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BLOW UP IN FINITE TIME
AND DYNAMICS OF BLOW UP SOLUTIONS

FOR THE L2–CRITICAL GENERALIZED KDV EQUATION

YVAN MARTEL AND FRANK MERLE

1. Introduction

In this paper, we are interested in the phenomenon of blow up in finite time (or
formation of singularity in finite time) of solutions of the critical generalized KdV
equation. Few results are known in the context of partial differential equations
with a Hamiltonian structure. For the semilinear wave equation, or more generally
for hyperbolic systems, the finite speed of propagation allows one to build blowing
up solutions by reducing the problem to an ordinary differential equation. For the
nonlinear Schrödinger equation,

iut = −∆u− |u|p−1u, where u : R×RN → C,(1)

the formation of singularity is related to the existence of a conformal invariance of
the equation in the critical case, namely,

iut = −∆u− |u| 4
N u (for N = 1: iut = −uxx − |u|4u).(2)

Indeed, in this case if u(t, x) is a solution of equation (2), then

v(t, x) =
1

|t|N2
e

i|x|2
4t u

(
1
t
,
x

t

)
is also a solution. Observe that this invariance relates regular solutions defined for
all time to singular solutions. (Note that in the supercritical case, i.e. p > 1 + 4

N ,
the Virial identity, which provides blow up solutions with negative energy, is itself
a consequence of the conformal invariance in the critical case.) For more detail see
for example [10]. In different contexts, these questions are mostly open.

We consider in this paper the case of the critical generalized Korteweg–de Vries
equation {

ut + (uxx + u5)x = 0, (t, x) ∈ R+ ×R,

u(0, x) = u0(x), x ∈ R,
(3)

for u0 ∈ H1(R). For this equation, we suggest an approach based on a different
idea (due to the lack of invariance for this equation). Let us recall a few facts
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618 YVAN MARTEL AND FRANK MERLE

concerning (3). It is a special case of the generalized Korteweg–de Vries equations,
for p ≥ 2 an integer:{

ut + (uxx + up)x = 0, (t, x) ∈ R+ ×R,

u(0, x) = u0(x), x ∈ R.
(4)

Cases p = 2 and p = 3, which correspond respectively to the KdV equation and
modified KdV equation, have been studied extensively for being completely inte-
grable (see for example Lax [6] and Miura [12]). From the Hamiltonian structure,
there are two conservation laws∫

u2(t) =
∫
u2

0 (mass conservation),(5)

1
2

∫
u2
x(t)− 1

p+ 1

∫
up+1(t)

=
1
2

∫
u2

0x −
1

p+ 1

∫
up+1

0 (energy conservation).
(6)

In this paper, we consider only the critical case p = 5 and solutions in the energy
space H1(R). We define the energy

E(u) =
1
2

∫
u2
x −

1
6

∫
u6.

In [5], Kenig, Ponce and Vega prove the following existence and uniqueness
result in the energy space H1(R): for u0 ∈ H1(R), there exist T > 0 and a unique
maximal solution u ∈ C([0, T ), H1(R)) of (4) on [0, T ). Moreover, either T = +∞,
or T < +∞, and then |u(t)|H1 → +∞, as t ↑ T . In addition, for all t ∈ [0, T ),
(5) and (6) are satisfied. Note that for equation (3), the local Cauchy problem is
also well posed in L2(R) (see [5]). We refer to Kato [4] and Ginibre and Tsutsumi
[3] for previous results on the well-posedness of the Cauchy problem for (4) and to
Bourgain [2] for the periodic case.

For p < 5 (the subcritical case), as a consequence of the Gagliardo–Nirenberg
inequality, all solutions in H1 are global and bounded in time. For p ≥ 5, the
situation is different, blow up in finite time is suspected and for this problem p = 5
appears as a critical power.

We now fix p = 5 and we consider the problem of blow up for (3). Let us
introduce the ground state Q, the unique positive solution up to translation of

Qxx +Q5 = Q, Q ∈ H1(R), or equivalently Q(x) =
31/4

ch1/2(2x)
.

Note that u(t, x) = Q(x− t) and ∀c > 0, uc(t, x) = c1/4Q(c1/2(x − ct)) are special
solutions of (3), satisfying E(uc) = E(Q) = 0.

The variational characterization of Q gives the following Gagliardo–Nirenberg
inequality (see Weinstein [13]):

∀v ∈ H1(R),
1
6

∫
v6 ≤ 1

2

( ∫
v2∫
Q2

)2 ∫
v2
x.(7)

In particular, if |u0|L2 < |Q|L2 , then by (5), (6) and (7), the solution u(t) is
global and uniformly bounded in H1. On the contrary, for |u0|L2 > |Q|L2 there
is no obstruction to blow up from energy type arguments. Note that numerical
observations suggest existence of blow up in finite time; see Bona et al. [1].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BLOW UP FOR CRITICAL GKDV 619

Our approach to study blow up for solutions of (3) is based on a qualitative
description of the solutions, either when the solution is global and bounded, or
when blow up occurs. We focus on the case where the nonlinear dynamics plays a
role and the L2 norm of the solution is small, i.e.∫

Q2 <

∫
u2

0 <

∫
Q2 + α0,

where α0 > 0 small.
In the case E(u0) < 0, from the conservation laws, the solution remains close to

the function Q in H1 up to scaling and translation, so that we are able to define a
continuous decomposition of the solution of the type

u(t, x) =
1

λ̃1/2(t)
(Q + ε̃ )

(
t,
x− x̃(t)

λ̃(t)

)
,(8)

with |ε̃ (t)|H1 ≤ δ(α0), where δ(α0)→ 0 where α0 → 0. Here, we use the fact that
equation (3) is invariant under the scaling transform

if u(t, x) is a solution of (3), then ∀λ > 0, λ1/2u(λ3t, λx) is also a solution of (3),

which lets the L2 norm be invariant. This property of closeness to Q up to λ̃(t),
x̃(t) gives a nonvanishing property and allows us to define an asymptotic object
recurrent in time as t→ +∞ or t→ T (T being the blow up time). The key idea is
to show that the recurrence in time yields some rigidity on this object. In fact, we
are then able to prove both elliptic type and oscillatory integral type estimates for
this limit solution to give the desired result. We now recall the results on blow up
obtained so far following this approach in Martel and Merle [8], [9] and Merle [11].

