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BLOW-UP BEHAVIOR FOR A SEMILINEAR HEAT EQUATION
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Abstract. We study the blow-up behaviors of solutions of a semilinear heat equation
with a nonlinear boundary condition. Under certain conditions, we prove that the blow-up
point occurs only at the boundary. Then, by applying the well-known method of Giga-Kohn,
we derive the time asymptotic of solutions near the blow-up time. Finally, we prove that the
blow-up is complete.

1. Introduction. In this paper, we study the following initial boundary value problem

ut = uxx + up , x ∈ (0, 1) , t > 0 ,(1.1)

ux(0, t) = 0 , ux(1, t) = uq(1, t) , t > 0 ,(1.2)

u(x, 0) = u0(x) , x ∈ [0, 1] ,(1.3)

wherep, q are positive constants, andu0(x) is a positive smooth function. For convenience,
we always assume that

u′
0(0) = 0 , u′

0(1) = u
q
0(1) .

We say that the solutionu of the problem (1.1) – (1.3) blows up if there is a finite timeT

such that max0≤x≤1 u(x, t) → ∞ ast ↑ T . It has been shown in [11] that the solutionu of
the problem (1.1) – (1.3) blows up if and only if max{p, q} > 1. In [11], they also studied the
blow-up set and derived the upper and lower bounds for blow-up rate under certain conditions.

A point x0 is said to be a blow-up point foru if there is a sequence{(xn, tn)} such that
xn → x0, tn → T , andu(xn, tn) → ∞ asn → ∞. Under certain conditions, it is shown in
[11] that the boundary pointx = 1 is the only blow-up point. This phenomenon of blow-up
on the boundary has been observed and studied by many authors. We refer the readers to two
nice survey papers [4] and [2] and the references cited therein. See also the references cited
in [11].

We are concerned with the blow-up behaviors of solutions of the problem (1.1) – (1.3).
Hence throughout this work we always assume that max{p, q} > 1. In the sequel, we shall
assume that the solutionu of the problem (1.1) – (1.3) blows up atT < ∞. First, we study
the blow-up set. We prove that blow-up point occurs only at the boundary pointx = 1, if
u′

0 ≥ 0 in [0, 1]. This improves the results of [11], where the monotonicity ofu in time is
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assumed. Furthermore, by deriving some a priori estimates, with the help of the lower and
upper bounds for blow-up rate, we can apply the well-known Giga-Kohn transformation (cf.
[8]) to derive the time asymptotic of solutions. This gives a more precise information of the
blow-up behaviors. We remark here that a similar problem for the case when the heat operator
is replaced by the porous medium operator in the half real line has been studied by de Pablo,
Quirós and Rossi [3].

The next question is the possibility of continuation of solutions beyond the blow-up time.
For more references on this subject, we refer the readers to the paper [5] and some references
listed there. We show that the blow-up for the problem (1.1) – (1.3) is complete, i.e., solutions
blowing up in finite time will be infinite identically after the blow-up time.

This paper is organized as follows. We study the blow-up set in Section 2. Some a priori
estimates are given in Section 3. In Section 4, we study the self-similar solution for the critical
case by an ordinary differential equation approach. Then we study the time asymptotic of the
solution in Section 5. Finally, in Section 6 we prove that the blow-up is complete.

We thank the referee for helpful comments which improve some results in Section 2.

2. Blow-up set. Let u be the solution of the problem

ut = uxx + up , x ∈ (0, 1) , 0 < t < T ,(2.1)

ux(0, t) = 0 , ux(1, t) = uq(1, t) , 0 < t < T ,(2.2)

u(x, 0) = u0(x) , x ∈ [0, 1] ,(2.3)

whereT is the blow-up time ofu. Here as usual we always assume thatu′
0(0) = 0 and

u′
0(1) = u

q

0(1). We shall assume thatu′
0 ≥ 0 in [0, 1], so that by the maximum principle we

haveux > 0 in (0, 1] × (0, T ). We shall modify the method of Friedman and McLeod ([7])
to study the blow-up set.

THEOREM 2.1. Suppose that p > 1. If u′
0 ≥ 0 in [0, 1], then the blow-up occurs only

at x = 1.

PROOF. Suppose that there is a blow-up pointa ∈ [0, 1). Then there is a sequence
{(xn, tn)} such thatxn → a, tn → T , andu(xn, tn) → ∞ asn → ∞. Fix a constant
d ∈ (a, 1). By comparing the solutionu with the function

u(xn, tn) sin[π(x − d)/(1 − d)] exp{−[π/(1 − d)]2(t − tn)}
for eachn sufficiently large, it is easy to show that

u(x, t) ≥ u(xn, tn) sin[π(x − d)/(1 − d)] exp{−[π/(1 − d)]2(t − tn)}
for x ∈ [d, 1] andt ≥ tn. Hence

lim
t→T

u(x, t) = ∞(2.4)

uniformly overx ∈ [b, c] for any compact subset[b, c] of (d, 1).
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Now, we fix a compact subset[b, c] of (d, 1). We take anyr ∈ (1, p) and consider the
function

J (x, t) = ux(x, t) − g (x)ur(x, t) ,

whereg (x) = ε sin[π(x − b)/(c − b)] for someε > 0 to be determined. Using (2.4), there is
a t0 ∈ (0, T ) such that

Jt − Jxx − (pup−1 + 2rg ′ur−1)J ≥ 0(2.5)

in [b, c] × [t0, T ) for anyε > 0. By choosingε > 0 sufficiently small such thatJ (x, t0) ≥ 0
for anyx ∈ [b, c], it follows from the maximum principle thatJ ≥ 0 in [b, c]×[t0, T ). Hence
we have

u−r (x, t)ux(x, t) ≥ g (x) in [b, c] × [t0, T ) .(2.6)

An integration of (2.6) leads to a contradiction. Hence the theorem follows. �

If p ≤ 1, thenq > 1, since max{p, q} > 1.

