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BLOW-UP FOR THE STOCHASTIC NONLINEAR
SCHRÖDINGER EQUATION WITH

MULTIPLICATIVE NOISE

BY ANNE DE BOUARD AND ARNAUD DEBUSSCHE

Université Paris–Sud and ENS de Cachan

We study the influence of a multiplicative Gaussian noise, white in time
and correlated in space, on the blow-up phenomenon in the supercritical
nonlinear Schrödinger equation. We prove that any sufficiently regular and
localized deterministic initial data gives rise to a solution which blows up in
arbitrarily small time with a positive probability.

1. Introduction. The understanding of the influence of a noise on the
propagation of waves is a very important problem. Although the propagation
is often described by deterministic models, in many circumstances randomness
should be taken into account. It can change drastically the qualitative behavior and
result in new properties.

This is a very vast subject. Propagation can be described by many different
models and randomness can take several different forms. In this article, we
consider the nonlinear Schrödinger equation as the deterministic model. It
describes the propagation of waves in media with both nonlinear and dispersive
responses. It is used in many areas of physics, for example, hydrodynamics, plasma
physics, nonlinear optics, molecular biology, and so on.

It is well known that this equation has localized solutions called solitary waves
or, sometimes, solitons. When the nonlinearity is not too strong—or subcritical,
these are particularly robust and propagate without changing form. However, for
stronger nonlinearity, these are unstable and the instability results in the collapse—
or blow-up—of the localized wave.

Here, we are particularly interested in the influence of a noise acting as a
potential on this behavior. Such noise has been considered in [14]; there the paths
of the noise are smooth functions and the nonlinearity is subcritical. In the case of
a white noise, which is considered here, this type of model has been introduced in
the context of crystals (see [1, 2] and also [18, 21] for other models). It is expected
that such a noise has a strong influence on the solutions which blow-up. It may
delay or even prevent the formation of a singularity. In [12], some numerical
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simulations tend to show that this is the case for a very irregular noise: for a
space-time white noise. However, in the supercritical case and for a noise which is
correlated in space but nondegenerate, it has been observed that, on the contrary,
any solutionseems to blow-up in a finite time. Recall that in the deterministic case,
only a restricted class of solutions blow-up. Our aim is to prove rigorously such a
behavior.

It is mathematically very difficult to consider space-time white noises; this is
due to the lack of smoothing effect in the Schrödinger equation. Thus, we restrict
our attention to the study of correlated noises.

The case of an additive noise has been considered in [8, 9] and it has been
proved thatfor any initial data, blow-up occurs in the sense that, forarbitrary
t > 0, the probability that the solution blows up before the timet is strictly positive
(see Remark 4.4). Thus, the noise strongly influences this blow-up phenomenon.
This result is in perfect agreement with the numerical simulations. The argument
is based on three ingredients. First, we generalize the deterministic argument to
prove that blow-up occurs for some initial data. This is based on a stochastic
version of the variance identity (see [20, 22]). Then, we use the fact that the
nonlinear Schrödinger equation is controlable by a forcing term. Thus, any initial
data can be transformed into a state which yields a singular solution. Finally,
since the noise is nondegenerate and the solution depends continuously on the
path of the noise, we can argue that, with positive probability, the noise will be
close to the control so that blow-up will happen afterward.

In the multiplicative case, we can again generalize the variance identity and
prove that a restricted class of initial data evolves into a singular solution. An
initial data with sufficiently negative energy is in this class. This is done in
Sections 3 and 4, after we have set some notation and recalled some preliminary
results in Section 2. However, it is not known if the nonlinear Schrödinger
equation is controlable by a potential and it is well known that the solution
does not depend continuously on the noise. Thus, it is not straightforward to
generalize the argument used in the additive case. In Section 5 we address
this problem and show that, using more subtle arguments, we can prove the
same result as in the additive case, when the nonlinearity is supercritical. First,
for any initial data, we construct a deterministic potential such that, when it
is used as a control in the nonlinear Schrödinger equation, the energy of the
solution becomes arbitrarily negative. The problem is then to replace the continuity
argument. In fact, we prove that the controlled solution is in the support of the
diffusion associated to the stochastic nonlinear equation, which is exactly what
we need to prove our result. The techniques used to obtain this last step are
inspired from [19] and we refer the reader to this article for a nice and simple
presentation of support theorems, as well as for references on this subject. Many
ingredients used in [19] are similar to the ones used to prove the convergence
of a numerical scheme. Thus, we have been led to use the ideas developed
in [11].
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2. Notation. We consider a complete probability space(�,F ,P), endowed
with a filtration (Ft )t≥0, and a sequence(βk)k∈N of independent real-valued
Brownian motions onR+ associated to the filtration(Ft )t≥0. We study NLS
equations with multiplicative noise. The noise is real valued. To define it
rigorously, we use the spaceL2(Rd;R) of real-valued square integrable functions
on R

d and a Hilbertian basis(ek)k∈N of this space. Then, given a bounded linear
operatorφ on this space, we define the process

W(t, x,ω) =
∞∑

k=0

βk(t,ω)φek(x), t ≥ 0, x ∈ R
d, ω ∈ �.

It is a Wiener process onL2(Rd;R), with covariance operatorφφ∗. In all that
follows, φφ∗ will be assumed to be a finite trace operator inL2(Rd;R); this easily
implies, for a fixedt , the convergence of the series above inL2(�;L2(Rd;R)),
and almost surely inL2(Rd;R). The time derivative ofW models a noise which is
delta correlated in time. Ifφ is defined through a kernelK , which means that for
any square integrable functionu,

φu(x) =
∫

Rd
K(x, y)u(y) dy,

then the correlation function of the noise is formally given by

E

(
∂W

∂t
(t, x)

∂W

∂t
(s, y)

)
= c(x, y)δt−s,

with

c(x, y) =
∫

Rd
K(x, z)K(y, z) dz.

Let σ > 0, we consider the following stochastic NLS equation, introduced in
[1] and [2],

idu − (�u + |u|2σ u) dt = u ◦ dW,(2.1)

where◦ stands for a Stratonovich product in the right-hand side of (2.1). We will
use the equivalent Itô form of this equation. Define, forx ∈ R

d , the function

Fφ(x) =
∞∑

k=0

(
φek(x)

)2
,

which does not depend on the basis(ek)k∈N; this equivalent Itô equation may be
written as

idu − (�u + |u|2σ u) dt = udW − i

2
uFφ dt(2.2)

(see [7] for details).
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A local existence result for (2.2) has been proved in [10]. Before recalling it, we
need to set the functional framework.

For p ≥ 1, Lp(Rd) is the classical Lebesgue space (of complex valued
functions), and the inner product in the real Hilbert spaceL2(Rd) is denoted
by (·, ·), that is,

(u, v) = Re
∫

Rd
u(x)v̄(x) dx

for u, v ∈ L2(Rd). The norm inLp(Rd) is denoted by| · |Lp and, forp = 2, by| · |.
We define the usual spaceHs(Rd) of tempered distributionsv ∈ S′(Rd), whose

Fourier transform̂v satisfies(1+ |ξ |2)s/2v̂ ∈ L2(Rd); Hs(Rd,R) is the subspace
of Hs(Rd) consisting of real-valued functions. The norm inHs(Rd) is denoted
by | · |Hs . For p ∈ N, W1,p(Rd) is the space of functions inLp(Rd) whose first
order derivatives are inLp(Rd) and its norm is denoted by| · |W1,p .

If I is an interval ofR, E is a Banach space, and 1≤ r ≤ +∞, thenLr(I ;E)

is the space of strongly Lebesgue measurable functionsv from I into E such that
the functiont �→ |v(t)|E is in Lr(I ). We define similarly the spacesLr(�;E).

Given two separable Hilbert spacesH and H̃ , we denote byL2(H, H̃ ) the
space of Hilbert–Schmidt operators
 from H into H̃ , endowed with the norm

|
|2
L2(H,H̃ )

= tr
∗
 = ∑
k∈N

|
ek|2H̃ ,

where(ek)k∈N is any orthonormal basis ofH . WhenH = L2(Rd;R) and H̃ =
Hs(Rd;R), thenL2(H, H̃ ) is simply denoted byL0,s

2 . Given a Banach spaceB,
we will also consider bounded linear operators fromL2(Rd) into B, and in order
to replace the notion of Hilbert–Schmidt operators, we use in this case the notion
of γ -radonifying operators (see, e.g., [3, 4]). We denote byR(L2,B) the space of
γ -radonifying operators fromL2(Rd;R) into B. We recall that ifB is a Hilbert
space, thenR(L2,B) coincides withL2(L

2(Rd;R),B).
It is classical that ifψ(·) is a predictable random process defined on[0, T ],

with values in the space of continuous operators fromL2(Rd,R) into an Hilbert
spaceK , and is such that∫ T

0
|ψ(s)φ|2L2(L

2(Rd ,R),K)
ds < ∞ a.s.,

then the stochastic integral∫ T

0
ψ(s) dW(s) = ∑

∈N

∫ T

0
ψ(s)φe dβ(s)

is a well-definedK-valued random variable.
We now recall the existence result of [10]. For technical reasons, we restrict

our attention to the cased ≤ 3. However, if the assumptions are suitably modified,
most of the results can be extended to larger spatial dimensions.
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We recall that a pair(r,p) of positive numbers is called an admissible pair if
r ≥ 2 and2

r
= d(1

2 − 1
p
).