First, existence of solutions of (3) blowing up in finite or infinite time in the
energy space H1 has been proved in [11].

Blow up result ([11]). There exists α1 > 0 such that the following is true. Let
u0 ∈ H1(R) be such that

∫
u2

0 ≤
∫
Q2 +α1 and E(u0) < 0. Then the corresponding

solution u(t) of (3) blows up in finite or infinite time, i.e. there exists 0 < T ≤ +∞
such that

lim
t↑T
|ux(t)|L2 = +∞ or equivalently λ̃(t)→ 0 as t ↑ T .

Note that elliptic estimates (exponential decay in |x|) and oscillatory estimates,
together with the three conservation laws (mass, energy and

∫
u(t, x)dx), give com-

plete information on the variation of the size of the limit solutions and prove the
theorem.

Next, in [9], we have addressed the question of the blow up profile, i.e. the
asymptotic form of the solutions after rescaling. We have a characterization of the
blow up profile, up to the invariances of the equation. This result is also based on
mixed elliptic and oscillatory estimates on the limit object.

Blow up profile ([9]). There exists 0 < α2 < α1 such that the following is true.
Let u0 ∈ H1(R) be such that

∫
u2

0 ≤
∫
Q2 + α2 and E(u0) < 0. Let u(t) be the

corresponding solution of (3), and let 0 < T ≤ +∞ be its blow up time. Then for
all t ∈ [0, T ) there exist λ̃(t) > 0 and x̃(t) ∈ R such that

either λ̃1/2(t)u(t, λ̃(t)x+ x̃(t)) ⇀ Q or − λ̃1/2(t)u(t, λ̃(t)x+ x̃(t)) ⇀ Q

in H1(R) weak, as t ↑ T with λ̃(t)→ 0, as t ↑ T .
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620 YVAN MARTEL AND FRANK MERLE

Remark. Note that the alternative in the previous result comes from the fact that
if u(t, x) is a solution of (3), then −u(t, x) is also a solution. This is, in some sense,
a generalization of the Liouville theorem, and of its corollary in [8], which says that
any solution bounded in H1 from below and from above, starting close to Q in H1,
converges locally in space to Q for large time.

Therefore, for ∫
u2

0 ≤
∫
Q2 + α2 and E(u0) < 0,

we have

λ̃(t)→ 0 and ε̃ (t) ⇀ 0 as t→ T ,

where λ̃(t) and ε̃ (t) are related to the decomposition of u(t). Now, with this in-
formation on the asymptotic behavior of the solutions, we look at the asymptotic
dynamics to obtain a control on the blow up rate (by studying time relations be-
tween key quantities of the problem).

More precisely, assume in addition that the initial data has a decay in L2 at the
right, in the following sense:

∃θ > 0, such that ∀x0 > 0,
∫
x≥x0

u2
0(x)dx ≤ θ

x6
0

.

Then blow up occurs in finite time. Moreover, we have an upper bound on the blow
up rate for a special subsequence of time. The main result is the following.

Theorem 1 (Blow up in finite time and dynamics of blow up solutions). There
exists 0 < α3 < α2 such that the following is true. Let u0 ∈ H1(R) be such
that

∫
u2

0 ≤
∫
Q2 + α3 and E(u0) = E0 < 0. Let u(t) be the corresponding solution

of (3). Assume in addition that for some θ > 0,

∀x0 > 0,
∫
x≥x0

u2
0(x)dx ≤ θ

x6
0

.(9)

(i) Then u(t) blows up in finite time, i.e.

for T < +∞ lim
t↑T
|ux(t)|L2 = +∞.

(ii) Moreover, let tn → T be the sequence defined as

|ux(tn)|L2 = 2n|Qx|L2 and ∀t ∈ (tn, T ), |ux(t)|L2 > 2n|Qx|L2 .(10)

Then, there exists n(u0) such that

∀n ≥ n(u0), |ux(tn)|L2 ≤ C0

|E0|(T − tn)
,(11)

where C0 = 4(
∫
Q)2|Qx|L2 .

Comments and remarks on Theorem 1. We give some comments on the hy-
pothesis and on the conclusion of Theorem 1. In particular, we point out some
variants of the assumptions of the theorem.

1. Existence of such initial data. This follows from the fact that E(Q) = 0,
∇E(Q) = −Q and Q decays exponentially.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BLOW UP FOR CRITICAL GKDV 621

2. Polynomial decay (9). Note first that α3 given in Theorem 1 does not depend
on the size of θ. Note also that, for example, condition (9) is implied by∫

x>0

u2
0(x)x6dx < +∞.

This is related to the classical assumption
∫
|x|2|u0(x)|2dx < +∞ in the context of

the critical and supercritical nonlinear Schrödinger equations. Recall that in this
case, E(u0) < 0 and

∫
|x|2|u0|2 < +∞ imply blow up in finite time by the Virial

identity. Remark that the power 6 is not optimal from the proof of Theorem 1.
3. Note that the only requirement on the initial data is the fact that the blow up

dynamics is close to Q, up to scaling and translation parameters, which is implied
by some energy conditions on the initial data. In particular, the proof of Theorem
1 is not based on linearization close to a formal asymptotic profile and we do not
require that the initial data is close in a certain sense to a formal blow up solution.

4. Condition on the L2 norm of the initial data. One can expect that the
proof also produces blow up solutions which have similar behavior but with large
L2 mass. Indeed, the important quantity in all the proof is the local norm close
to the soliton. By the technique of L2 localization used in [11] and [9], for any
u1

0 ∈ H1(R) (not necessarily small) such that ∀x > 0, u1
0(x) = 0, and for u2

0

satisfying the assumptions of Theorem 1, one expects that there exist B0 > 0 large
and 0 < t0 < T (u2

0) (T (u2
0) is the blow up time for the solution u2(t) corresponding

to u2
0) such that for the initial data u0(x) = u1

0(x +B0) + u2(t0, x), the conclusion
of Theorem 1 holds.

We also think that for any initial data u0 such that E(u0) < 0,
∫
u2

0 x
6
+ < +∞,

with large L2 mass, there is a t1 such that u(t1) satisfies the previous assumptions
and then the solution blows up in finite time.