LEMMA 2.2. Let 0 < p ≤ 1. If u′
0 ≥ 0 in [0, 1], then x = 1 is the only blow-up point.

PROOF. Sinceu′
0(1) > 0, there is a constantδ ∈ (0, 1) such thatu′

0 > 0 in [1 − δ, 1].
Set

η = inf
1−δ≤x≤1

{u′
0(x)/u

q

0(x)}, M = (q − p) sup
[1−δ,1]×[0,T )

up−1 .

Then 0< η ≤ 1 and 0< M < ∞. Choose a positive integern ≥ 3 such thatn ≥ M and
a positive numberε < min{η, δn}. Defineg (x) = (x − 1 + ε1/n)n if 1 − ε1/n ≤ x ≤ 1;
g (x) = 0, otherwise. It is easy to see thatg ∈ C2([0, 1]) and satisfies

0 ≤ g ≤ ε, g ′ ≥ 0, g ′′ ≥ 0, g ′′ ≥ Mg .(2.7)

Then, by using the factq > 1 and the maximum principle, it is easy to show that

g (x)uq(x, t) ≤ ux(x, t)

for 0 ≤ x ≤ 1 and 0≤ t < T . Hence

u−q(x, t)ux(x, t) ≥ g (x)(2.8)

for 0 ≤ x ≤ 1 and 0≤ t < T . An integration of (2.8) shows thatu cannot blow up at any
pointx < 1. This proves the lemma. �

Indeed, the conditionu′
0 ≥ 0 in [0, 1] can be removed if 0< p ≤ 1.

THEOREM 2.3. If 0 < p ≤ 1, then x = 1 is the only blow-up point.

PROOF. We first extend the functionu(x, t) to w(x, t) defined on[−1, 1] × [0, T ) so
thatw(x, t) = u(x, t) andw(−x, t) = w(x, t) for x ∈ [0, 1] andt ∈ [0, T ). Thenw satisfies

wt = wxx + wp , x ∈ (−1, 1) , 0 < t < T ,

wx(−1, t) = −wq(−1, t) , wx(1, t) = wq(1, t) , 0 < t < T .
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Arguing as Lemma 1.2 of [9], there existst∗ ∈ (0, T ) such that

n(t) := #{a ∈ [−1, 1] | wx(a, t) = 0}
is a constant for allt ≥ t∗. Moreover, there areC1 functionss0(t), . . . , s±l (t), l ≥ 0, from
[t∗, T ) to [−1, 1] such that

s−l (t) < · · · < s0(t) < · · · < sl(t) , s0(t) ≡ 0 ,

{a ∈ [−1, 1] | wx(a, t) = 0} = {s−l (t), . . . , s0(t), . . . , sl (t)} for t ≥ t∗ ,

and the limitsi := lim t↑T si(t) exists for alli. Sincen(t) is constant in[t∗, T ), it follows
from Theorem C of [1] thatwxx(si(t), t) 
= 0 for all t ∈ [t∗, T ). Note that for eachi there
is a fixed sign forwxx(si(t), t) for all t ∈ [t∗, T ). Also, it suffices to consider the so-called
maximum curve, i.e., the curve for whichwxx(si(t), t) < 0 on[t∗, T ).

If l = 0, thenux(x, t) > 0 on (0, 1] × [t∗, T ). Hence the conclusion follows from
Lemma 2.2. Suppose thatl > 0. Setmi(t) := w(si(t), t). Notice thatm′

i (t) < mi(t)
p on

[t∗, T ), if wxx(si(t), t) < 0 on [t∗, T ). Since 0< p ≤ 1, mi(t) remains bounded nearT .
This implies thatw cannot blow up at any point in(−1, 1). The theorem is proved. �

3. Some a priori estimates. In this section, we will derive some a priori estimates
which will be used in Section 5 to prove the time asymptotic results. Letu be the solution
of (2.1) – (2.3) with blow-up timeT . From now on we shall always assume thatu′

0 ≥ 0 in
[0, 1], so that by the maximum principle we haveux > 0 in (0, 1] × (0, T ). Notice that
u(1, t) = max0≤x≤1 u(x, t).

The following lemma is given in [11] under the assumptionu′′
0 + u

p

0 ≥ a > 0 in [0, 1].
Indeed, we have the following lemma.

LEMMA 3.1. If u′′
0 + u

p
0 ≥ 0 in [0, 1], then ut ≥ 0 in [0, 1] × [0, T ).

PROOF. Setv = ut . Thenv satisfies

vt = vxx + pup−1v , 0 < x < 1 , 0 < t < T ,

vx(0, t) = 0 , vx(1, t) = quq−1(1, t)v(1, t) , 0 < t < T ,

v(x, 0) = u′′
0 + u

p
0 ≥ 0 , 0 ≤ x ≤ 1 .

For any fixedτ ∈ (0, T ), let

L = max
0≤x≤1,0≤t≤τ

{
1

2
quq−1(x, t)

}
, M = 2L + 4L2 + max

0≤x≤1,0≤t≤τ
{pup−1(x, t)} .

Setw(x, t) = e−Mt−Lx2
v(x, t). Thenw satisfies

wt = wxx + 4Lxwx + cw , 0 < x < 1 , 0 < t ≤ τ ,

wx(0, t) = 0 , wx(1, t) = dw(1, t) , 0 < t ≤ τ ,

w(x, 0) ≥ 0, 0 ≤ x ≤ 1 ,

wherec = c(x, t) ≤ 0 andd = d(t) ≤ 0. By the maximum principle, we obtain thatw ≥ 0
in [0, 1] × [0, τ ]. Hence the lemma follows. �
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Recall from [11] that ifut ≥ 0, then there are positive constantsc andA such that

c(T − t)−α ≤ u(1, t) ≤ A(T − t)−α ,(3.1)

where the exponent is given by

α =
{

1/(p − 1) if p ≥ 2q − 1 ,

1/[2(q − 1)] if p < 2q − 1 .