THEOREM 2.1. Assume that0 < σ if d = 1 or 2 and 0 < σ < 2 if d = 3.
Let φ ∈ L0,1

2 ∩ R(L2,W1,α(Rd)) with α > 2d. Then there exists an admissible
pair (r,p) such that for anyF0-measurableu0 with values inH 1(Rd), there exist
a stopping timeτ ∗(u0,ω) and a unique solution to(2.2) starting fromu0 which
is almost surely inC([0, τ ];H 1(Rd)) ∩ Lr(0, τ ;W1,p(Rd)) for any τ < τ ∗(u0).
Moreover, we have almost surely,

τ ∗(u0,ω) = +∞ or lim sup
t↗τ∗(u0,ω)

|u(t)|H1(Rd ) = +∞.

In this article we want to study blow-up phenomena. As in the deterministic
case, we need to work in the context ofH 1 solutions. This is why we use the result
of [10]. In [7], L2 solutions are considered, requiring weaker assumptions onφ;
however, there, a stronger restriction is imposed onσ and it is not expected that
blow-up occurs in that case. Indeed, it is shown in [7] that the solutions are global
in time. In fact, we will require thatσ does not fulfill the assumption of [7]. We
will work in the so-called critical and supercritical cases:

σ ≥ 2

d
.

The critical case corresponds toσ = 2
d

and most of our results will not be true in
that case. Note that ifσ satisfies the assumptions of Theorem 2.1, by the Sobolev
embedding theorem, we know thatH 1(Rd) ⊂ L2σ+2(Rd) with a continuous
embedding.

In fact, we need stronger assumptions on the initial data. As in most of the
deterministic blow-up results, we require some spatial localization. Forη ≥ 0, we
introduce the spaces

�η = {v ∈ Hη(Rd) : |x|ηv ∈ L2(Rd)}
endowed with the norm| · |�η :

|v|2�η = |v|2Hη + ∣∣|x|ηv∣∣2.
Whenη = 1, we set�1 = �.

In all of the article,c or c(·, . . . , ·) is a constant which may change from one
line to another and depends only on its arguments.

3. The stochastic variance identity. In this section we derive an identity on
the evolution of the variance, or virial, of the solutions of the nonlinear Schrödinger
equation (2.2). This is a generalization of the well-known corresponding formula
in the deterministic case.
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The variance (this quantity should not be confused with the probabilistic
variance) is defined by

V (v) =
∫

Rd
|x|2|v(x)|2 dx, v ∈ �.

Its evolution is described in terms of the mass,

M(v) =
∫

Rd
|v(x)|2 dx = |v|2, v ∈ L2(Rd),

the energy,

H(v) = 1

2

∫
Rd

|∇v(x)|2 dx − 1

2σ + 2

∫
Rd

|v(x)|2σ+2 dx

= 1

2
|∇v|2 − 1

2σ + 2
|v|2σ+2

L2σ+2, v ∈ H 1(Rd),

and the momentum,

G(v) = Im
∫

Rd
v(x) x · ∇v̄(x) dx, v ∈ �.

The first result describes the evolution ofM andH and is proved in [10]. We
introduce the functionf 1

φ depending on the covariance operatorφ and such that,

for any orthonormal basis(e)∈N of L2(Rd;R),

f 1
φ (x) = ∑

∈N

|∇φe(x)|2, x ∈ R
d .

Note that this function does not depend on the chosen basis(e)∈N. Indeed, since
φ is assumed to be Hilbert–Schmidt fromL2(Rd) into H 1(Rd), it is associated to
a kernelK ∈ L2(Rd × R

d) such that∇xK ∈ L2(Rd × R
d); it can be seen that

f 1
φ (x) = |∇xK(x, ·)|2

L2(Rd )
.

PROPOSITION3.1. Let u0, σ andφ be as in Theorem2.1.For any stopping
timeτ such thatτ < τ ∗(u0) a.s., we have

M(u(τ)) = M(u0) a.s.(3.1)

and

H(u(τ)) = H(u0) − Im
∑
∈N

∫ τ

0

∫
Rd

ū(s, x)∇u(s, x) · ∇(φe)(x) dx dβ(s)

(3.2)
+ 1

2

∫ τ

0

∫
Rd

|u(s, x)|2f 1
φ (x) dx ds a.s.,

whereu is the solution of(2.2)given by Theorem2.1with u(0) = u0.
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The different terms in (3.2) make sense. To see this we first observe that, since
φ ∈ L0,1

2 , the functionf 1
φ is an L1 function and sinceφ ∈ R(L2,W1,α(Rd)),

we also havef 1
φ ∈ Lα/2(Rd) (see [3, 4, 7]). Thus, thanks to Hölder’s inequality,

f 1
φ ∈ Lq(Rd) for anyq ∈ [1, α/2]. We then introduce the stopping time:

τk = inf{s ∈ [0, t], |u(s)|H1 ≥ k}.
For anyk ∈ N, we have

E

(∣∣∣∣∣∑
∈N

∫ τ∧τk

0

∫
Rd

ū(s, x)∇u(s, x) · ∇(φe)(x) dx dβ(s)

∣∣∣∣∣
2)

= E

( ∑
∈N

∫ τ∧τk

0

∣∣∣∣∫
Rd

ū(s, x)∇u(s, x) · ∇(φe)(x) dx

∣∣∣∣2 ds

)

≤ E

(∫ τ∧τk

0

(∫
Rd

|ū(s, x)||∇u(s, x)|(f 1
φ (x)

)1/2
dx

)2

ds

)
,

thanks to Minkowski’s inequality in the last step. Using Sobolev’s embedding, it
is now easy to see that this is a finite quantity. Since, for almost everyω ∈ �, we
haveτ ≤ τk for somek, it follows that the stochastic term in (3.2) is a well-defined
stochastic integral.

We now investigate the evolution ofV andG.

PROPOSITION3.2. Let the assumptions of Proposition3.1hold and assume,
moreover, thatu0 ∈ � a.s., then for any stopping timeτ such thatτ < τ ∗(u0) a.s.,
we have

G(u(τ)) = G(u0) + 4
∫ τ

0
H(u(s)) ds + 2− σd

σ + 1

∫ τ

0
|u(s)|2σ+2

L2σ+2 ds

(3.3)
+ ∑

k∈N

∫ τ

0

∫
Rd

|u(s, x)|2x · ∇(φek)(x) dx dβk(s)

and

V (u(τ)) = V (u0) + 4
∫ τ

0
G(u(s)) ds.(3.4)

REMARK 3.3. The proof of this result is postponed to Section 6.1. Note that,
formally, it is the result of the same computation as in the deterministic case and
that it is easier to perform the computation with the Stratonovich equation since in
that case the standard calculus can be used. However, in the proof we use the Itô
form which is better suited for rigorous justifications.

A similar result was obtained in the case of an additive noise in [8]. The
formula was more complicated there. In the case of a multiplicative noise, more
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terms cancel in the computation. This strongly uses the fact that the noise is real
valued and reflects the fact that a Stratonovich multiplicative noise corresponds to
a noisy potential and is a more realistic representation of physical phenomena in
the present context.

REMARK 3.4. We will actually prove that, for eacht ≥ 0 andk ∈ N, there
exists a constantc(V (u0), t, k) such thatV (u(t)) ≤ c(V (u0), t, k) providedt <

τ ∗(u0) and|u(s)|H1 ≤ k for s ∈ [0, t] [see (6.2)].
Using this and similar arguments as above, it can be seen that the stochastic

term in (3.3) is well defined.

COROLLARY 3.5. Under the same assumptions as in Proposition3.2,we have

V (u(τ)) = V (u0) + 4G(u0)τ + 8H(u0)τ
2

+ 4
2− σd

σ + 1

∫ τ

0

∫ s

0
|u(s1)|2σ+2

L2σ+2 ds1 ds

+ 8
∫ τ

0

∫ s

0

∫ s1

0

∫
Rd

|u(s2, x)|2f 1
φ (x) dx ds2 ds1 ds

(3.5)
+ 4

∑
k∈N

∫ τ

0

∫ s

0

∫
Rd

|u(s1, x)|2x · ∇(φek)(x) dx dβk(s1) ds

− 16 Im
∑
k∈N

∫ τ

0

∫ s

0

∫ s1

0

∫
Rd

ū(s2, x)∇u(s2, x)

× ∇(φek)(x) dx dβk(s2) ds1 ds.

4. Blow-up for initial data with negative energy. The aim of this section
is to generalize the well-known deterministic result stating that, for the critical or
supercritical NLS equation, an initial data with negative energy yields a solution
which forms a singularity in finite time. (See [20], Chapter 5, where more
sophisticated results can also be found.)

THEOREM 4.1. Let u0, σ and φ satisfy the assumptions of Theorem2.1.
Assume also thatσ ≥ 2

d
, u0 ∈ L2(�;�)∩L2σ+2(�;L2σ+2(Rd)), f 1

φ is a bounded
function and, for somet̄ > 0,

E
(
V (u0)

) + 4E
(
G(u0)

)
t̄ + 8E

(
H(u0)

)
t̄ 2 + 4

3 t̄ 3mφE
(
M(u0)

)
< 0,(4.1)

wheremφ = |f 1
φ |L∞ ; then

P
(
τ ∗(u0) ≤ t̄

)
> 0.