5. Comments on the conclusion of Theorem 1. We shall note that there is
rather little control on how long it takes for the solution to reach its asymptotic
dynamics, where |ux(tn)|L2 is controlled. Indeed, from the proof, it takes a time
t(u0) which depends mainly on θ and E(u0). Note that the same problem exists for
the critical nonlinear Schrödinger equation (at least in the nonradial case). This
remark points out why numerical computations do not suggest any blow up rate.

Now, we finish the introduction by some comments on the conclusion of Theorem
1 concerning the blow up rate. First, recall the following corollary of the blow up
profile result obtained in [9].

Lower bound on the blow up rate ([9]). If
∫
u2

0 <
∫
Q2 +α2 and if the solution

u(t) of (3) blows up in finite time T > 0, then

lim
t↑T

(T − t)1/3|ux(t)|L2 = +∞.

This means that under the assumptions of the blow up result, we exclude the
possibility of blow up at the self-similar rate such as u(t, x) ∼ 1

(T−t)1/6 g
(

x−x(t)

(T−t)1/3

)
.

Now, we give two corollaries of Theorem 1 related to the blow up speed, under
the assumptions of Theorem 1, and coming from the facts that the upper bound
obtained in Theorem 1 is for the particular sequence (tn) defined in (10), and
that the proof provides more information. In fact, one difficulty of the proof of
Theorem 1 is to control oscillations in time of the size of the solution. Under
various assumptions, one can obtain an upper bound for all time.
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622 YVAN MARTEL AND FRANK MERLE

Corollary 1. (Upper bounds on the blow up rate under the monotonicity assump-
tion.) Under the assumptions of Theorem 1, suppose in addition that for some
t1 ∈ [0, T ),

if t1 < t < t′ < T , then |ux(t′)|L2 ≥ 1
2 |ux(t)|L2 .(12)

Then, there exists t(u0) ∈ (0, T ) such that

∀t ∈ (t(u0), T ), |ux(t)|L2 ≤ 4C0

|E0|(T − t)
.(13)

Corollary 2. (Upper bounds on the blow up rate under the lower bounds assump-
tion.) Under the assumptions of Theorem 1, suppose in addition that for some
B > 0, n1 > 0, we have

∀n ≥ n1, |ux(tn)|L2 ≥ B

(T − tn)
.(14)

Then, there exists t(u0) ∈ (0, T ) such that

∀t ∈ (t(u0), T ), |ux(t)|L2 ≤ 8C0

|E0|(T − t)
.(15)

In fact, the proof of Theorem 1 is far more precise. Indeed, under some assump-
tions on the size of the gradient of ε̃ in L2 (recall that the perturbation term ε̃
is defined in (8)), the proof provides the exact blow up rate. Nevertheless these
estimates are an open problem. Assuming mainly that for t(u0) > 0, K0 > 0, we
have

∀t ∈ (t(u0), T ),
∫
ε̃ 2e−|y| ≥ K0

∫
ε̃ 2
y or

1
10

∣∣∣∣∫ ε̃ Q

∣∣∣∣ ≥ ∫ ε̃ 2
y,(16)

where ε̃ is defined in (8) with suitable orthogonality conditions, for some C′0 > 0,
we have

∀t ∈ (t(u0), T ),
C′0

|E0|(T − t)
≤ |ux(t)|L2 ≤ 8C0

|E0|(T − t)
.

(See the Remark at the end of Section 4 for a precise statement.)
Let us now sketch the proof of the main result. Consider an initial data with

negative energy which is close to Q in the L2 norm and has an additional decay
property for x > 0, such as (9). Define the sequence (tn) as in the statement of
Theorem 1:

|ux(tn)|L2 = 2n|Qx|L2 and ∀t ∈ (tn, T ), |ux(t)|L2 > 2n|Qx|L2 .

The existence of such a sequence is given by the blow up result [11] (in particular,
we do not need to initialize any estimate in the proof).

First, we reduce the proof of Theorem 1 to the proof of the following estimate
of tn+1 − tn for n large (n > n0 where n0 is such that for all t > tn0 , the local L2

norm of the solution is small, the existence of n0 is a consequence of the blow up
profile result):

tn+1 − tn ≤
(
∫
Q)2

|E0|
λ̃(tn).(17)

By elementary computations, from (17) it is easy to see that the sequence (tn) is
bounded, thus the blow up time T is finite, and then estimate (11) follows again
from (17). Note that the proof is not based on a linearization close to a formal
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BLOW UP FOR CRITICAL GKDV 623

solution and that there is no initialization of the estimates (in fact the results of
[11] and [9] replace the initialization).

To prove (17), we argue by contradiction, assuming that for some n arbitrarily
large, tn+1 − tn > (

∫
Q)2

|E0| λ̃(tn). Under the constraint of closeness to Q in L2, we
have the decomposition of the solution

λ1/2(t)u(t, λ(t)y + x(t)) = Q(y) + ε(t, y),

where the function ε(t, y) is small in H1 and satisfies for all time t two suitable
orthogonality conditions.

The assumption of polynomial decay on the initial data in L2 at the right,
through the use of the stability in time of such a property on the solution u(t) of
(3), allows us to obtain decay at the right on ε. This decay for y > 0 on ε allows
us to control

∫
y>0 |ε|, by a nonlinear estimate. Note that the space in which this

estimate holds is L2(R) ∩ L1(R+).
From the proof, four quantities are important:

∫
εQ,

∫
ε2e−

|y|
100 , λs

λ ,
∫
ε2
y. The

proof is based on the study of conservation laws (and in fact, local conservation
laws close to Q), which will give relations between these four quantities. For each
conservation law, a suitable orthogonality condition is adapted.

(i) By the additional decay property for y > 0, we are able to choose the orthog-
onality conditions on ε so that we have a relation of the following type (s is time
related to the equation of ε):

−λs
λ

=
∫
εQ+O(

∫
ε2e−

|y|
100 ),

where
∫
εQ has a slow variation in time. (Indeed, at the linear level, this quantity

is invariant, and seems to contain no oscillatory integrals.)
(ii) Next, for other orthogonality conditions, related to another decomposition

λ̃1/2(t)u(t, λ̃(t)y + x̃(t)) = Q(y) + ε̃ (t, y),

quadratic terms
∫ tn+1

tn

∫
ε2e−

|y|
100 are controlled in some sense by

∫ tn+1

tn

∫
ε̃ Q. This

result is obtained by a local Virial identity on ε̃ (related to orthogonality conditions
on ε̃ ). This points out the fact that time oscillations, involving oscillatory integrals,
are controlled by quantities that are not oscillatory such as

∫
ε̃ Q.