Hereafter we shall assume thatu′
0 ≥ 0 andu′′

0 + u
p

0 ≥ 0 in [0, 1]. Therefore, we have
ux ≥ 0 andut ≥ 0. We now make the following Giga-Kohn transformation

y = 1 − x√
T − t

, s = − ln(T − t) ,(3.2)

w(y, s) = (T − t)αu(x, t) ,(3.3)

whereα is defined as in (3.1). Let

W = {(y, s) | 0 < y < es/2, s > − ln T } .

Then forp > 2q − 1 we have

ws = wyy − y

2
wy − αw + wp in W ,(3.4)

wy(0, s) = −eγ sw(0, s)q , wy(es/2, s) = 0 , s > − ln T ,(3.5)

w(y,− ln T ) = T αu0(1 − y
√

T ) , 0 ≤ y ≤ 1/
√

T ,(3.6)

whereγ = [(2q − 1) − p]/[2(p − 1)] < 0; for p = 2q − 1 we have

ws = wyy − y

2
wy − αw + wp in W ,(3.7)

wy(0, s) = −w(0, s)q , wy(e
s/2, s) = 0, s > − ln T ,(3.8)

w(y,− ln T ) = T αu0(1 − y
√

T ) , 0 ≤ y ≤ 1/
√

T ,(3.9)

while for p < 2q − 1 we have

ws = wyy − y

2
wy − αw + eσswp in W ,(3.10)

wy(0, s) = −w(0, s)q , wy(e
s/2, s) = 0, s > − ln T ,(3.11)

w(y,− ln T ) = T αu0(1 − y
√

T ) , 0 ≤ y ≤ 1/
√

T ,(3.12)

whereσ = [p − (2q − 1)]/[2(q − 1)] < 0.
We have the following a priori estimates forw.

LEMMA 3.2. w and wy are bounded in W̄ .

PROOF. The fact thatw is bounded follows from (3.1).
It follows from Lemma 3.1 thatuxx ≥ −up in [0, 1] × [0, T ). Multiplying the above

inequality byux ≥ 0 and integrating it fromx to 1 , we obtain

u2
x(x, t) ≤ u2q(1, t) + 2

p + 1
up+1(1, t) .(3.13)
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Note thatwy(y, s) = −(T − t)α+1/2ux(x, t).
Recall (3.1). Forp ≥ 2q − 1, it follows from (3.13) and Lemma 3.1 that

w2
y(y, s) ≤ (T − t)2α+1u2q(1, t) + 2

p + 1
(T − t)2α+1up+1(1, t)

= [(T − t)αu(1, t)]p+1u2q−1−p(1, t) + 2

p + 1
[(T − t)αu(1, t)]p+1

≤ Ap+1u
2q−1−p
0 (1) + Ap+1 .

Forp < 2q − 1, it also follows from (3.13) and Lemma 3.1 that

w2
y(y, s) ≤ (T − t)2α+1u2q(1, t) + 2

p + 1
(T − t)2α+1up+1(1, t)

= [(T − t)αu(1, t)]2q + 2

p + 1
[(T − t)αu(1, t)]2qup−2q+1(1, t)

≤ A2q + 2

p + 1
A2qu

p−2q+1
0 (1) .

Hence the lemma is proved. �

LEMMA 3.3. There is a positive constant C such that |ws(y, s)| ≤ C(1 + y) and
|wyy(y, s)| ≤ C(1 + y) in W̄ .

PROOF. It follows from Lemma 3.2 that|ws(y, s) − wyy(y, s)| ≤ C(1 + y) in W̄ for
some positive constantC. The lemma follows by applying the standard theory of parabolic
equations, e.g., Theorem 6.44, Theorem 4.30 and Theorem 4.31 in [10]. �

4. Self-similar solution. In this section, we shall study the self-similar solution of
(1.1) – (1.2) for the casep = 2q −1, i.e.,q = (p+1)/2. We are concerned with the existence
and uniqueness of global positive monotone decreasing solution of the initial value problem
(P):

w′′ − 1

2
yw′ − αw + wp = 0 , y > 0 ,(4.1)

w′(0) = −wq(0) ,(4.2)

wherew = w(y) andα = 1/(p − 1). We always assume thatp > 1. The existence result
has been obtained before by Wang and Wang in [12]. Here we present a different proof for
the existence. Some of the lemmas will be useful for the proof of uniqueness.

Given anyη > 0, there is a unique local solutionw(y; η) of (4.1) – (4.2) withw(0) = η.
Let ρ(y) = exp{−y2/4} andf (w) = −αw + wp . Thenw satisfies

(ρw′)(y) = −ηq −
∫ y

0
ρ(s)f (w(s))ds .(4.3)
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Let κ be the unique positive solution off (w) = 0. Note thatw′ < 0 as long asw ≥ κ . Set

κ0 =
(

p + 1

p + 3

)α

κ .(4.4)

Note that 0< κ0 < κ .

LEMMA 4.1. Let η ≥ κ0. Then w′ < 0 as long as w > 0.

PROOF. Let

G(y) = 1

2
[w′(y)]2 + F(w(y)) ,

whereF(w) = ∫ w

κ f (s)ds. Note that

G(0) ≥ F(0) if and only if η ≥ κ0 .(4.5)

Since

G′(y) = 1

2
y[w′(y)]2 ,

and the problem (P) has no non-trivial constant solution,G is strictly increasing.
If w is not monotone decreasing, then there is the first critical pointy0 > 0 of w such

thatw′(y0) = 0 andw > 0 in [0, y0]. Notice thatw(y0) < κ . Hence

G(y0) = F(w(y0)) < F(0) .