REMARK 4.2. Clearly, if the energy ofu0 is a.s. negative, then the conclusion
of Theorem 4.1 holds for somēt > 0 provided the noise is not too strong, that is,
providedmφ is small enough.
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REMARK 4.3. By Sobolev’s embedding theorem, the condition thatf 1
φ is

bounded is fulfilled if φ is a γ -radonifying operator fromL2(Rd;R) into
Ws,p(Rd;R) with (s − 1)p > d .

REMARK 4.4. In [8], in the case of an additive noise, this result was proved
under a severe assumption onσ and the proof was rather technical. Under the
assumptions made here, only a weaker result was proved. The argument used
below can, in fact, be easily adapted to the additive case and the severe assumption
onσ can be removed.

PROOF OFTHEOREM 4.1. Assume that the conclusion of Theorem 4.1 does
not hold; thent̄ < τ ∗(u0) a.s. and we can takeτ = t̄ as a stopping time in
Corollary 3.5. In that case (3.5) can be simplified into

V (u(t̄ )) = V (u0) + 4G(u0)t̄ + 8H(u0)t̄
2

+ 4
2− σd

σ + 1

∫ t̄

0
(t̄ − s)|u(s)|2σ+2

L2σ+2 ds

+ 4
∫ t̄

0
(t̄ − s)2

∫
Rd

|u(s, x)|2f 1
φ dx ds

(4.2)

+ 4
∑
∈N

∫ t̄

0
(t̄ − s)

∫
Rd

|u(s, x)|2x · ∇(φe)(x) dx dβ(s)

− 8 Im
∑
∈N

∫ t̄

0
(t̄ − s)2

∫
Rd

ū(s, x)∇u(s, x) · ∇(φe)(x) dx dβ(s).

Let us set fort, r ≥ 0,

V (t, r) = V (u0) + 4G(u0)t + 8H(u0)t
2

+ 4
2− σd

σ + 1

∫ t

0
(t − s)|u(s)|2σ+2

L2σ+2 ds

+ 4
∫ t

0
(t − s)2

∫
Rd

|u(s, x)|2f 1
φ dx ds

+ 4
∑
∈N

∫ r

0
(t − s)

∫
Rd

|u(s, x)|2x · ∇(φe)(x) dx dβ(s)

− 8 Im
∑
∈N

∫ r

0
(t − s)2

∫
Rd

ū(s, x)∇u(s, x) · ∇(φe)(x) dx dβ(s),

clearly,V (u(t̄ )) = V (t̄, t̄ ). Define the stopping time

τk = inf{s ∈ [0, t̄ ], |u(s)|H1 ≥ k},
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for k ∈ N. Since the mass ofu is constant, we have, assumingt ≤ t̄ ,

E

( ∑
∈N

∫ τk

0

∣∣∣∣(t − s)

∫
Rd

|u(s, x)|2x · ∇(φe)(x) dx

∣∣∣∣2 ds

)

≤ mφE

(∫ τk

0
(t − s)2M(u0)V (u(s)) ds

)
≤ 1

3mφt̄ 3 sup
s∈[0,t̄ ]

E
(
V

(
u(s ∧ τk)

)
M(u0)

)
since mφ = |f 1

φ |L∞ . By Remark 3.4, we deduce that this quantity is finite. It
follows that, whenr = τk , the first stochastic integral above is square integrable
and its expectation vanishes. Similarly,

E

( ∑
∈N

∫ τk

0

∣∣∣∣(t − s)2
∫

Rd
ū(s, x)∇u(s, x) · ∇(φe)(x) dx

∣∣∣∣2 ds

)

≤ 1
5mφt̄ 5k2

E
(
M(u0)

)
and, whenr = τk , the expectation of the last term also vanishes. Moreover, using
again the conservation of the mass,∫ t

0
(t − s)2

∫
Rd

|u(s, x)|2f 1
φ (x) dx ds ≤ 1

3t3mφM(u0)

and, recalling thatσ ≥ 2
d
, we get that, for anyk ∈ N,

E
(
V (t, τk)

) ≤ E
(
V (u0)

) + 4E
(
G(u0)

)
t + 8E

(
H(u0)

)
t2 + 4

3t3mφE
(
M(u0)

)
.

We now chooset = t̄ . By assumption,τk → t̄ a.s. ask goes to infinity. Thus, thanks
to Fatou’s lemma, we have

E
(
V (u(t̄ ))

) ≤ E
(
V (u0)

) + 4E
(
G(u0)

)
t̄ + 8E

(
H(u0)

)
t̄ 2 + 4

3 t̄ 3mφE
(
M(u0)

)
.

This last inequality contradicts (4.1), sinceV (u(t̄ )) is nonnegative. Thus, the result
is proved. �

The result stated in Theorem 4.1 is still valid if the expectation over� in (4.1)
is replaced by the expectation over anF0-measurable subset of�. More precisely,
defining, for �M and �H positive constants,

V �M, �H = {v ∈ �, V (v) < �M, G(v) < �M, |v|2
L2 < �M, H(v) < − �H },(4.3)

we can prove the following.

COROLLARY 4.5. Let u0, σ and φ satisfy the assumptions of Theorem2.1.
Assume also thatσ ≥ 2

d
, u0 ∈ � a.s. andf 1

φ is a bounded function. Then for any
�M > 0 and t̄ > 0, there is a constant�H(t̄, �M) > 0 such that

P(u0 ∈ V �M, �H) > 0 �⇒ P
(
τ ∗(u0) ≤ t

)
> 0.
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PROOF. This is simply proved by taking�H large enough so that

�M + 4t̄ �M − 8t̄ 2 �H + 4
3 t̄ 3mφ

�M < 0

and applying Theorem 4.1 withu0 replaced byu01�0, where

�0 = {ω ∈ �, u0(·,ω) ∈ V �M, �H }.
Note, indeed, that the solution of (2.2) satisfiesu(t,ω) = 0 for any t ≥ 0 if
u(0,ω) = 0. �

5. Blow-up for any initial data in the supercritical case. In this section we
assume that the nonlinearity is supercritical,σ > 2

d
. In that case we are able to

strengthen considerably the result of Theorem 4.1.

5.1. Main result. The main result of this article is the following.

THEOREM 5.1. Assume that2
d

< σ if d = 1,2 and 2
3 < σ < 2 if d = 3. Let

φ ∈ L0,2
2 be such thatkerφ∗ = {0}. Then for anyu0 ∈ �2 with u0 �= 0 and t > 0,

we have

P
(
τ ∗(u0) < t

)
> 0,

whereτ ∗(u0) is the existence time of the solution of(2.2) with initial data u0
provided by Theorem2.1.

The proof of this result is given in Section 5.4. The idea is the same as in [8]
where the case of an additive noise is treated. We chooset1, t2 > 0 and consider
a control problem where the noise is replaced by a control and show that, for
any initial data, there exists a control such that the solutionU of the controlled
nonlinear Schrödinger equation at timet1 satisfies

V
(
U(t1)

) + 4G
(
U(t1)

)
t2 + 8H

(
U(t1)

)
t2
2 + 4

3t3
2mφM

(
U(t1)

)
< 0.(5.1)

Then, using the nondegeneracy of the noise, that is, kerφ∗ = {0}, we know that
the noise will be close to the control on the time interval[0, t1] with positive
probability. Intuitively, this means that at timet1 the solution of (2.2) will be close
to U(t1) on a set of positive probability and that we will haveP(u(t1) ∈ V �M, �H ) > 0
for some �M and �H as in Corollary 4.5—the initial time beingt1 instead of 0
and t̄ = t2. Thus, for the solution starting at 0, blow-up will occur with positive
probability before the timet1 + t2. This is exactly the result sincet1, t2 are
arbitrary.

In the case of a multiplicative noise considered here, this is much more difficult
to justify rigorously.

First, the control is a potential and it is not known whether the nonlinear
Schrödinger equation is controlable by a potential. We prove in Section 5.2 that,
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for any initial data, it is possible to construct a potential such that the solution at
arbitrary timet1 has a very negative energy so that (5.1) holds. This construction
only works in the supercritical case. It is not difficult to see that in the critical case,
σ = 2

d
, such a result cannot be true.

The second difficulty is that the Itô or Stratonovich products are not continuous
with respect to the paths of the noise. Then, to replace the continuity argument
used in [8], we use more sophisticated probabilistic tools inspired by the
characterization of the support of a diffusion (see [19]). We prove that, if the
noise is nondegerate, the solution of the controlled problem is in the support of
the diffusion associated with (2.2), which implies that with positive probability the
solution will be close to the solution of the controlled problem. This is the aim of
Section 5.3. Finally, we end the proof in Section 5.4. Technical results are proved
in Section 6.

The assumption on the smoothness ofu0 is quite strong here since in the
deterministic literature it is common to consider initial data in�. Our result can
probably be extended to such data, however, this would considerably complicate
the proof in Section 6.2 and, for clarity, we have decided to restrict our attention
to this smaller class of initial data.

5.2. Construction of a potential leading to blow-up.We first show that for a
supercritical nonlinearity it is possible to build a control which acts as a potential
in the nonlinear Schrödinger equation and has the property that, in a finite time,
the solution has a very negative energy. Therefore, if the control is then switched
off, and replaced by the noise, it follows from Corollary 4.5 that the solution will
rapidly blow-up.