(iii) Under this regime, we are able to compare the functions ε and ε̃ coming
from the two decompositions, by estimates involving L2 exponential decay at the
right of the soliton, and an additional surprising degeneracy in the relation between
ε and ε̃ of the conservation law. Thus, in some sense on the time interval (tn, tn+1),
we obtain

−λs
λ

=
∫
ε̃ Q+O(

∫
ε̃ 2e−

|y|
100 ).

The small term at the right can again be controlled when
∫
ε̃ 2e−

|y|
100 is small (implied

for a sufficiently large time by the result of the asymptotic profile [11]).
(iv) Now using the energy estimate for ε̃ and the fact that

∫
ε̃ 2
y ≥ 0, we obtain

−λs
λ
≥ C|E0|λ2,

in some integral in time sense between tn, tn+1. This allows us to obtain a contra-
diction, and thus to prove (17).
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The paper is organized as follows. Section 2 is devoted to the introduction of
two decompositions of the solution and of their respective properties. Section 3
is devoted to the proof of Theorem 1 assuming the estimate on tn+1 − tn. This
estimate is then proved in Section 4. Finally, the control of the decay on the right
is proved in Section 5.

2. Two decompositions of the solution and related structure

In this section, we recall from [8], [11] and [7] some useful preliminary properties
of equation (3).

Let

α0 =
∫
u2

0 −
∫
Q2 and E0 = E(u0) =

1
2

∫
u2

0x −
1
6

∫
u6

0.

2.1. Decomposition of u(t) in L2 and first properties. We begin by recalling
the following result from [11], [9].

Lemma 1 (Decomposition of the solution related to L2 dispersion). There exists
a1 > 0 such that if α0 < a1 and E(u0) < 0, then there exist two C1 functions
λ̃ : [0, T )→ (0,+∞), x̃ : [0, T )→ R, such that, for w ≡ u or w ≡ −u,

∀t ∈ [0, T ), ε̃ (t, y) = λ̃1/2(t)w(t, λ̃(t)y + x̃(t))−Q(y)(18)

satisfies the following orthogonality conditions: ∀t ∈ [0, T ),∫ (
Q
2 + yQy

)
ε̃ (t, y)dy =

∫
y
(
Q
2 + yQy

)
ε̃ (t, y)dy = 0.(19)

Moreover, with ds
dt = 1

λ̃3 and s(0) = 0, we have the following properties:
(i) Equation of ε̃ (s). The function ε̃ (s) satisfies, for s ∈ R+, y ∈ R,

ε̃ s = (Lε̃ )y + λ̃s
λ̃

(
Q
2 + yQy

)
+
(
x̃s
λ̃
− 1
)
Qy

+ λ̃s
λ̃

(
ε̃
2 + yε̃ y

)
+
(
x̃s
λ̃
− 1
)
ε̃ y − (F (ε̃ ) + ε̃ 5)y,

(20)

where Lε̃ = −ε̃ yy + ε̃ − 5Q4ε̃ and F (ε̃ ) = 10Q3ε̃ 2 + 10Q2ε̃ 3 + 5Qε̃ 4.
(ii) Smallness properties.

∀t ∈ [0, T ),
∣∣∣∣1− λ̃(t)

|ux(t)|L2

|Qx|L2

∣∣∣∣ ≤ δ(α0), where δ(α)→ 0 as α→ 0,(21)

∀t ∈ [0, T ), |ε̃ (t)|L2 + |ε̃ y(t)|L2 ≤ C√α0, where C > 0.(22)

(iii) Control of the geometrical parameters.

∀s ≥ 0,
∣∣∣∣ λ̃sλ̃ − 1

µ0

∫
ε̃ (s)L

((
Q
2 + yQy

)
y

)∣∣∣∣ ≤ C ∫ ε̃ 2e−
|y|
2 ,(23)

∀s ≥ 0,
∣∣∣∣( x̃sλ̃ − 1

)
− 1
µ0

∫
ε̃ (s)L

[
(y
(
Q
2 + yQy

)
)y
]∣∣∣∣ ≤ C ∫ ε̃ 2e−

|y|
2 ,(24)

where µ0 =
∫ (

Q
2 + yQy

)2

. In particular,

∀s ≥ 0,
∣∣∣ λ̃s
λ̃

∣∣∣+
∣∣∣( x̃s

λ̃
− 1
)∣∣∣ ≤ C (∫ ε̃ 2e−

|y|
2

)1/2

≤ C√α0.(25)
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In the rest of this paper, we assume that w = u in Lemma 1.

Remark. In the rest of this paper, we choose a1 small enough so that by (21), (22)
and (25), we have

∀t ∈ [0, T ),
|ux(t)|L2

(1.01)|Qx|L2
≤ 1

λ̃(t)
≤ (1.01)|ux(t)|L2

|Qx|L2
,(26)

∀s > 0, |ε̃ (s)|2L2 ≤
1
4

∫
Q2,(27)

∀s > 0,
1

1.01
≤ x̃s(s)

λ̃(s)
≤ 1.01.(28)

Proof. We give a sketch of the proof of all these results. For more details, we refer
the reader to [11] and [9].

(a) Existence and uniqueness of the decomposition.
First, we recall the following claim. Let α(u) =

∫
u2 −

∫
Q2.

Claim 1. There exists a2 > 0 such that the following property is true. For
all 0 < α < a2, there exists δ = δ(α) > 0, with δ(α) → 0 as α → 0, such that
∀u ∈ H1(R), u 6≡ 0, if

α(u) ≤ α, E(u) ≤ 0,

then there exist x0 ∈ R and ε0 ∈ {−1, 1} such that

|Q− ε0λ1/2
0 u(λ0x+ x0)|H1 ≤ δ(α),

with λ0 = |Qx|L2

|ux|L2
.

The proof of this claim is based on variational arguments, and in particular on
the following characterization of Q: if a sequence (vn) of H1 satisfies

lim
n→+∞

∫
v2
n =

∫
Q2, lim

n→+∞

∫
v2
nx =

∫
Q2
x, lim

n→+∞
E(vn) ≤ 0,

then there exist a sequence (xn) of R and ε0 ∈ {−1, 1} such that

lim
n→+∞

ε0vn(·+ xn) = Q in H1(R) as n→ +∞.