On the other hand, by (4.5) we haveG(0) ≥ F(0), sinceη ≥ κ0. This implies thatG(0) >

G(y0), a contradiction. Therefore, the lemma follows. �

Suppose thatw > 0 andw′ < 0 in [0,∞). Let l = limy→∞ w(y). Thenl ∈ [0, κ)

and there is a sequence{yn} such thatw′(yn) → 0 asn → ∞. Dividing Equation (4.1) by
y and integrating it from 1 toyn for anyn large, asn → ∞, this leads to a contradiction, if
l ∈ (0, κ). Hencel = 0.

LEMMA 4.2. For η ≥ κ0, the solution w is monotone decreasing to zero at some
finite R.

PROOF. Otherwise, by Lemma 4.1 and the above observation,w(y) → 0 asy → ∞
and there is a sequence{yn} such thatw′(yn) → 0 asn → ∞. ThenG(yn) → F(0) asn →
∞. SinceG is monotone increasing, its limit must be greater thanG(0), i.e.,F(0) > G(0), a
contradiction to (4.5). This proves the lemma. �

We now turn to the case whenη is small. First, letη0 be a positive constant such that
−f (w) ≥ αw/2 for all w ∈ [0, η0]. Notice thatη0 < κ . Chooseη1 ∈ (0, η0) such that
η1−q > e1/4 for all η ∈ (0, η1). Now, given any fixedη ∈ (0, η1), suppose thatw′ < 0 in
[0, R] andw(R) = 0 for someR = R(η) > 0. Since, by (4.3),ρ(y)w′(y) ≥ −ηq for all
y ∈ [0, R), we have

η = −
∫ R

0
w′(s)ds ≤ ηqReR2/4 .
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Let g (y) = yey2/4. Sinceg is strictly monotone increasing, we conclude thatR = R(η) > 1,
if η < η1.

LEMMA 4.3. There is a small positive constant η∗ such that w′ vanishes before w

vanishes, if η < η∗.

PROOF. Let η∗ be a positive constant such thatη∗ < η1 and

η1−q >
1 + α/4

α/2
e1/4 for all η ∈ (0, η∗) .(4.6)

Suppose that there is anη ∈ (0, η∗) such that the lemma does not hold. Then the correspond-
ing solutionw must have the property thatw′ < 0 in [0, y0] for somey0 > 1. From (4.3) it
follows thatρ(y)w′(y) ≥ −ηq for all y ∈ [0, y0] and so

w(y) = η +
∫ y

0
w′(s)ds ≥ η − ηqyey2/4 for all y ∈ [0, y0] .(4.7)

Then from (4.3), (4.7), and noting thatη < η0, we obtain that

ρ(y)w′(y) ≥ −ηq + α

2

∫ y

0
ρ(s)w(s)ds

≥ −ηq + α

2

∫ y

0
e−s2/4[η − ηqses2/4]ds

≥ −
(

1 + α

4
y2

)
ηq + α

2
ye−y2/4η

for all y ∈ (0, y0). In particular, fory = 1 we have

e−1/4w′(1) ≥ −
(

1 + α

4

)
ηq + α

2
e−1/4η > 0 ,

sinceη < η∗. This is a contradiction and the lemma is proved. �

Now, we define

I1 = {η > 0 | w(y; η) is decreasing to zero at some finiteR}
I2 = {η > 0 | w′(y; η) vanishes beforew(y; η) vanishes}

Notice thatw andw′ cannot vanish at the same time. HenceI1 and I2 are disjoint.
Lemmas 4.2 and 4.3 imply that[κ0,∞) ⊂ I1 and(0, η∗) ⊂ I2.

LEMMA 4.4. The set I2 is open.

PROOF. Let η0 ∈ I2. Thenη0 < κ0 < κ and there is the first pointy0 > 0 such that
w0 > 0 in [0, y0], w′

0 < 0 in [0, y0) andw′
0(y0) = 0, wherew0(y) = w(y; η0). Since

w′′
0(y0) > 0, there is a positive constantδ such thatw′

0(y) > 0 for y ∈ (y0, y0 + δ]. Let
ε > 0, ε < w0(y0)/2, andε < w′

0(y0 + δ)/2. By the continuous dependence of initial value,
there is a positive constantγ such that|w(y; η)−w0(y)| < ε and|w′(y; η)−w′

0(y)| < ε for
all y ∈ [0, y0 + δ], if η ∈ (η0 − γ, η0 + γ ). This implies that(η0 − γ, η0 + γ ) ⊂ I2 and so
I2 is open. �
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To prove thatI1 is open, we consider the quantity

H(y) = αw(y) + 1

2
yw′(y) .(4.8)

ThenH satisfies the equation

H ′(y) = 1

2
yH(y) +

(
1

2
+ α

)
w′(y) − 1

2
ywp(y) .(4.9)

Suppose thatH(y0) < 0 for somey0 ≥ 0. Thenw′(y0) < 0 by (4.8) andH ′(y0) < 0 by
(4.9). Hence, by (4.9) again,H ′(y) < 0 andH(y) < 0 for all y ≥ y0 as long asw > 0.

LEMMA 4.5. The set I1 is open.

PROOF. First, we claim that if there is a pointy0 ≥ 0 such thatH(y0) < 0, thenw

is decreasing aftery0 and vanishes at some finiteR > y0. Otherwise, ifw > 0 in [0,∞),
thenH(y) < 0 andH ′(y) < 0 for all y ≥ y0. Hence there is a positive constantδ such that
H(y) ≤ −δ for all y ≥ y0. By an integration, we obtain that

w(y) ≤ (y0/y)2αw(y0) − δ

α
+ δ

α
(y0/y)2α → − δ

α
as y → ∞ ,

a contradiction.
Now, letη0 ∈ I1 andw0(y) = w(y; η0). Then there is a finiteR0 > 0 such thatw′

0 < 0
andw0 > 0 in [0, R0). Sincew0(R0) = 0 andw′

0(R0) < 0, there is a positive constantδ such
thatH0(R0 − δ) < 0, whereH0(y) = αw0(y) + yw′

0(y)/2. It follows from the theory of
continuous dependence on initial value that there is a positive constantγ such thatw(y; η) >

0, w′(y; η) < 0 for y ∈ [0, R0 − δ], andH(R0 − δ) < 0, if η ∈ (η0 − γ, η0 + γ ). Thenw

is decreasing afterR0 − δ and vanishes at some finiteR > R0 − δ, if η ∈ (η0 − γ, η0 + γ ).
Hence the lemma is proved. �

We now state and prove an existence theorem as follows.