PROPOSITION5.2. Let u0 ∈ �, u0 �= 0, T1 > 0. Let �M = max(M(u0) + 1;
V (u0) + 4|G(u0)| + 1). Then, for any �H ≥ 0 there existsT2 ≤ T1 and a potential
f ∈ Ls(0, T2;W1,p(Rd)), for somes > 1 and somep with 1 ≤ p < 1 + 1

σ
, such

that the solution of

i
dU

dt
− (�U + |U |2σU + f U) = 0,

(5.2)

U(0) = u0

exists on[0, T2] and satisfiesU(T2) ∈ V �M, �H , whereV �M, �H is defined by(4.3).
Moreover, if u0 ∈ H 2(Rd), thenf ∈ C([0, T2];H 2(Rd;R)).

PROOF. We can assume thatT1 ≤ 1. Let 2
d

< σ̃ < σ . We then consider the
following supercritical nonlinear Schrödinger equation:

i
dU

dt
− (

�U + λ|U |2σ̃ U
) = 0,

(5.3)
U(0) = u0.
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The constantλ ≥ 0 is taken such that the energy corresponding to equation (5.3)
satisfies

Hσ̃,λ(u0) =
∫

Rd

1

2
|∇u0(x)|2 − λ

2σ̃ + 2
|u0(x)|2σ̃+2 dx

< − 1

8T 2
1

(
V (u0) + 4T1|G(u0)|).

Sinceσ̃ < σ , andσ < 2 if d = 3, it follows from the deterministic theory (see [5])
that there exists a solutionU in C([0, t∗];�) ∩ Lr(0, t∗;W1,p(Rd)) for some
t∗ > 0 and(r,p) admissible withp = 2σ̃ +2. Moreover, by the assumption above,

V (u0) + 4T1G(u0) + 8T 2
1 Hσ̃,λ(u0) < 0

and, since2
d

< σ̃ , this implies thatU blows up at some timeT ∗ < T1. This is
classical ([15, 20, 22]) and follows from the deterministic variance identity which
states that ifU exists on the time interval[0, T1], then

V (U(t)) ≤ V (u0) + 4tG(u0) + 8t2Hσ̃,λ(u0); t ∈ [0, T1].(5.4)

But sinceV (U(t)) is nonnegative, this is clearly impossible. In fact, we have

|U(t)|H1 → +∞ and |U(t)|L2σ̃+2 → +∞ whent → T ∗.
By the conservation of theL2 norm and Hölder’s inequality, we have

|U(t)|2σ̃+2
L2σ̃+2 ≤ 2σ̃ + 2

2λ(2σ + 2)
|U(t)|2σ+2

L2σ+2 + c(λ,σ, σ̃ )|u0|2L2;
it follows

H(U(t)) = λ

2σ̃ + 2
|U(t)|2σ̃+2

L2σ̃+2 − 1

2σ + 2
|U(t)|2σ+2

L2σ+2 + Hσ̃,λ(U(t))

≤ − λ

2σ̃ + 2
|U(t)|2σ̃+2

L2σ̃+2 + 2λ

2σ̃ + 2
c(λ,σ, σ̃ )|u0|2L2 + Hσ̃,λ(U(t)).

Recalling thatHσ̃,λ(U(t)) does not depend ont , we deduce that

H(U(t)) → −∞ whent → T ∗.
Thus, there existsT2 ≤ T1 such that

H
(
U(T2)

)
< − �H.

Moreover, by (5.4),

V
(
U(T2)

) ≤ V (u0) + 4T2G(u0) + 8T 2
2 Hσ̃,λ(u0)

≤ V (u0) + 4|G(u0)| < �M
sinceT2 ≤ 1 andHσ̃,λ(u0) ≤ 0. It is also classical that

G
(
U(T2)

) ≤ G(u0) + 4T2Hσ̃,λ(u0),



STOCHASTIC NONLINEAR SCHRÖDINGER EQUATION 1091

so thatG(U(T2)) ≤ G(u0) < �M . In addition,M(u(T2)) = M(u0) < �M , hence,
U(T2) ∈ V �M, �H . It suffices to takef (t) = λ|U(t)|2σ̃ − |U(t)|2σ andU is then the
solution of (5.2).

Finally, we observe that ifu0 ∈ H 2(Rd), it follows from [17] that U ∈
C([0, T2];H 2(Rd)). Now, if d = 3, f is not necessarily in∈ C([0, T2];H 2(Rd)),
but it is easily seen thatf ∈ C([0, T2];W1,p(Rd)) for any p with 2 ≤ p <

2d/(d −2), and we may argue by density as follows: takefn ∈ C([0, T2];H 2(Rd))

with fn → f in C([0, T2];W1,p(Rd)), wherep < 2d/(d −2) is such that for some
q < 2d/(d − 2), we have1

q ′ = 1− 1
q

= 1
2 + 1

p
, that is, 1

p
+ 1

q
= 1

2. This is possible
thanks to the fact thatd < 4. Using then the method in [17], it is not difficult to see
that the solutionUn of (5.2), withf replaced byfn, exists on[0, T2] andUn → U

in C([0, T2];H 1(Rd)). In addition,xUn → xU in C([0, T2];L2(Rd)), as follows
from the same arguments as in [5], Corollary 6.4.4. Hence, forn sufficiently large,
fn fits the conclusion of Proposition 5.2.�

5.3. The support result. We now show that, if the noise is nondegenerate, the
solutionU given by Proposition 5.2 is in the support of the diffusion associated
to (2.2). More precisely, under some additional assumptions on the initial data,
we prove that the support of the law ofu(T2) contains a neighborhood in�
of U(T2). In fact, following [19] and slightly generalizing our arguments, we could
characterize exactly the support of the diffusionu. However, this is not the aim of
this paper and, for clarity, we simply state and prove the result we need.

PROPOSITION 5.3. Suppose that the assumptions of Theorem2.1 hold,
u0 ∈ �2, u0 �= 0, φ ∈ L0,2

2 and the noise is nondegenerate: kerφ∗ = {0}. Let
T1 > 0, �H > 0 arbitrary, and T2 ≤ T1, U be given by Proposition5.2; let u be
the solution of(2.2)given by Theorem2.1; then for arbitrary neighborhoodV of
U(T2) in �, we have

P
(
τ ∗(u0) > T2 andu(T2) ∈ V

)
> 0.

PROOF. We adapt the method used to characterize the support of a diffusion
and follow the same line as in [19].

We chooseT > T2. Let (ek)k∈N be a complete orthonormal system inL2(Rd;R)

and (βk)k∈N be a sequence of independent Brownian motions such thatW =∑
k∈N βkφek . We defineWc = ∑

k∈N βkek so thatWc is a cylindrical Wiener
process onL2(Rd;R).

Since kerφ∗ = {0}, we know that the range ofφ is dense inL2(Rd,R)

and thus inH 2(Rd,R). It follows that, for any n ∈ N, there existsgn ∈
C([0, T2];L2(Rd,R)) such that

|f − φgn|C([0,T2];H2(Rd )) ≤ 1

n
,(5.5)
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wheref is the potential given by Proposition 5.2. We set

fn(t) = φgn(t), t ≤ T2, fn(t) = 0, T2 < t ≤ T .

We also assume that we have chosen(ek)k∈N in such a way thatek ∈ H 2(Rd),
k ∈ N. We denote byPn the orthogonal projector ontoSp(e0, . . . , en) and set
�t = 1

n
. We construct a piecewise constant approximation of the noise in the

following way:

Ẇc,n(t) = PnWc(k�t) − PnWc((k − 1)�t)

�t
, t ∈ [k�t, (k + 1)�t[,

and

Ẇn = φẆc,n

[we setWc(−�t) = 0]. Then, we consider the following equation, forn ∈ N:

idun − (�un + |un|2σ un + fnu
n) dt = un dW − i

2
unFφ dt − unẆn dt.(5.6)

By Girsanov’s theorem (see [6], Theorem 10.14),

Wc,n(t) = Wc(t) −
∫ t

0

(
Ẇc,n(s) − gn(s)

)
ds

is a cylindrical Wiener process for the probability measure

dPn = Dn dP,

where

Dn = exp
[∫ T

0

(
Ẇc,n(s) − gn(s), dWc(s)

) − 1
2

∫ T

0
|Ẇc,n(s) − gn(s)|2 ds

]
.

Clearly,un is the solution of

idun − (�un + |un|2σ un) dt = un dWn − i

2
unFφ dt,(5.7)

with Wn = φWc,n. Since the law of the solution of the stochastic nonlinear
Schrödinger equation does not depend on the probability space nor on the Wiener
process, we deduce that the law ofun is the same as the law ofu, the solution
of (2.2). Therefore, for any Borelian setV,

P
(
τ ∗(u0) > T2 andu(T2) ∈ V

) = Pn

(
τ ∗
n (u0) > T2 andun(T2) ∈ V

)
=

∫
�

1{τ∗
n (u0)>T2 andun(T2)∈V}Dn dP,

where we have denoted byτ ∗
n (u0) the existence time for the solution of (5.7) with

initial datau0. It follows

P
(
τ ∗(u0) > T2 andu(T2) ∈ V

)
> 0

if and only if P
(
τ ∗
n (u0) > T2 andun(T2) ∈ V

)
> 0.
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We prove in Section 6.2 that

lim
n→∞P

(
τ ∗
n (u0) ≤ T2

) = 0(5.8)

and

∀ ε > 0 lim
n→∞ P

(
τ ∗
n (u0) > T2 and sup

t∈[0,T2]
|un(t) − U(t)|� > ε

)
= 0.(5.9)

Therefore, for anyV neighborhood in� of U(T2),

P
(
τ ∗
n (u0) > T2 andun(T2) ∈ V

) → 1 whenn → ∞,

which clearly implies the result.�

5.4. Proof of Theorem5.1. It is now easy to complete the argument sketched
in Section 5.1. Indeed, for anyt > 0 andu0 ∈ �2, we chooset1, t2 > 0 such that
t1+ t2 ≤ t . We take�M , as in Proposition 5.2, and choose�H such that Corollary 4.5
is satisfied with�M , andt̄ = t2.