See [11], proof of Lemma 1.
Let u(t) be the solution of (3) on [0, T ) corresponding to u0 ∈ H1(R), where

α0 = α(u0) < a2 and E0 = E(u0) < 0. By Claim 1, there exist x0(t) and ε0(t) such
that, with λ0(t) = |Qx|L2/|ux(t)|L2 , we have

∀t ∈ [0, T ), |Q− ε0(t)λ1/2
0 (t)u(t, λ0(t)x + x0(t))|H1 ≤ δ(α0).

With no restriction, by (27), we can assume ε0(t) ≡ 1 (see [11]), using the fact that
if u(t, x) is a solution of (3), then −u(t, x) is also a solution.

Now, we claim that we can sharpen the decomposition in the following sense.
Claim 2. There exists 0 < a3 < a2 such that if α0 < a3, then there exist

unique C1 functions λ̃(t) and x̃(t) such that

ε̃ (t, y) ≡ ṽ(t, y)−Q(y) ≡ λ̃1/2(t)u(t, λ(t)y + x̃(t))−Q(y)
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satisfies the following properties: ∀t ∈ [0, T ),∫ (
Q
2 + yQy

)
ε̃ (t) =

∫
y
(
Q
2 + yQy

)
ε̃ (t) = 0, |ε̃ (t)|H1 ≤ δ(α0),

where δ(α)→ 0 as α→ 0.
This claim is proved by using the implicit function theorem; see [9] and [7]. Note

that the nondegeneracy conditions are satisfied from∫ (
Q
2 + yQy

)
y
(
Q
2 + yQy

)
= 0,

∫
(Qy)y

(
Q
2 + yQy

)
=
∫ (

Q
2 + yQy

)2

6= 0,

∫ (
Q
2 + yQy

)
yQy =

∫ (
Q
2 + yQy

)2

6= 0,
∫

(Qy)yQy = 0,

where we have used
∫
Q
(
Q
2 + yQy

)
= 0 and parity properties.

(b) Equation of ε̃ .
Now, let

s =
∫ t

0

dt′

λ̃3(t′)
, or equivalently

ds

dt
=

1

λ̃3
and s(0) = 0.

Then s is defined in all [0,+∞). Indeed, recall that by a scaling argument and
the resolution of the Cauchy problem in H1(R), it is proved in [11] (see the In-
troduction) that for a solution which blows up in finite time T > 0, there exists
C = C(u0) > 0 such that

∀t ∈ [0, T ), |ux(t)|L2 ≥ C

(T − t)1/3
.

Therefore, by (26), (T−t)
λ̃3(t)

≥ C > 0, and when t ∈ [0, T ), the variable s is defined

in all [0,+∞). In the case where T = +∞, we have from energetic arguments that
∀t > 0, λ̃(t) ≤ λ̃0, for some λ̃0 and so s is defined in all [0,+∞).

We have the following equation for ṽ = ε̃ +Q, in the s variable:

ṽs + (ṽyy + ṽ5)y − λ̃s
λ̃

(
ṽ
2 + yṽy

)
−
(
x̃s
λ̃
− 1
)
ṽy = 0.

Therefore, we obtain the following equation for ε̃ :

ε̃ s = (Lε̃ )y + λ̃s
λ̃

(
Q
2 + yQy

)
+
(
x̃s
λ̃
− 1
)
Qy

+ λ̃s
λ̃

(
ε̃
2 + yε̃ y

)
+
(
x̃s
λ̃
− 1
)
ε̃ y − (F (ε̃ ) + ε̃ 5)y,

where Lε̃ = −ε̃ xx + ε̃ − 5Q4ε̃ and F (ε̃ ) = 10Q3ε̃ 2 + 10Q2ε̃ 3 + 5Qε̃ 4.
Let us recall the following structural properties of L (see [7]):

L(Q3) = −8Q3, L(Qy) = 0,(29)

∀ε ∈ H1(R), if
∫
Q3ε =

∫
Qyε = 0, then (Lε, ε) ≥

∫
ε2.(30)

(c) Smallness properties.
The smallness of

∣∣∣1− λ̃(t) |ux(t)|L2

|Qx|L2

∣∣∣ is given by the implicit function theorem in

(a), λ̃(t) being close to λ0(t). Next, we have

∀t ∈ [0, T ), |ε̃ (t)|L2 + |ε̃ y(t)|L2 ≤ C√α0.(31)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BLOW UP FOR CRITICAL GKDV 627

To prove (31), we use some ideas from [11]. By the definition of ε̃ and the
conservation of mass, we have

2
∫
Qε̃ +

∫
ε̃ 2 =

∫
u2 −

∫
Q2 =

∫
u2

0 −
∫
Q2 = α0.

By the conservation of the energy, we have λ̃2E(Q + ε̃ ) = E(u(t)) = E0 < 0, and
by direct calculations,

E(Q+ ε̃ ) +
(∫

Qε̃ +
1
2

∫
ε̃ 2

)
=

1
2

(Lε̃ , ε̃ )− 1
6

[
20
∫
Q3ε̃ 3 + 15

∫
Q2ε̃ 4 + 6

∫
Qε̃ 5 +

∫
ε̃ 6

]
.

(32)

Therefore, we have

(Lε̃ , ε̃ ) ≤ α0 + C|ε̃ |H1 |ε̃ |2L2 .(33)

Note that by the choice of orthogonality conditions on ε̃ , this is not sufficient to
conclude directly. Indeed, these are suitable for the Virial identity but not for the
energy identity. Nevertheless, consider an auxiliary function ε1:

ε1 = ε̃ − a
(
Q
2 + yQy

)
− bQy.

We have ∫
ε1Q

3 =
∫
ε1Qy = 0,

by taking a =
∫
ε̃ Q3∫ (Q

2 +yQy

)
Q3
, b =

∫
ε̃ Qy∫
Q2
y

(note that
∫ (

Q
2 + yQy

)
Q3 = 1

4

∫
Q4 6≡ 0).

Note that we also have ε̃ = ε1 + a
(
Q
2 + yQy

)
+ bQy, so that by orthogonality

conditions on ε̃ we have a =

∫
ε1

(
Q
2 +yQy

)
∫(Q

2 +yQy

)2 , b =

∫
ε1y

(
Q
2 +yQy

)
∫(Q

2 +yQy

)2 .