THEOREM 4.6. There is a global positive monotone decreasing solution of (P).

PROOF. Setη̄ = inf I1. Then the corresponding solution̄w(y) = w(y; η̄) must be a
global positive monotone decreasing solution of (P). �

Indeed, for anyη 
∈ I1 ∪ I2, the corresponding solutionw(y; η) is a global positive
monotone decreasing solution of (P) satisfyingw(y; η) → 0 asy → ∞.

We have from Lemma 4.2 the estimateη̄ < κ0. Also, the initial valueη < κ0 for any
global positive monotone decreasing solution of (P). To derive a better estimate, we need the
following generalized version of Pohozaev Identity, which is inspired by Lemma 2.1 of [13]
(see also [14]).

LEMMA 4.7. Suppose w(y) is a solution of (P) and define

J (y) := ρ(y)(w′(y))2 − y

2
ρ(y)w′(y)w(y) +

(
1

4
− α

)
ρ(y)w2(y) + 2

p + 1
ρ(y)wp+1(y) ,
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where ρ(y) = exp[−y2/4]. Then the following identity holds:

J (y) = p + 3

p + 1
wp+1(0) + p − 5

4(p − 1)
w2(0) +

∫ y

0
sρ(s)

{
p − 1

2(p + 1)
wp−1(s) − 1

8

}
w2(s)ds .

PROOF. DifferentiatingJ (y) and using(4.1), we obtain

J ′(y) = yρ(y)

{
p − 1

2(p + 1)
wp−1(y) − 1

8

}
w2(y) .

IntegratingJ ′(y) from 0 toy and noting that

J (0) = p + 3

p + 1
wp+1(0) + p − 5

4(p − 1)
w2(0) ,

we get the desired identity. �

COROLLARY 4.8. Suppose that w(y) is a global positive solution of (P) satisfying
w(y) → 0 as y → ∞. Then∫ ∞

0
sρ(s)

{
1

8
− p − 1

2(p + 1)
wp−1(s)

}
w2(s)ds = p + 3

p + 1
wp+1(0) + p − 5

4(p − 1)
w2(0) .(4.10)

PROOF. Sincew(y) is a global positive solution of (P) and limy→∞ w(y) = 0, there is
a sequenceyn → ∞ such that limn→∞ w′(yn) = 0. Using Lemma 4.7, (4.10) follows. �

Definef1(w) = {1/8 − [(p − 1)/(2(p + 1))]wp−1}w2 and letκ̄ = (α/2)α . Then it is
easy to check that

max
w∈[0,∞)

f1(w) = f1(κ̄) .

The following lemma gives an upper bound for any global positive solution of (P) which
tends to zero asy → ∞.

LEMMA 4.9. Suppose that w(y) is a global positive solution of (P) with w(0) = η

such that w(y) → 0 as y → ∞. Then η < κ̄ . In particular, we have η̄ < κ̄ .

PROOF. For contradiction, we assume thatη ≥ κ̄ . It follows from the definition ofκ̄
that ∫ ∞

0
sρ(s)f1(w(s))ds <

∫ ∞

0
sρ(s)f1(κ̄)ds = p − 1

4(p + 1)
κ̄2 .

On the other hand, sincew(0) = η ≥ κ̄ , we have

p + 3

p + 1
wp+1(0) + p − 5

4(p − 1)
w2(0) ≥ p + 3

2(p + 1)(p − 1)
w2(0) + p − 5

4(p − 1)
w2(0)

= p − 1

4(p + 1)
w2(0) ≥ p − 1

4(p + 1)
κ̄2 ,

a contradiction to(4.10). This completes the proof. �

THEOREM 4.10. If 1 < p ≤ 2, then there is a unique global positive monotone de-
creasing solution of (P).
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PROOF. For contradiction, we suppose that there are two distinct global positive mono-
tone decreasing solutionsw1 andw2 of (P). Note thatwi(y) → 0 asy → ∞ for i = 1, 2.

First, we claim thatw1 andw2 must intersect each other at least once. Multiplying the
equation

(ρw′
i )

′(y) = −ρ(y)f (wi(y)), i = 1, 2 ,

by w2 for i = 1; byw1 for i = 2, respectively, and integrating by parts, we end up with∫ ∞

0
ρ(s)w1(s)w2(s)(w

p−1
1 (s) − w

p−1
2 (s))ds = w1(0)w2(0)(w

q−1
2 (0) − w

q−1
1 (0)) ,

usingw′
i (0) = −w

q
i (0), i = 1, 2. Hence they must intersect each other at least once.

Without loss of generality, we may assume thatw1(y) > w2(y) in [0, y0) andw1(y0) =
w2(y0) for somey0 > 0. Then we havew′

1(y0) < w′
2(y0). Hence there existsy1 > y0 such

thatw1(y1) < w2(y1). Definev(y) := w1(y) − w2(y). Then it follows from(4.1) thatv(y)

satisfies

v′′ − y

2
v′ + [pξp−1(y) − α]v = 0 ,(4.11)

for someξ(y) ∈ [min{w1(y),w2(y)}, max{w1(y),w2(y)}]. Since limy→∞ wi(y) = 0, i =
1, 2, there existsy2 > y1 such that| v(y2) |<| v(y1) | /2.