Then we takeT1 = t1 in Proposition 5.2 and obtain the controlf and the
solutionU on the interval[0, T2] with T2 ≤ t1. It follows from the statement of
Proposition 5.2 thatU(T2) ∈ V �M, �H .

We then use Proposition 5.3, withV = V �M, �H ; setting

�T2 = {ω ∈ �|τ ∗(u0) > T2 andu(T2) ∈ V},
which is clearly anFT2-measurable set, and which has positive probability
according to Proposition 5.3, we deduce by Corollary 4.5, that the solution starting
at time 0 with initial datau(T2) will blow-up beforet2 with a positive probability.
But, if we denote this latter solution bỹu(t), then it is clear, by translating the
Brownian motions, that the solutionu of (2.2) satisifies fort ≥ T2 :u(T2 + ·) and
ũ(·) have the same law. Hence,u blows up with positive probability beforeT2 + t2,
and the result follows.

6. Proofs of technical results.

6.1. Proof of Proposition3.2. The proof is based on a smoothing procedure,
as in [10], and on the use of a truncated form of the variance:

Vε(v) =
∫

Rd
e−ε|x|2|x|2|v(x)|2 dx, v ∈ L2(Rd).

The smoothing step is similar to the one in the proof of Proposition 3.1, which can
be found in [10]. Thus, we omit it, keeping in mind that the computation below
can be rigorously justified in this way.
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We apply Itô’s formula toVε(u(t)) (see [6], Theorem 4.17 for the form of Itô
formula used here):

dVε(u(t)) = (
V ′

ε(u(t)),−i�u(t)
)
dt + (

V ′
ε(u(t)),−i|u(t)|2σu(t)

)
dt

− 1
2

(
V ′

ε(u(t)), u(t)Fφ

)
dt − (

V ′
ε(u(t)), iu(t) dW(t)

)
+ 1

2Tr
(
V ′′

ε (u(t))
(
iu(t)φ

)(
iu(t)φ

)∗)
dt.

Note that, forv ∈ L2(Rd),(
V ′

ε(u(t)), v
) = 2Re

(∫
Rd

e−ε|x|2|x|2u(t, x)v̄(x) dx

)
.

Hence, this term cancels ifv is a real-valued function multiplied byiu(t). This is
the case of the second and fourth terms above.

We have(
V ′

ε(u(t)),−i�u(t)
) = 4Im

∫
Rd

e−ε|x|2(1− ε|x|2)(x · ∇u(t, x)
)
ū(t, x) dx,

as follows after integrating by parts. Moreover,

1
2Tr

(
V ′′

ε (u(t))
(
iu(t)φ

)(
iu(t)φ

)∗)
= ∑

k∈N

∫
Rd

e−ε|x|2|x|2(iu(t)φek

)
(x)

(−iū(t)φek

)
(x) dx

=
∫

Rd
e−ε|x|2|x|2|u(t, x)|2Fφ(x) dx

and

1
2

(
V ′

ε(u(t)), u(t)Fφ

)
dt =

∫
Rd

e−ε|x|2|x|2|u(t, x)|2Fφ(x) dx.

It follows that the contributions of these two terms cancel. (This cancellation is
natural. It reflects the fact that the noise is real and acts as a potential.) We obtain

dVε(u(t)) = 4Im
∫

Rd
e−ε|x|2(1− ε|x|2)(x · ∇u(t, x)

)
ū(t, x) dx dt

and fort < τ ∗(u0),

Vε(u(t)) = Vε(u0)

(6.1) + 4 Im
∫ t

0

∫
Rd

e−ε|x|2(1− ε|x|2)(x · ∇u(s, x)
)
ū(s, x) dx ds.

In particular, if

τk = inf{t ∈ [0, T ], |u(t)|H1 ≥ k},
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we have by the Cauchy–Schwarz inequality

Vε

(
u(t ∧ τk)

) ≤ Vε(u0) + 4k

∫ t∧τk

0
V 1/2

ε (u(s)) ds

and by Gronwall’s lemma

Vε

(
u(t ∧ τk)

) ≤ (
4k2T + Vε(u0)

)
eT .

Letting ε → 0, this proves that, fort < τk , u(t) ∈ � and

V
(
u(t ∧ τk)

) ≤ (
4k2T + V (u0)

)
eT .(6.2)

Thus,u has trajectories inL∞(0, τk;�) for anyk ∈ N. We now letk → +∞ and
deduce thatu has trajectories inL∞(0, τ ;�) for any stopping timeτ < τ ∗(u0). It
is now easy to letε → 0 in (6.1) and prove (3.4).

Similarly, we apply Itô’s formula toG(u(t)) and use the identity(
G′(u(t)),−i

(
�u(t) + |u(t)|2σ u(t)

))
= (

2ix · ∇u(t) + diu(t),−i
(
�u(t) + |u(t)|2σ u(t)

))
= 2

∫
Rd

|∇u(t, x)|2 dx − σd

σ + 1

∫
Rd

|u(t, x)|2σ+2 dx

= 4H(u(t)) + 2− σd

σ + 1
|u(t)|2σ+2

L2σ+2.

We also have, after integration by parts,(
G′(u(t)),−iudW(t)

)
= Re

∑
∈N

∫
Rd

(
2ix · ∇u(t, x) + diu(t, x)

)
iū(t, x)(φe)(x) dx dβ(t)

= ∑
∈N

∫
Rd

|u(t, x)|2x · ∇(φe)(x) dx dβ(t).

Finally, a similar computation shows that(
G′(u(t)),−1

2u(t)Fφ

) + 1
2Tr

(
G′′(u(t))

(
iu(t)φ

)(
iu(t)φ

)∗) = 0.

Gathering these results and integrating in time yields (3.3).

6.2. Proof of (5.8)and (5.9). We first introduce a truncated form of (5.6). We
choose 3/2 < s0 < 2 and a cut-off functionϑ ∈ C∞

0 (R) such that

ϑ(x) = 1, x ∈ [0,1],
ϑ(x) ∈ [0,1], x ≥ 0,

ϑ(x) = 0, x ≥ 2.



1096 A. DE BOUARD AND A. DEBUSSCHE

Then, for anyR ≥ 1, we set

θR(u) = ϑ

( |u|2
Hs0

R2

)
, u ∈ Hs0(Rd).

We then consider the following equation:

idun
R − �un

R dt − θR(un
R)(|un

R|2σ un
R + fnu

n
R)dt

(6.3) = θR(un
R)un

R dW + �R,φ(un
R)dt − θR(un

R)un
RẆn dt,

with initial data

un
R(0) = u0.

We have denoted by

�R,φ(un
R) = − i

2
θ2
R(un

R)Fφun
R − 1

R2

∑
∈N

θR(un
R)ϑ ′

( |u|2
Hs0

R2

)
(u, iuφe)Hs0uφe.

Note that, formally,

θR(un
R)un

R dW + �R,φ(un
R)dt = θR(un

R)un
R ◦ dW.

It is not difficult to see that, for anyR ≥ 1, (6.3) has a unique solution with paths
in C([0, T ];H 2(Rd)).

STEP 1. For anyR ≥ 1, there exists a constantC(R,T ,φ) such that, for any
n ∈ N,

E

(
sup

t∈[0,T ]
|un

R(t)|2
H2

)
≤ C(R,T ,φ).

PROOF. In order to lighten the notation in this step, we omit to explicit the
dependence onR. All the constants appearing below are allowed to depend on
R, T or φ, but not onn. We set

un = un
R, θ = θR, � = �R,φ.

We use the Itô formula withF(un) = |un|2
H2 = |(I − �)un|2 and we have

d|un|2
H2 + 2Re

[
i

∫
Rd

θ(un)
(
(I − �)2ūn)

(|un|2σ un + fnu
n) dx

]
dt

= 2Re
(
−i

∫
Rd

θ(un)
(
(I − �)2ūn)

un dW dx

)
+ 2Re

(
−i

∫
Rd

(
(I − �)2ūn)

�(un)dx

)
dt

+ 2Re
(
i

∫
Rd

θ(un)
(
(I − �)2ūn)

unẆn dx

)
dt + θ2(un)

∑
∈N

|unφe|2H2 dt.
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We integrate between 0 andt , and estimate each term of the resulting identity. For
the second term of the left-hand side, we write

E

(
sup

t∈[0,T ]

∫ t

0

∣∣∣∣∫
Rd

θ(un)
(
(I − �)2ūn)

(|un|2σ un + fnu
n) dx

∣∣∣∣ds

)

≤ E

(∫ T

0

∣∣∣∣∫
Rd

θ(un)(I − �)ūn(I − �)(|un|2σ un + fnu
n) dx

∣∣∣∣ds

)

≤ cE

(∫ T

0
θ(un)|un|H2

(∣∣|un|2σ un
∣∣
H2 + |fnu

n|H2
)
ds

)
.