Now, by
∫ (

Q
2 + yQy

)
Q = 0, L

(
Q
2 + yQy

)
= −2Q, LQy = 0, we find after

some elementary calculations:∫
ε̃ Q =

∫
ε1Q, (Lε̃ , ε̃ ) = (Lε1, ε1)− 4a(ε̃ , Q).

By the expressions of a and b, we have for some constant K,
1
K

(ε1, ε1) ≤ (ε̃ , ε̃ ) ≤ K(ε1, ε1).(34)

Thus, from (30) and (33),
1
K

(ε̃ , ε̃ ) ≤ (ε1, ε1) ≤ (Lε1, ε1) ≤ α0 + 4|a||(ε̃ , Q)|+ C|ε̃ |2L2 |ε̃ |H1 .

For α0 small, |ε̃ |H1 and |a| are small and from the conservation of mass, we have
2|(ε̃ , Q)| ≤ α0 +

∫
ε̃ 2; thus

1
K

(ε̃ , ε̃ ) ≤ 2α0 + C|ε̃ |2L2(|a|+ |ε̃ |H1) ≤ 2α0 +
1

2K
|ε̃ |2L2 .

Therefore, (ε̃ , ε̃ ) ≤ 4Kα0 and from (33), (Lε̃ , ε̃ ) ≤ Cα0. The conclusion then
comes from |ε̃ |2H1 ≤ (Lε̃ , ε̃ ) + 5

∫
Q4ε̃ 2 ≤ (Lε̃ , ε̃ ) + c(ε̃ , ε̃ ).
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(d) By multiplying the equation of ε̃ by
(
Q
2 + yQy

)
and then by y

(
Q
2 + yQy

)
,

and after integration by parts, we obtain (formally) the following estimates (note
that we also use the decay property of Q and its derivatives). The calculations can
be justified rigorously by regularization arguments.

∀s ≥ 0,
∣∣∣∣ λ̃sλ̃ − 1

µ0

∫
ε̃ (s)L

((
Q
2 + yQy

)
y

)∣∣∣∣ ≤ C ∫ ε̃ 2e−
|y|
2 ,(35)

∀s ≥ 0,
∣∣∣∣( x̃sλ̃ − 1

)
− 1
µ0

∫
ε̃ (s)L

((
y
(
Q
2 + yQy

))
y

)∣∣∣∣ ≤ C ∫ ε̃ 2e−
|y|
2 ,(36)

where µ0 =
∫ (Q

2 + yQy

)2

.
This concludes the proof of Lemma 1.

Now, we recall the main properties of this decomposition.

Lemma 2 (Mass and energy relations).

(i) mass conservation, 2
∫
ε̃ Q+

∫
ε̃ 2 = α0,(37)

(ii) energy relation,
∣∣∣∣λ̃2E0 +

∫
ε̃ Q−

(
1
2

∫
ε̃ 2
y − 1

6

∫
ε̃ 6

)∣∣∣∣ ≤ C ∫ ε̃ 2e−|y|.

(38)

Proof. (i) is the conservation of the L2 norm of u(t), written in terms of ε̃ .
(ii) is obtained by the conservation of energy for u(t), E(u(t)) = E(u0) and by

expanding E(Q+ ε̃ ) = λ̃2E(u0); see formula (32). For more details, see [9].

For future reference, we give a corollary of these conservation laws and of the
fact that we assume E0 < 0.

Corollary 3 (Estimates on ε̃ ).∫
ε̃ Q ≥

∣∣∣∣∫ ε̃ Q

∣∣∣∣− C ∫ ε̃ 2e−|y|,(39)

∣∣∣∣∫ ε̃ Q

∣∣∣∣ ≥ λ̃2|E0| − C
∫
ε̃ 2e−|y|,(40)

∣∣∣∣∫ ε̃ Q

∣∣∣∣ ≤ λ̃2|E0|+
1
2

∫
ε̃ 2
y + C

∫
ε̃ 2e−|y|,(41)

λ̃2 ≤ C

|E0|

(∫
ε̃ 2e−|y|

)1/2

.(42)

Proof. Proof of (39). Since
∫
ε̃ 2 ≤ 1

4

∫
Q2 <

∫
Q2, by the Gagliardo–Nirenberg

inequality (7), we have 1
2

∫
ε̃ 2
y − 1

6

∫
ε̃ 6 > 0. By (38), since E0 < 0, we have∣∣∣∣∫ ε̃ Q

∣∣∣∣ ≤ λ̃2|E0|+ 1
2

∫
ε̃ 2
y − 1

6

∫
ε̃ 6 + C

∫
ε̃ 2e−|y|(43)

and ∫
ε̃ Q ≥ λ̃2|E0|+ 1

2

∫
ε̃ 2
y − 1

6

∫
ε̃ 6 − C

∫
ε̃ 2e−|y|.(44)
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Therefore, ∫
ε̃ Q ≥

∣∣∣∣∫ ε̃ Q

∣∣∣∣− 2C
∫
ε̃ 2e−|y|,

which proves (39).
Proof of (40). By (44) and 1

2

∫
ε̃ 2
y − 1

6

∫
ε̃ 6 > 0, we have∣∣∣∣∫ ε̃ Q

∣∣∣∣ ≥ ∫ ε̃ Q ≥ λ̃2|E0|+ 1
2

∫
ε̃ 2
y − 1

6

∫
ε̃ 6 − C

∫
ε̃ 2e−|y|

≥ λ̃2|E0| − C
∫
ε̃ 2e−|y|,

which proves (40).
Proof of (41). It is an obvious consequence of (38).

Proof of (42). We have
∣∣∫ ε̃ Q∣∣ ≤ C

(∫
ε̃ 2e−|y|

)1/2

, by |Q(y)| ≤ Ce−|y| and the
Cauchy–Schwarz inequality. Thus, by (40), we obtain

λ̃2|E0| ≤ C
(∫

ε̃ 2e−|y|
)1/2

,

and (42) follows.
This completes the proof of Corollary 3.

Now, let us give some dispersive relations in L2. Let Φ ∈ C2, Φ(x) = Φ(−x),
Φ′ ≤ 0 on R+, such that

Φ(x) = 1 on [0, 1], Φ(x) = e−x on [2,+∞),

and

e−x ≤ Φ(x) ≤ 3e−x on R+.