Now, let ȳ ∈ [0, y2] be a minimal point ofv in [0, y2]. Thenȳ ∈ (0, y2) andv(ȳ) < 0.
Sinceȳ is an interior extreme point ofv, we have

v′(ȳ) = 0 , v′′(ȳ) ≥ 0 .(4.12)

From Lemma 4.9 andξ(ȳ) ≤ max{w1(0),w2(0)}, it follows that

pξp−1(ȳ) − α < 0 ,(4.13)

if 1 < p ≤ 2. Then, by(4.11), (4.12) and(4.13), we obtain that

0 =v′′(ȳ) − ȳ

2
v′(ȳ) + [pξp−1(ȳ) − α]v(ȳ)

≥ [pξp−1(ȳ) − α]v(ȳ)

> 0 ,

a contradiction. This completes the proof. �

We conjecture that Theorem 4.10 should hold for anyp > 1. Unfortunately we are
unable to prove it now, so we left it as an open problem.

5. Time asymptotic analysis. In this section, we shall study the time asymptotic of
the solutions of the problem (2.1) – (2.3) for various cases. The method is the same as the one
used in [8] with some modifications. Hence we shall only give the outline of the proofs.

THEOREM 5.1. For p > 2q − 1, we have

(T − t)αu(1 − y
√

T − t , t) → κ

as t → T uniformly for y ∈ [0, C] for any C > 0. Here α = 1/(p − 1) and κ = αα .
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PROOF. As in [8], we take any increasing sequence{sj } in (0,∞) such thatsj+1−sj →
∞ asj → ∞. For eachj ∈ N, we define

wj(y, s) = w(y, s+sj ) for all (y, s) ∈ Wj ≡ {(y, s) | 0 ≤ y ≤ e(s+sj )/2, s ≥ −sj−ln T } .

Note that
⋃∞

j=1 Wj = [0,∞) × R andW1 ⊂ W2 ⊂ · · · . Recall Lemmas 3.2 and 3.3. By
the Ascoli-Arzela Theorem and a diagonal process, we can get a subsequence (still denoted
by wj ) such thatwj(y, s) → w∞(y, s) as j → ∞ uniformly on any compact subset of
[0,∞) × R and that for any integerm we havewj,y(y,m) → w∞,y(y,m) as j → ∞
pointwise fory ∈ [0,∞) for some functionw∞ defined on[0,∞) × R. It is easy to see that
w∞ is a classical solution of the equation

ws = wyy − 1

2
ywy − αw + wp in [0,∞) × R .

Now, we claim thatw∞,s (y, s) ≡ 0 in [0,∞) × R. Introduce the energy function

E[w](s) = 1

2

∫ s

0
ρw2

ydy + α

2

∫ s

0
ρw2dy − 1

p + 1

∫ s

0
ρwp+1dy ,

whereρ(y) = e−y2/4. By a simple computation, we get

− d

ds
E[w](s) =

∫ s

0
ρw2

s dy − G(s) ,(5.1)

where

G(s) =ρ(s)

{
1

2
w2

y(s, s) + α

2
w2(s, s) − 1

p + 1
wp+1(s, s) + wy(s, s)ws(s, s)

}

+ exp

{
(2q − 1) − p

2(p − 1)
s

}
w(0, s)qws(0, s) .

Let s0 = max{2 ln 2,− ln T }. Note that

{(y, s) | 0 ≤ y ≤ s, s ≥ s0} ⊆ W̄ .

Integrating both sides of (5.1) fromm + sj to m + sj+1 for anym, j ∈ Z with m + sj ≥ s0,
we obtain∫ m+sj+1

m+sj

∫ s

0
ρ(y)w2

s (y, s)dyds

= Em+sj [w](m + sj ) − Em+sj+1[w](m + sj+1) +
∫ m+sj+1

m+sj

G(s)ds .

By a change of variable, we get∫ m+sj+1−sj

m

∫ s+sj

0
ρ(y)w2

j,s(y, s)dyds

= Em+sj [wj ](m) − Em+sj+1[wj+1](m) +
∫ m+sj+1

m+sj

G(s)ds .
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Since ∣∣ G(s)
∣∣ ≤ C exp

{
(2q − 1) − p

2(p − 1)
s

}
(1 + s) ,

it follows that ∫ ∞

s0

∣∣G(s)
∣∣ ds < ∞ .

Proceeding as in [8], we get∫ M

m

∫ ∞

0
ρw2∞,sdyds = 0 for all m,M ∈ Z, m < M .

Hencew∞,s ≡ 0 and sow∞(y, s) = w∞(y) for all y ∈ [0,∞) ands.
Note thatw∞(0) > 0. Also, fromwj,y(0, s) = −eγ (s+sj)wj (0, s)q , where

γ = [(2q − 1) − p]/[2(p − 1)] < 0 ,

it follows thatw′∞(0) = 0. Therefore,w∞ is a bounded positive global solution of

w′′ − 1

2
yw′ − αw + wp = 0

and sow∞ ≡ κ (cf. [8]). Since the sequence{sj } is arbitrary, the theorem follows. �

Recall from [6] that there is a unique bounded positive global solution (denoted byV (y))
of

w′′ − 1

2
yw′ − αw = 0 , w′(0) = −wq(0) .(5.2)

THEOREM 5.2. For p < 2q − 1, we have

(T − t)αu(1 − y
√

T − t, t) → V (y)

as t → T uniformly for y ∈ [0, C] for any C > 0. Here α = 1/[2(q − 1)].
PROOF. Let sj , wj ,w∞ be defined as in Theorem 5.1. Then it is easy to see thatw∞ is

a classical solution of

ws = wyy − 1

2
ywy − αw , y ∈ [0,∞) , s ∈ R .

Next, we introduce the energy function

E[w](s) = 1

2

∫ s

0
ρw2

ydy + α

2

∫ s

0
ρw2dy − 1

q + 1
wq+1(0, s) .