We have used an integration by parts and Cauchy–Schwarz’s inequality. Now, we
use the inequality

|vw|H2 ≤ |v|L∞|w|H2 + |w|L∞|v|H2, v,w ∈ H 2(Rd),

and the Sobolev embeddingHs0(Rd) ⊂ L∞(Rd) to get that

|vw|H2 ≤ |v|Hs0 |w|H2 + |w|Hs0 |v|H2, v,w ∈ H 2(Rd).(6.4)

This gives

θ(un)
∣∣|un|2σ un

∣∣
H2 ≤ cR2σ |un|H2 ≤ c|un|H2

for another constantc which depends onR. By (5.5),fn is in C([0, T ];H 2(Rd))

and its norm in this space is bounded independently ofn. Therefore, by a similar
argument as above,

|fnu
n|H2 ≤ c|un|H2.

We deduce

E

(
sup

t∈[0,T ]

∫ t

0

∣∣∣∣∫
Rd

θ(un)
(
(I − �)2ūn)

(|un|2σ un + fnu
n) dx

∣∣∣∣ds

)

≤ cE

(∫ T

0
|un|2

H2 ds

)
.

In the same way, usingφ ∈ L0,2
2 , we have

E

(
sup

t∈[0,T ]

∫ t

0

∣∣∣∣∫
Rd

(
(I − �)2ūn)

�(un)dx

∣∣∣∣ds

)
≤ cE

(∫ T

0
|un|2

H2 ds

)
and

E

(
sup

t∈[0,T ]

∫ t

0

∣∣∣∣∣∑
∈N

θ2(un)|unφe|2H2 ds

∣∣∣∣∣
)

≤ cE

(∫ T

0
|un|2

H2 ds

)
.
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Moreover, recalling that the noise is real valued and using a martingale inequality,

E

(
sup

t∈[0,T ]

∣∣∣∣Re
∫ t

0

∫
Rd

−iθ(un)
(
(I − �)2ūn)

un dx dW

∣∣∣∣)

= E

(
sup

t∈[0,T ]

∣∣∣∣∣
∫ t

0
Im

∑
∈N

∫
Rd

θ(un)(I − �)ūn(I − �)(unφe) dx dβ

∣∣∣∣∣
)

= E

(
sup

t∈[0,T ]

∣∣∣∣∣
∫ t

0
Im

∑
∈N

∫
Rd

θ(un)(I − �)ūn

× [un�(φe) + 2∇un · ∇(φe)]dx dβ

∣∣∣∣∣
)

≤ c

(
E

∫ T

0

∑
∈N

(∫
Rd

θ(un)(I − �)ūn

× [un�(φe) + 2∇un · ∇(φe)]dx

)2

dt

)1/2

≤ c

(
E

∫ T

0
θ(un)

∑
∈N

(|un|L∞|un|H2|φe|H2

+ |un|H2|∇un|L3|∇φe|L6
)2

ds

)1/2

,

by Hölder’s inequality. We now use the embeddingsHs0(Rd) ⊂ L∞(Rd),
Hs0−1(Rd) ⊂ H 1/2(Rd) ⊂ L3(Rd) andH 1(Rd) ⊂ L6(Rd) to obtain

E

(
sup

t∈[0,T ]

∣∣∣∣Re
∫ t

0
(−i)

∫
Rd

θ(un)
(
(I − �)2ūn)

un dx dW

∣∣∣∣)

≤ c

(
E

∫ T

0

∑
∈N

θ(un)|un|2Hs0 |un|2
H2|φe|2H2 dt

)1/2

≤ c + 1
2E

(
sup

t∈[0,T ]
|un|2

H2

)
.

It remains to estimate the most difficult term which we denote byAn(t). By similar
manipulations as above, we have

An(t) =
∫ t

0
Re

(
i

∫
Rd

θ(un)
(
(I − �)2ūn)

unẆn dx

)
ds

= −
∫ t

0
Im

(∫
Rd

θ(un)(I − �)ūn(un�Ẇn + 2∇un · ∇Ẇn) dx

)
ds.

We need to introduce a further notation. Fors ≥ 0 andk ∈ N, we setsk = k�t

andun
S(s, sk−1) = S(s − sk−1)u

n(sk−1). Here(S(t))t∈R is the group of operators
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associated to the linear Schrödinger equation,S(t) = e−it�, t ∈ R. It is well
known that, for anyt , S(t) is an isometry on each Sobolev spaceHs(Rd), s ∈ R.
Now we splitAn(t) as follows:

−An(t) =
∫ t

0
Im

(∫
Rd

θ
(
un(s)

)
(I − �)

(
ūn(s) − ūn

S(s, sk−1)
)

× (un�Ẇn + 2∇un · ∇Ẇn) dx

)
ds

+
∫ t

0
Im

(∫
Rd

θ
(
un(s)

)
(I − �)ūn

S(s, sk−1)

× (
2∇(

un(s) − un
S(s, sk−1)

) · ∇Ẇn

)
dx

)
ds

+
∫ t

0
Im

(∫
Rd

θ
(
un(s)

)
(I − �)ūn

S(s, sk−1)

× ((
un(s) − un

S(s, sk−1)
)
�Ẇn

)
dx

)
ds

+
∫ t

0
Im

(∫
Rd

(
θ
(
un(s)

) − θ
(
un

S(s, sk−1)
))

(I − �)ūn
S(s, sk−1)

× (
un

S(s, sk−1)�Ẇn + 2∇un
S(s, sk−1) · ∇Ẇn

)
dx

)
ds

+
∫ t

0
Im

(∫
Rd

θ
(
un

S(s, sk−1)
)
(I − �)ūn

S(s, sk−1)

× (
un

S(s, sk−1)�Ẇn + 2∇un
S(s, sk−1) · ∇Ẇn

)
dx

)
ds,

and in this expression,sk−1 depends ons and is chosen to satisfys ∈ [sk−1, sk[.
We use similar arguments as above to deduce

|An(t)| ≤ c

∫ t

0

(|un(s) − un
S(s, sk−1)|H2|Ẇn|H2

+ |un
S(s, sk−1)|H2|un(s) − un

S(s, sk−1)|Hs0 |Ẇn|H2

+ |un(s) − un
S(s, sk−1)|Hs0 |un

S(s, sk−1)|Hs0

× |un
S(s, sk−1)|H2|Ẇn|H2

)
ds

+
∣∣∣∣∫ t

0
Im

(∫
Rd

θ
(
un

S(s, sk−1)
)
(I − �)ūn

S(s, sk−1)

× (
un

S(s, sk−1)�Ẇn + 2∇un
S(s, sk−1) · ∇Ẇn

)
dx

)
ds

∣∣∣∣
= |An

1(t)| + |An
2(t)|.
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The second termAn
2 is a martingale and can be treated as the stochastic integral

above. We obtain

E

(
sup

t∈[0,T ]
An

2(t)

)

≤ c

(
E

∫ T

0

∑
∈N

θ2(un
S(s, sk−1)

)|un
S(s, sk−1)|2Hs0 |un

S(s, sk−1)|2H2|φe|2H2 dt

)1/2

≤ c + 1
4E

(
sup

t∈[0,T ]
|un|2

H2

)
.

The termAn
1 is more difficult to treat sinceE(|Ẇn|mH2) is of order(�t)−m/2 for any

m ∈ N. This factor is compensated byun(s)−un
S(s, sk−1), which we now estimate.

We write, using the integral form of (6.3) forun, starting att = sk−1,

un(s) − un
S(s, sk−1)

= i

∫ s

sk−1

S(s − τ)
[
θ
(
un(τ)

)|un(τ)|2σ un(τ ) + fn(τ )un(τ ) + �
(
un(τ)

)]
dτ

+ i

∫ s

sk−1

S(s − τ)θ
(
un(τ)

)
un(τ) dW(τ)

− i

∫ s

sk−1

S(s − τ)θ
(
un(τ)

)
un(τ)Ẇn dτ.

SinceHs0(Rd) is an algebra, we obtain

|un(s) − un
S(s, sk−1)|Hs0

≤ c(s − sk−1) +
∣∣∣∣∫ s

sk−1

S(s − τ)θ
(
un(τ)

)
un(τ) dW(τ)

∣∣∣∣
Hs0

+ c(s − sk−1)
∣∣Ẇn

(
(k − 1)�t

)∣∣
Hs0

and, for anym ∈ N,

E
(|un(s) − un

S(s, sk−1)|mHs0

) ≤ c(m)(s − sk−1)
m/2.(6.5)

Moreover, by (6.4),

|un(s) − un
S(s, sk−1)|H2

≤ c(s − sk−1) sup
[0,s]

|un|H2 +
∣∣∣∣∫ s

sk−1

S(s − τ)θ
(
un(τ)

)
un(τ) dW(τ)

∣∣∣∣
H2

+ c(s − sk−1) sup
[0,s]

|un|H2
∣∣Ẇn

(
(k − 1)�t

)∣∣
H2
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and, by Cauchy–Schwarz’s inequality,

E
(|un(s) − un

S(s, sk−1)|H2|Ẇn(s)|H2
) ≤ c

(
E

(
sup
[0,s]

|un|2
H2

))1/2

.