Let

Ψ(x) =
∫ x

0

Φ(y)dy.

Note that Ψ is an odd function, Ψ(x) = x on [−1, 1], and |Ψ(x)| ≤ 3 on R.
For a parameter A0 > 0, we set

ΨA0(x) = A0Ψ
(
x

A0

)
, so that Ψ′A0

(x) = Φ
(
x

A0

)
= ΦA0(x), and

ΨA0(x) = x on [−A0, A0], |ΨA0(x)| ≤ 3A0 on R,

e−
|x|
A0 ≤ ΦA0(x) ≤ 3e−

|x|
A0 on R.

Lemma 3 (Local Virial identity on ε̃ ). There exist A0 ≥ 100, 0 < a4 < a1, δ0 > 0
such that if α0 < a4, then(∫

ΨA0 ε̃
2

)
s

≤ −δ0

∫
(ε̃ 2 + ε̃ 2

y)e−
|y|
A0 +

1
δ0

(∫
ε̃ Q

)2

.(45)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



630 YVAN MARTEL AND FRANK MERLE

Proof. Note that (45) holds because of the orthogonality conditions we have chosen
on ε̃ . The proof of Lemma 3 is completely given in [9]. Note that from the proof
it is possible to choose A0 ≥ 100.

Recall that (45) is reminiscent of the following (global) Virial identity for ε̃ , in
the case Ψ ≡ y, which is formally obtained by multiplying the equation of ε̃ by yε̃
and integrating by parts,(

1
2

∫
yε̃ 2

)
s

+ λ̃s
λ̃

1
2

∫
yε̃ 2

= λ̃s
λ̃

∫
y
(
Q
2 + yQy

)
ε̃ +

(
x̃s
λ̃
− 1
)(∫

yQyε̃ −
1
2

∫
ε̃ 2

)
−3

2
(Lε̃ , ε̃ ) +

∫
ε̃ 2 − 10

∫
Q3
(
Q
2 + yQy

)
ε̃ 2

+10
∫ (

2Q3

3 − yQyQ
2
)
ε̃ 3 + 5

∫ (
3Q2

2 − yQyQ
)
ε̃ 4

+
∫

(4Q− yQy)ε̃ 5 +
5
6

∫
ε̃ 6.

Using the orthogonality conditions on ε̃ , we obtain(
1
2

∫
yε̃ 2

)
s

+ λ̃s
λ̃

1
2

∫
yε̃ 2 ≤ −H∞(ε̃ , ε̃ ) + C

∣∣∣( x̃s
λ̃
− 1
)∣∣∣ ∣∣∣∣∫ ε̃ Q

∣∣∣∣+O(|ε̃ |3H1),

where

H∞(ε̃ , ε̃ ) =
3
2

(Lε̃ , ε̃ )−
∫
ε̃ 2 + 10

∫
Q3
(
Q
2 + yQy

)
ε̃ 2.

Then the proof of the Virial relation follows from the positivity of H∞ under two
orthogonality conditions on ε̃ . More precisely, in [8] we have established the fol-
lowing. There exists δ1 > 0 such that

if
∫
Qε =

∫
y
(
Q
2 + yQy

)
ε = 0, then H∞(ε, ε) ≥ δ1

∫
(ε2
y + ε2).

2.2. Control of the solution on the right of x̃(t) up to exponential cor-
rections. Here, we recall results of stability in time of exponential or polynomial
decay in L2 at the right of the soliton.

We claim the following lemma on the solution u(t).

Lemma 4 (Stability of polynomial decay on the right). There exists 0 < a5 < a1

such that if α0 < a5, then the following is true. Suppose that for some θ > 0,

∀x0 > 0,
∫
x≥x0

u2
0(x)dx ≤ θ

x6
0

.(46)

Suppose in addition that ∀t ∈ [0, T ), λ̃(t) ≤ λ0, for some λ0 > 0. Then, there exists
θ′ > 0 such that

∀t ∈ [0, T ), ∀x0 > 0,
∫
x≥x0

u2(t, x+ x̃(t))dx ≤ θ′

x6
0

.(47)
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This is a direct consequence of the following more general result.
For K > 0, let

∀x ∈ R, φ(x) = φK(x) = cQ
( x
K

)
, ψ(x) = ψK(x) =

∫ x

−∞
φ(y)dy,

and 1/c = K
∫ +∞
−∞ Q, so that

∀x ∈ R, 0 ≤ ψ(x) ≤ 1, lim
x→−∞

ψ(x) = 0, lim
x→+∞

ψ(x) = 1.(48)

Consider z(t) a solution of (3) on [0, Tz) satisfying
∫
z2(0) <

∫
Q2 + a1 and

E(z(0)) < 0 and thus admitting a decomposition as in Lemma 1, with parame-
ters εz, λz and xz . For x0 ∈ R and t0 ∈ (0, Tz), define

∀t ∈ [0, t0], Ix0,t0(t) =
∫
z2(t, x)ψ

(
x− xz(t0)− x0 − 1

4 (xz(t)− xz(t0))
)
dx.

Then, we have the following lemma, based on nonlinear arguments.

Lemma 5 (Almost monotonicity of the mass on the left [11]). There exists 0 < a5

< a1 such that the following is true. Suppose
∫
z2(0) <

∫
Q2 +a5 and E(z(0)) < 0.

Assume in addition that ∀t ∈ [0, t0], 0 < λz(t) ≤ λ0, for some λ0. Then, for any
K > 2(1.01)λ0, there exists C0 = C0(λ0,K) > 0 such that

∀x0 ∈ R, ∀t ∈ [0, t0], Ix0,t0(t0)− Ix0,t0(t) ≤ C0e
−x0
K .

Proof of Lemma 4. Assuming Lemma 5, we prove Lemma 4. Let K = 4λ0 and
t0 ∈ (0, T ). By applying Lemma 5 on u(t) between 0 and t0, we obtain:

∀x0 ∈ R, Ix0,t0(t0)− Ix0,t0(0) ≤ C0e
− x0
K .