Proceeding as in the proof of Theorem 5.1, we obtain thatw∞,s ≡ 0 and sow∞(y, s) =
w∞(y). Sincewy(0, s) = −wq(0, s), we getw′∞(0) = −w

q∞(0). Recallw∞(0) > 0. Hence
w∞(y) = V (y) and the theorem follows. �

Finally, we shall consider the critical case, i.e., the casep = 2q − 1. Suppose that̄w(y)

(as defined in Section 4) is the unique global positive monotone decreasing solution of (4.1).
Then the same argument as above leads to the following conclusion. Note thatwy < 0 for
y ≥ 0. Hence the limit function satisfiesw′∞ ≤ 0.
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THEOREM 5.3. Let p = 2q − 1. If 1 < p ≤ 2, then we have

(T − t)αu(1 − y
√

T − t , t) → w̄(y)

as t → T uniformly for y ∈ [0, C] for any C > 0. Here α = 1/(p − 1).

6. Complete blow-up. Suppose that the solutionu of the problem (1.1) – (1.3) blows
up at the finite timeT andx = 1 is the only blow-up point. This is the case if max{p, q} > 1
andu′

0 ≥ 0 in [0, 1]. Let

f (n)(s) = min{sq, nq } , g (n)(s) = min{sp, np} , s ≥ 0 , n ∈ N ,

and letu(n) be the solution of the problem (B(n)):

u
(n)
t = u(n)

xx + g (n)(u(n)) , x ∈ (0, 1) , t > 0 ,(6.1)

u(n)
x (0, t) = 0, u(n)

x (1, t) = f (n)(u(n)(1, t)) , t > 0 ,(6.2)

u(n)(x, 0) = u0(x) , x ∈ [0, 1] .(6.3)

We shall follow the method used in [5] to prove that the blow-up is complete, i.e., asn → ∞,
u(n)(x, t) → ∞ for all (x, t) ∈ [0, 1] × (T ,∞).

Let K = max0≤x≤1 u0(x). Sincef (n) and g (n) are locally Lipschitz in(0,K] and
u′

0(1) = f (n)(u0(1)) for n > K, the solutionu(n) of (B(n)) is C1 up to the boundary.
Suppose thatv(n) is a positive smooth supersolution andw(n) is a smooth subsolution of

(B(n)). Then it is easy to show by the maximum principle thatv(n) ≥ w(n) for 0 ≤ x ≤ 1,
t > 0, if n > K. Note that the functionK + (np +nq)t +nqx2/2 is a supersolution of (B(n)).
Therefore, for any positive integern > K, the problem (B(n)) has a unique positive global
(in time) solutionu(n) such thatu(n) ≤ u(n+1) for (x, t) ∈ [0, 1] × [0,∞) andu(n) ≤ u for
(x, t) ∈ [0, 1] × [0, T ).

Now, we define

v(x, t) = lim
n→∞ u(n)(x, t) , 0 ≤ x ≤ 1 , t > 0 .

Then we can show thatv(x, t) = u(x, t) for 0 ≤ t < T . Note thatv(1, T ) = ∞. Further-
more, we have

LEMMA 6.1. If q ≥ 1, then v(1, t) = ∞ for all t ≥ T .

PROOF. For anyM > 1, there is a smooth functionU such thatU(1) = M, U ′(1) =
Mq , U(ξ) = 0, andU ′′ + Up = 0 in (ξ, 1] for someξ ∈ (0, 1), sinceq ≥ 1. We extend the
functionU to be linear on[0, ξ ] so thatU ∈ C2([0, 1]). Let M > max{1, u0(1), ‖u′

0‖1/q∞ }.
Thenu0 intersectsU exactly once.

Sincev(1, T ) = ∞, there is a positive integerk > K such thatu(k)(1, t0) > M for some
t0 ∈ (0, T ). Then there ist1 ∈ (0, t0) such thatu(k)(1, t1) = M andu(k)(1, t) < M for all
t ∈ [0, t1). Sinceu(k)(0, t) > U(0) andu(k)(1, t) < U(1) for all t ∈ [0, t1), it implies that
u(k)(·, t) intersectsU at least once. Note that

(u(k) − U)t = (u(k) − U)xx + c(x, t)(u(k) − U) , c(x, t) = g (k)(u(k)) + Uxx

u(k) − U
.
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Sinceu(k)(x, t) is bounded away from zero in[0, 1]× [0, t1), the functionc(x, t) is bounded.
Applying Theorem D of [1],u(k)(·, t) intersectsU exactly once fort < t1. Let s(k)(t) be the
function such that

(u(k) − U)(s(k)(t), t) = 0 for all t ∈ [0, t1) .

Applying Theorem D of [1] again, we have

(u(k) − U)x(s(k)(t), t) 
= 0 for all t ∈ [0, t1) .

Therefore, by the Implicit Function Theorem, the functions(k)(t) is continuous in[0, t1).
Now, we will show that

u(k)(x, t1) ≥ U(x) for all x ∈ [0, 1] .(6.4)

To prove (6.4), we consider two cases. First, we suppose that limt→t−1
s(k)(t) exists. we claim

that limt→t−1
s(k)(t) = 1. For contradiction, we assume that 0≤ lim t→t−1

s(k)(t) < 1. Recall

that(u(k) − U)(1, t1) = 0 and(u(k) − U)(x, t) ≤ 0 for all x ∈ [s(k)(t), 1] andt ∈ [0, t1]. By
the Hopf Boundary Point Lemma,(u(k) − U)x(1, t1) > 0, a contradiction. Since

(u(k) − U)(x, t) ≥ 0 , x ∈ [0, s(k)(t)] , t ∈ [0, t1) ,

by lettingt → t1, the inequality (6.4) follows.
Next, we suppose that limt→t−1

s(k)(t) does not exist. We assume that

a ≡ lim inf
t→t−1

s(k)(t) < lim sup
t→t−1

s(k)(t) ≡ b.