On the other hand, it is easily seen from (6.3) that, for anym ∈ N,

E

(
sup

t∈[0,T ]
|un(t)|mHs0

)
≤ C(m,T ,R) ≤ c

and we deduce

E

(
sup

t∈[0,T ]
An

1(t)

)
≤ c

(
E

(
sup

t∈[0,T ]
|un(t)|2

H2

))1/2

.

It is now easy to gather all the preceding estimates and to conclude the proof of
our claim. �

STEP 2. For anyR ≥ 1, there exists a constantC(R,T ,φ) such that, for any
n ∈ N,

E

(
sup

t∈[0,T ]
|un

R(t)|2
�2

)
≤ C(R,T ,φ).

PROOF. Thanks to the result of Step 1, it remains to estimateV2(u
n
R(t)) =∫

Rd |x|4|un
R(s, x)|2 dx. We use the Itô formula, recalling as in Section 6.1 that the

computations can be justified by a smoothing argument. As above, we omit to write
the dependence onR. We obtain

dV2(u
n) = 2Im

∫
Rd

|x|4ūn�un dx dt = −8Im
∫

Rd
|x|2ūnx · ∇un dx dt.

We have, by Cauchy–Schwarz’s inequality and integration by parts,∣∣∣∣∫
Rd

|x|2ūnx · ∇un dx

∣∣∣∣ ≤ (
V2(u

n)
)1/2|x · ∇un|

≤ c
(
V2(u

n)
)1/2((

V2(u
n)

)1/4|un|1/2
H2 + |un|)

≤ 1
8V2(u

n) + c|un|2
H2.

We deduce

V2
(
un(t)

) ≤ et

[
V2(u0) +

∫ t

0
|un|2

H2 ds

]
.

We conclude thanks to Step 1.�

STEP 3. The laws of((un
R,W))n∈N are tight in C([0, T ];�η) × C([0, T ];

H
η
loc(R

d)) for anyη < 2.
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PROOF. We use the integral form of the equation satisfied byun
R to get an

estimate on its modulus of continuity. Again, we omit to write the dependence
on R and all the constants appearing below do not depend onn. We have, for
t1, t2 ∈ [0, T ] with t1 ≤ t2,

S(−t1)u
n(t1) − S(−t2)u

n(t2)

= −i

∫ t2

t1

S(−s)[θ(un)|un|2σ un + fnu
n + �(un)]ds

− i

∫ t2

t1

S(−s)θ(un)un dW(s) + i

∫ t2

t1

S(−s)θ(un)unẆn ds.

Using the fact thatHs0(Rd) is an algebra and thatS(−s) is an isometry, we deduce

E
(|S(−t1)u

n(t1) − S(−t2)u
n(t2)|2Hs0

)
≤ c|t2 − t1| + E

(∣∣∣∣∫ t2

t1

S(−s)θ(un)unẆn ds

∣∣∣∣2
Hs0

)
,

where again the constantc is allowed to depend onR. The last term is decomposed
asAn in the first step into the sum of a martingale term∫ t2

t1

S(−sk−1)θ
(
un

S(s, sk−1)
)
un

S(s, sk−1)Ẇn ds

and of a remaining term. It is not difficult to see that both have a second moment
which can be majorized by a constant time|t2 − t1|. Therefore,

E
(|S(−t1)u

n(t1) − S(−t2)u
n(t2)|2Hs0

) ≤ c|t2 − t1|.
Now, sinceS(t) is an isometry and since, forv in H 2(Rd), we have∣∣(S(−t1) − S(−t2)

)
v
∣∣
Hs0 ≤ c|t1 − t2|2−s0|v|H2,(6.6)

as can be seen with the use of spatial Fourier transform and we easily obtain,
thanks to Step 1,

E
(|un(t1) − un(t2)|2Hs0

) ≤ c|t2 − t1|2(2−s0).

Thus, the sequence(un)n∈N is bounded in probability inC([0, T ];�2(Rd)) ∩
C2−s0([0, T ];Hs0(Rd)). This space is compactly embedded intoC([0, T ];
�η(Rd)) for η < 2 and the tightness of(un)n∈N follows.

We conclude thanks to the well-known identity

E
(|W(t1) − W(t2)|2H2

) = |t1 − t2| |φ|2
L0,2

2

and the compactness of the embedding ofH 2(Rd) into H
η
loc(R

d). �

STEP 4. Passage to the limit.
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Let us fix a pair of subsequences(ϕ(n),ψ(n))n∈N. We infer from Step 3
and the Prokhorov and Skorokhod theorems that there is a subsequence of
(u

ϕ(n)
R , u

ψ(n)
R ,W) which we still denote by the same letters, a probability space

(�̃, F̃ , P̃) and random variables(ũn
1, ũ

n
2, W̃

n), n ∈ N, (ũ1, ũ2, W̃ ) with values in
C([0, T ];�η) × C([0, T ];�η) × C([0, T ];Hη

loc(R
d)) for anyη < 2, such that for

anyn ∈ N,

L(ũn
1, ũ

n
2, W̃

n) = L
(
u

ϕ(n)
R ,u

ψ(n)
R ,W

)
and such that

ũn
j → ũj asn → +∞, P̃ a.s. inC([0, T ];�η) for η < 2, j = 1,2,

W̃ n → W̃ asn → +∞, P̃ a.s. inC
([0, T ];Hη

loc(R
d)

)
for η < 2.

Defining then

F̃t = σ {ũj (s), W̃ (s), 0 ≤ s ≤ t, j = 1,2}
and

F̃ n
t = σ {ũn

j (s), W̃
n(s), 0≤ s ≤ t, j = 1,2},

it is easily seen that̃W andW̃n are Wiener processes associated, respectively, with
(F̃t )t≥0 and(F̃ n

t )t≥0, with covariance operatorφφ∗.
It can be checked that forj = 1,2, we have

idũn
j − �ũn

j dt − θR(ũn
j )(|ũn

j |2σ ũn
j + fnũ

n
j ) dt

(6.7)
= θR(ũn

j )ũ
n
j dW̃n + �R,φ(ũn

j ) dt − θR(ũn
j )ũ

n
j

˙̃Wn dt

and

ũn
j (0) = u0,

where ˙̃Wn is defined asẆn but replacingW by W̃n. The difficulty now is to prove
that the right-hand side of (6.7) goes to zero. In fact, we have the following result
whose proof is very technical and is postponed to Step 6.

LEMMA 6.1. For j = 1,2 and anyt ∈ [0, T ],∫ t

0
θR(ũn

j )ũ
n
j dW̃n(s) +

∫ t

0
�R,φ(ũn

j ) ds −
∫ t

0
θR(ũn

j )ũ
n
j

˙̃Wn ds → 0,

in L1(�̃,H s0(Rd)).

It is not difficult to let n → ∞ in the left-hand side of (6.7) and, thanks to
Lemma 6.1, we deduce that, forj = 1,2,{

idũj − �ũj dt − θR(ũj )(|ũj |2σ ũj + f ũj ) dt = 0,

ũj (0) = u0.
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It can be seen that this equation has at most one solution so that the limits of
ũn

1 andũn
2 coincide:

ũ1 = ũ2.

We deduce that for each pair of subsequences(ϕ(n),ψ(n))n∈N, there is a
subsequence of(uϕ(n)

R , u
ψ(n)
R ) which converges in law to a random variable

(ũ1, ũ1). We now use the following elementary lemma, which was first used by
Gyöngy and Krylov in [16]:

LEMMA 6.2. Let Zn be a sequence of random elements in a Polish space
E equipped with the Borelσ -algebra. Then Zn converges in probability to
an E-valued random element if and only if for every pair of subsequences
(Zϕ(n),Zψ(n)), there is a subsequence of(Zϕ(n),Zψ(n)) which converges in law
to a random element supported on the diagonal{(x, y) ∈ E × E, x = y}.

It follows that the sequence(un
R)n∈N converges in probability inC([0, T ],�η)

to a random variableuR . Moreover, proceeding as above, we can letn → ∞
in (6.3) and see thatuR satisfies the equation{

iduR − �uR dt − θR(uR)(|uR|2σ uR + f uR)dt = 0,

ũR(0) = u0.

STEP 5. Conclusion.

It is now important to emphasize the dependence onR. Let us defineτR =
min{t ∈ [0, T ], |uR(t)|Hs0 ≥ R} andτn

R = min{t ∈ [0, T ], |un
R(t)|Hs0 ≥ R}. On

[0, τR], uR satisfies the deterministic nonlinear Schrödinger equation (5.2) whose
unique solution is given byU . Thus, ifR0 = |U |L∞(0,T2;Hs0(Rd )) andR > R0, then
τR > T2 and uR = U on [0, T2]. Similarly, on [0, τ n

R], un
R and un, the solution

of (5.6) coincide. Moreover,τn
R andτR increase withR and

τR → t∗ and τn
R → τ ∗

n (u0) a.s.

whenR → ∞, wheret∗ is the existence time ofU . It follows, sincet∗ > T2, that

P
(
τ ∗
n (u0) ≤ T2

) → 0

asn → ∞. Hence, (5.8) holds. Moreover, for anyε ≤ 1,

P

(
τ ∗
n (u0) > T2 and sup

t∈[0,T2]
|un − U |� > ε

)

≤ P

(
τ ∗
n (u0) > T2 and sup

t∈[0,T2∧τn
R0+1]

|un − U |� > ε

)

≤ P

(
sup

t∈[0,T ]
∣∣un

R0+1(t) − uR0+1(t)
∣∣
� > ε

)
,
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where we have usedτR0+1 > T2. Now, this last term goes to 0 asn goes to infinity
by Step 4. We deduce that (5.9) holds.

