes,” Journal of Cryptology,
Vol. 3, No. 1, 1990, pp. 27–42.

[15] C.M. Adams, S.E. Tavares, “Designing S-boxes for

ciphers resistant to differential cryptanalysis,” Proceedings
of the 3rd Symposium on State and Progress of Research in
Cryptography, W. Wolfowicz, Ed., Fondazione Ugo
Bordoni, 1993, pp. 181–190.

[16] E. Biham, A. Shamir, Differential Cryptanalysis of the

Data Encryption Standard, Springer-Verlag, 1993.

[17] D. Chaum, J.-H. Evertse, “Cryptanalysis of DES with a

reduced number of rounds sequences of linear factors in
block ciphers,” Advances in Cryptology, Proceedings
Crypto’85, LNCS 218, H.C. Williams, Ed., Springer-Verlag,
1985, pp. 192–211.

[18] R.L. Rivest, “The RC5 encryption algorithm,” Fast

Software Encryption (FSE’94), LNCS 1008, B. Preneel, Ed.,
Springer-Verlag, 1995, pp. 86–96.

[19] B. Schneier, J. Kelsey, “Unbalanced Feistel networks and

block cipher design,” Fast Software Encryption (FSE’96),
LNCS 1039, D. Gollmann, Ed., Springer-Verlag,

1996, pp. 121–144.

[20] S. Vaudenay, “On the weak keys of Blowfish,” Fast

Software Encryption (FSE’96), LNCS 1039, D. Gollmann,
Ed., Springer-Verlag, 1996, pp. 27–32.

[21] M. Luby, C. Rackoff, “How to construct pseudorandom

permutations from pseudorandom functions,” SIAM Journal
on Computing, Vol 17, No. 2, April 1988, pp. 373–386.

Krishnamurthy G N
obtained his B.E. degree in
Electronics & Communication
Engineering from Kuvempu
University in 1996 and M.Tech.
degree in Computer Science &
Engineering from Visveswaraya
technological University, India

in 2000. He is presently pursuing his Ph.D. from Visveswaraya
Technological University, India under the guidance of Dr. V
ramaswamy. He has published papers in national and
international conferences, journals in the area of Cryptography.
After working as a lecturer (from 1997) he has been promoted
to Assistant Professor (from 2005), in the Department of
Information Science & Engineering, Bapuji Institute of
Engineering & Technology, Davangere, affiliated to
Visveswaraya Technological University, Belgaum, India. His
area of interest includes Design and analysis of Block ciphers,
He is a life member of ISTE, India.

Dr. V Ramaswamy obtained his
Ph.D. degree from Madras
University, in 1982, He is working
as Professor and Head in the
Department of Information Science
and Engineering. He has more the 25
years of teaching experience
including his four years of service in
Malaysia. He is guiding many
research scholars and has published
many papers in national and

international conference and in many international journals. He
has visited many universities in USA and Malaysia.

Leela G.H. received the B.E.
degree in Electronics &
Communication Engineering from
Kuvempu University in 1994 and
M.E. degree in Digital Electronics
from Karnataka University in 1998.
After working as a lecturer (from
1994) she has been a Assistant
Professor (from 2007), in the
Department of Electronics &
Communication Engineering,

Bapuji Institute of Engineering & Technology, Davangere,
affiliated to Visveswaraya Technological University, Belgaum.
Her area of interest includes VLSI Design, FPGA Design and
Cryptography. She is a member of ISTE, India.

M.E.Ashalatha received the B.E.
degree in Electronics &
Communication Engineering from
Mysore University in 1987 and
M.Tech degree in Industrial
Electronics from Mysore
University in 1990. After working
as a lecturer (from 1990) and as
Assistant Professor (from 1995),
she has been a Professor (from
2007) in the Department of
Electronics & Communication

Engineering, Bapuji Institute of Engineering & Technology,
Davangere, affiliated to Visveswaraya Technological
University, Belgaum. Her area of interest includes VLSI
Design, Cryptography and Embedded System Design. She is a
member of ISTE and IE, India.