Thenξ < a < b ≤ 1. It is easy to see that(u(k) − U)(x, t1) = 0 for all x ∈ [a, b] and
(u(k) − U)(x, t1) > 0 for all x ∈ [0, a). If b = 1, then (6.4) follows immediately. Suppose
thatb < 1. For contradiction, we assume that(u(k) − U)(x0, t1) < 0 for somex0 ∈ (b, 1).
Since lim supt→t−1

s(k)(t) = b < x0, there existst2 ∈ [0, t1) such thats(k)(t) < x0 for all
t ∈ (t2, t1). Hence

(u(k) − U)(x, t) ≤ 0 , for all (x, t) ∈ {[x0, 1] × [t2, t1]} ∪ {[s(k)(t), 1] × [0, t2]} .

It follows from the Hopf Boundary Point Lemma that(u(k) −U)x(1, t1) > 0, a contradiction.
Hence (6.4) follows.

Sinceu(k)(ξ, t) > U(ξ) for all t ≥ t1, it follows from the maximum principle that
u(k)(x, t) ≥ U(x) for all (x, t) ∈ [ξ, 1] × [t1,∞). In particular,u(n)(1, t) ≥ M for all t ≥ T

andn ≥ k. Hencev(1, t) = ∞ for all t ≥ T and the lemma follows. �
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Now, by the representation formula of solution of (B(n)),

u(n)(x, t) =
∫ 1

0
u(n)(y, t1)Γ (x, t; y, t1)dy +

∫ t

t1

f (n)(u(n)(1, τ ))Γ (x, t; 1, τ )dτ

−
∫ t

t1

u(n)(1, τ )Γy(x, t; 1, τ )dτ +
∫ t

t1

u(n)(0, τ )Γy(x, t; 0, τ )dτ

+
∫ t

t1

∫ 1

0
g (n)(u(n)(y, τ ))Γ (x, t; y, τ )dydτ

for x ∈ (0, 1) andt > t1 ≥ 0, where

Γ (x, t; y, τ ) = 1√
4π(t − τ )

exp

{
− (x − y)2

4(t − τ )

}
,

and the jump relation ofu(n)(0, t)

1

2
u(n)(0, t) =

∫ 1

0
u(n)(y, t1)Γ (0, t; y, t1)dy +

∫ t

t1

f (n)(u(n)(1, τ ))Γ (0, t; 1, τ )dτ

−
∫ t

t1

u(n)(1, τ )Γy(0, t; 1, τ )dτ +
∫ t

t1

∫ 1

0
g (n)(u(n)(y, τ ))Γ (0, t; y, τ )dydτ

for t > t1 ≥ 0, we conclude thatv(x, t) ≡ ∞ for all t > T . This proves that the blow-up is
complete whenq ≥ 1.

REFERENCES

[ 1 ] S. ANGENENT, The zeroset of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988), 79–96.
[ 2 ] M. CHLEBÍK AND M. FILA , Some recent results on blow-up on the boundary for the heat equation, B. Bojarski

et al. (ed.), Proceedings of the Minisemester, Warsaw, Poland, (Warsaw, 1998), 61–71, Banach Center Publ.
52, Polish Acad. Sci., Warsaw, 2000.

[ 3 ] A. DE PABLO, F. QUIRÓS AND J. D. ROSSI, Asymptotic simplification for a reaction-diffusion problem with
a nonlinear boundary condition, IMA J. Appl. Math. 67 (2002), 69–98.

[ 4 ] M. FILA AND J. FILO, Blow-up on the boundary: A survey S. Janeczko et al. (ed.), Singularities and differ-
ential equations, (Warsaw, 1996), 67–78, Banach Center Publ. 33, Polish Acad. Sci., Warsaw, 1996.

[ 5 ] M. FILA AND J.-S. GUO, Complete blow-up and incomplete quenching for the heat equation with a nonlinear
boundary condition, Nonlinear Anal. 48 (2002), 995–1002.

[ 6 ] M. FILA AND P. QUITTNER, The blow-up rate for the heat equation with a nonlinear boundary condition,
Math. Methods Appl. Sci. 14 (1991), 197–205.

[ 7 ] A. FRIEDMAN AND B. MCLEOD, Blow-up of positive solutions of semilinear heat equations, Indiana Univ.
Math. J. 34 (1985), 425–447.

[ 8 ] Y. GIGA AND R. V. KOHN, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure
Appl. Math. 38 (1985), 297–319.

[ 9 ] J.-S. GUO, On the quenching behavior of the solution of a semilinear parabolic equation, J. Math. Anal. Appl.
151 (1990), 58–79.

[10] G. M. LIEBERMAN, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996.
[11] Z. LIN AND M. WANG, The blow-up properties of solutions to semilinear heat equations with nonlinear

boundary conditions, Z. Angew. Math. Phys. 50 (1999), 361–374.



BLOW-UP BEHAVIOR FOR A SEMILINEAR HEAT EQUATION 581

[12] M. WANG AND X. WANG, Existence of positive solutions to a nonlinear initial problem, Nonlinear Anal. 44
(2001), 1133–1136.

[13] E. YANAGIDA , Uniqueness of positive radial solutions ofu + g (r)u + h(r)up = 0 in Rn, Arch. Rational
Mech. Anal. 115 (1991), 257–274.

[14] E. YANAGIDA , Structure of positive radial solutions of Matukuma’s equation, Japan J. Indust. Appl. Math. 8
(1991), 165–173.

SHENG-CHEN FU: JONG-SHENQ GUO AND JE-CHIANG TSAI:
DEPARTMENT OFMATHEMATICAL SCIENCES DEPARTMENT OFMATHEMATICS

NATIONAL CHENGCHI UNIVERSITY NATIONAL TAIWAN NORMAL UNIVERSITY

64 SEC. 2, ZHI -NAN ROAD 88, SEC. 4, TING CHOU ROAD

TAIPEI 116 TAIPEI 117
TAIWAN TAIWAN