STEP 6. Proof of Lemma6.1.

In order to lighten the notation, we omit writing the dependence onR. Also we
write � instead of�R,φ , un instead ofũn

j andWn instead of̃Wn. Thus, we have
to prove

In(t) =
∫ t

0
θ(un)un dWn(s) +

∫ t

0
�(un)ds −

∫ t

0
θ(un)unẆn ds → 0,

whenn → ∞ for any t ∈ [0, T ] in L1(�̃,H s0(Rd)). We splitIn as the sum ofI1
n

andI2
n , where

I1
n (t) =

N−1∑
k=0

∫ tk+1

tk

θ
(
un(s)

)
un(s) dWn(s) −

∫ tk+1

tk

θ
(
un

S(s, tk−1)
)
un

S(s, tk−1)Ẇn ds

and

I2
n (t) =

N−1∑
k=0

∫ tk+1

tk

(
θ
(
un

S(s, tk−1)
)
un

S(s, tk−1) − θ
(
un(s)

)
un(s)

)
Ẇn ds

+
∫ tk+1

tk

�
(
un(s)

)
ds.

We have settk = k�t , k = 0, . . . ,N − 1, tN = T , whereN is the integer part
of t/�t , and t−1 = 0. We have again used the notationun

S(s, tk−1) = S(s −
tk−1)u

n(tk−1). Note that, fork = 0, . . . ,N − 1,∫ tk+1

tk

θ
(
un

S(s, tk−1)
)
un

S(s, tk−1)Ẇn ds

=
∫ tk

tk−1

1

�t

(∫ tk+1

tk

θ
(
un

S(τ, tk−1)
)
un

S(τ, tk−1) dτ

)
d(φPnW

n
c )(s),

whereWn
c = φ−1Wn is a cylindrical Wiener process. It follows

I1
n (t) =

N−1∑
k=0

∫ tk

tk−1

1

�t

(∫ tk+1

tk

(
θ
(
un(s)

)
un(s)

− θ
(
uS(τ, tk−1)

)
uS(τ, tk−1)

)
dτ

)
dWn(s)

+
∫ tN

tN−1

θ
(
un(s)

)
un(s) dWn(s)

+
N−1∑
k=0

∫ tk

tk−1

θ
(
un(s)

)
un(s) d

(
φ(I − Pn)W

n
c

)
.
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Then, using similar arguments as in Step 1,

E
(|I1

n (t)|2Hs0

)
≤

N−1∑
k=0

E

(∫ tk

tk−1

∣∣∣∣ 1

�t

(∫ tk+1

tk

(
θ
(
un(s)

)
un(s)

− θ
(
uS(τ, tk−1)

)
uS(τ, tk−1)

)
dτ

)
φ

∣∣∣∣2
L

0,s0
2

ds

)
(6.8)

+
∫ t

0
E

(∣∣θ(
un(s)

)
un(s)φ(I − Pn)

∣∣2
L

0,s0
2

)
ds

+
∫ tN

tN−1

E
(∣∣θ(

un(s)
)
un(s)φ

∣∣2
L

0,s0
2

)
ds

≤ c(�t) + c|φ(I − Pn)|L0,s0
2

and this latter term goes to 0 asn → ∞, sinceφ ∈ L0,s0
2 .

Now, estimate (6.5) is not sufficient to handleI2
n (t). Let us define

R(s, tk−1) = −i

∫ s

tk−1

S(s − τ)[θ(un)(|un|2σ un + fnu
n) − �(un)]dτ

− i

∫ s

tk−1

S(s − τ)[θ(un)un dWn(τ)]

+ i

∫ s

tk−1

θ
(
un

S(s, tk−1)
)
un

S(s, tk−1) dWn(τ)

+ i

∫ s

tk−1

S(s − τ)[θ(un)unẆn dτ ]

− i

∫ s

tk−1

θ
(
un

S(s, tk−1)
)
un

S(s, tk−1)Ẇn dτ

so that

un(s) − un
S(s, tk−1)

= R(s, tk−1) − iθ
(
un

S(s, tk−1)
)
un

S(s, tk−1)

∫ s

tk−1

dWn(τ)

+ iθ
(
un

S(s, tk−1)
)
un

S(s, tk−1)

∫ s

tk−1

Ẇn dτ.

We can prove, using Cauchy–Schwarz’s inequality, Step 1, (6.5) and (6.6), that for
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anyδ < 2,

E
(|R(s, tk−1)|δHs0

) ≤ c�tδ(2−s0+1/2).

It follows

E
(|R(s, tk−1)|Hs0 |Ẇn|Hs0

) ≤ c�t2−s0.(6.9)

Next, we rewriteI2
n as

I2
n (t) =

N−1∑
k=0

∫ tk+1

tk

(
θ
(
un

S(s, tk−1)
)
un

S(tk−1) − θ
(
un(s)

)
un(s)

− σ ′
θ

(
un

S(s, tk−1)
) · (

un
S(s, tk−1) − un(s)

))
Ẇn ds

−
N−1∑
k=0

∫ tk+1

tk

σ ′
θ

(
un

S(s, tk−1)
) · R(s, tk−1)Ẇn ds

+
N−1∑
k=0

∫ tk+1

tk

(
�

(
un(s)

) − �
(
un

S(s, tk−1)
))

ds

+
N−1∑
k=0

∫ tk+1

tk

θ
(
un

S(s, tk−1)
)
σ ′

θ

(
un

S(s, tk−1)
)

·
(
iun

S(s, tk−1)

∫ s

tk−1

dWn(τ)

)
Ẇn ds

−
N−1∑
k=0

∫ tk+1

tk

θ
(
un

S(s, tk−1)
)
σ ′

θ

(
un

S(s, tk−1)
)

·
(
iun

S(s, tk−1)

∫ s

tk−1

Ẇn dτ

)
Ẇn ds

+
N−1∑
k=0

∫ tk+1

tk

�
(
un

S(s, tk−1)
)
ds,

whereσ ′
θ (v) · w is the differential in the directionw of the mappingv �→ θ(v)v

which is C∞ from Hs0 into itself with all derivatives bounded. By the Taylor
formula and (6.5), the first term clearly goes to zero inL1(�;Hs0) as (�t)1/2.
This is also the case for the third term. For the second term, we use (6.9) and see
that it goes to zero inL1(�;Hs0) as(�t)2−s0.

Let us denote byJ (t) the sum of the remaining terms. Using that

�(u) = 1
2θ(u)

∑
∈N

σ ′
θ (u) · (−iuφe)φe,
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we get

J (t) =
N−1∑
k=0

∫ tk+1

tk

θ
(
un

S(s, tk−1)
)

×
[
σ ′

θ

(
un

S(s, tk−1)
)

·
(
iun

S(s, tk−1)

(∫ s

tk−1

dWn(τ) −
∫ s

tk−1

Ẇn dτ

))
Ẇn

+ 1
2

∑
∈N

σ ′
θ

(
un

S(s, tk−1)
) · (−iun

S(s, tk−1)φe

)
φe

]
ds.

Now, recalling the definition ofθ , we have

σ ′
θ (v) · w = 2

R2ϑ ′
( |v|2

Hs0

R2

)
(v,w)Hs0v + ϑ

( |v|2
Hs0

R2

)
w,

and we can write

J (t) = J1(t) + J2(t),

with

J1(t) =
N−1∑
k=0

∫ tk+1

tk

iθ2(un
S(s, tk−1)

)
un

S(s, tk−1)

×
[(∫ s

tk−1

dWn(τ) −
∫ s

tk−1

Ẇn dτ

)
Ẇn − 1

2Fφ

]
ds

and

J2(t) = 2

R2

N−1∑
k=0

∫ tk+1

tk

θ
(
un

S(s, tk−1)
)
ϑ ′

( |un
S(s, tk−1)|2Hs0

R2

)

×
[(

un
S(s, tk−1), iu

n
S(s, tk−1)

×
(∫ s

tk−1

dWn(τ) −
∫ s

tk−1

Ẇn dτ

))
Hs0

Ẇn

− 1

2

∑
∈N

(
un

S(s, tk−1), iu
n
S(s, tk−1)φe

)
Hs0φe

]

× un
S(s, tk−1) ds.
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Writing(∫ s

tk−1

dWn(τ) −
∫ s

tk−1

Ẇn dτ

)
Ẇn(s) − 1

2Fφ

=
[(∫ s

tk−1

dWn(τ)

)
Ẇn(s) − Fφ

]
−

[(∫ s

tk−1

Ẇn(τ ) dτ

)
Ẇn(s) − 1

2Fφ

]
,

it is then the result of tedious—but standard—computations, based on the
independence of the increments of the Wiener process, that each bracket in the
right-hand side above gives, when inserted intoJ1(t), a term which goes to 0 in
L2(�;L2(Rd)), hence, also inL2(�;Hs0(Rd))—since it is clearly bounded in
L2(�;H 2(Rd)).

It can be proved in the same way thatJ2(t) goes to 0 inL2(�;Hs0(Rd)) as�t

goes to 0 (orn goes to infinity).
Therefore,I2

n (t) goes to zero inL1(�;Hs0) and, recalling (6.8), Lemma 6.1 is
proved.
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