From the fact that ψ′ > 0, ψ > 0, and x̃(t0) ≥ x̃(0) (note that x̃t > 0 by (26)), and
then by ψ(x) ≤ Ce xK , we have

Ix0,t0(0) =
∫
u2(0, x)ψ(x− x̃(t0)− x0 − 1

4 (x̃(0)− x̃(t0)))dx

≤
∫
u2(0, x)ψ(x− x̃(0)− x0)dx

≤
∫
x<x0/2

u2(0, x+ x̃(0))ψ(x− x0)dx

+
∫
x>x0/2

u2(0, x+ x̃(0))ψ(x − x0)dx

≤ ψ(−x0/2)
∫
u2(0) +

∫
x>x0/2

u2(0, x+ x̃(0))

≤ Ce−
x0
2K +

∫
x>x0/2

u2(0, x+ x̃(0)).

Since ψ(x) ≥ 1/2 for x ≥ 0, we have∫
x>x0

u2(t0, x+ x̃(t0))dx ≤ 2Ix0,t0(t0),

and thus ∫
x>x0

u2(t0, x+ x̃(t0))dx ≤ Ce−
x0
2K + 2

∫
x>x0/2

u2(0, x+ x̃(0)).(49)
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Thus Lemma 4 is proved. (Note that exponential decay on u0 on the right would
have also been preserved through time.)

Now, we recall the proof of Lemma 5, from [11].

Proof of Lemma 5. Recall that this property is related to two properties of equation
(3):

(a) The existence of a Lyapunov function in L2 for solutions that are small in
L2 (the function Ix0,t0).

(b) The fact that the solution decomposes itself into a localized part moving at
speed x̃t(t) > σ0 > 0 and another part small in L2.

The proof is based on a localization of the interactions between the two parts.
Recall first that if ϕ : R → R is a C3 function such that, for C > 0, ∀x ∈ R,

|ϕ(x)|+ |ϕ′(x)|+ |ϕ′′(x)|+ |ϕ(3)(x)| ≤ C, then t 7→
∫
z2(t, x)ϕ(x)dx is a C1 function

and moreover
d

dt

∫
z2(t)ϕ = −3

∫
z2
x(t)ϕ′ +

∫
z2(t)ϕ(3) +

5
3

∫
z6(t)ϕ′;

see the proof of Lemma 5 in [7].
Let x0 ∈ R, t0 ∈ (0, Tz), and K > 2(1.01)λ0. If we denote x̃ = x− xz(t0)− x0 −

1
4 (xz(t)− xz(t0)), for any t ∈ [0, t0], we obtain

d

dt
Ix0,t0(t) = −3

∫
z2
x(t)ψ′(x̃)− (xz)t(t)

4

∫
z2(t)ψ′(x̃)

+
∫
z2(t)ψ(3)(x̃) +

5
3

∫
z6(t)ψ′(x̃).

We have ψ′ = φ and ψ(3) = φ′′ so that ∀x ∈ R,

ψ(3)(x) =
c

K2
Qxx

( x
K

)
=

c

K2
(Q−Q5)

( x
K

)
≤ c

K2
Q
( x
K

)
=

1
K2

φ(x).

Therefore,

d

dt
Ix0,t0(t) ≤ −3

∫
z2
x(t)φ(x̃)− (xz)t(t)

4

∫
z2(t)φ(x̃)

+
1
K2

∫
z2(t)φ(x̃) +

5
3

∫
z6(t)φ(x̃).

By (26) and (xz)t = (xz)s
λ3
z
, we have ∀t ∈ [0, t0], (xz)t ≥ 1

(1.01)λ2
z
≥ 1

(1.01)λ2
0
, and so

d

dt
Ix0,t0(t) ≤ −3

∫
z2
x(t)φ(x̃)− σ0

∫
z2(t)φ(x̃) +

5
3

∫
z6(t)φ(x̃),

where σ0 = 1
4(1.01)λ2

0
− 1

K2 > 0 (σ0 > 0 by the choice of K in the lemma).
From [11], we recall that there exists a constant c̃ > 0 such that for all v ∈ H1

and a ∈ R, we have

|v2φ1/2|2L∞(x>a) ≤ c̃
(∫

v2
xφ+

∫
v2φ

)∫
x>a

v2,

|v2φ1/2|2L∞(x<a) ≤ c̃
(∫

v2
xφ+

∫
v2φ

)∫
x<a

v2.
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Choose X0 > 0 and a5 such that

16c̃

(∫
λ0|x|>X0

Q2

)2

< min(1, σ0/2), ∀t ∈ [0, t0],
∫
ε2
z(t) <

∫
λ0|x|>X0

Q2.(50)

Now, we proceed in two steps.
(i) Variational estimates and localization. We claim

∀t ∈ [0, t0],
5
3

∫
|x−xz(t)|≥X0

z6(t)φ(x̃) ≤ 2
∫
z2
x(t)φ(x̃) + σ0

∫
z2(t)φ(x̃).(51)

Indeed, we have∫
|x−xz(t)|≥X0

z6(t)φ(x̃) ≤
(∫
|x−xz(t)|≥X0

z2(t)

)
|z2(t)φ1/2|2L∞(|x−xz(t)|≥X0)

≤ c̃

(∫
|x−xz(t)|≥X0

z2(t)

)2 ∫
(z2
x + z2)φ.

Next, by using

z2(t, x) ≤ 2λ−1
z (t)

(
Q2(λ−1

z (t)(x − xz(t))) + ε2
z(t, λ

−1
z (t)(x − xz(t)))

)
,

and (50), we obtain∫
|x−xz(t)|≥X0

z6(t)φ(x̃) ≤ 16c̃

(∫
λ0|x|>X0

Q2

)2 ∫
(z2
x + z2)φ

≤
∫
z2
xφ+

σ0

2

∫
z2φ,

thus (51) is proved.
(ii) Conclusion using criticality. From (i), we have

d

dt
Ix0,t0(t) ≤ 5

3

∫
|x−xz(t)|<X0

z6(t)φ(x̃).

Now, by |z|2L∞ ≤ |z|L2|zx|L2 , (26), (28), and (xz)t = (xz)s
λ3
z
, we have∫

|x−xz(t)|<X0

z6(t)φ(x̃) ≤ |z(t)|4L2 |zx(t)|2L2 |φ(x̃)|L∞(|x−xz(t)|<X0)

≤ C

λ2
z(t)

Max|x−xz(t)|<X0

{
e−
|x̃|
K

}
≤ C(xz)t(t)Max|x−xz(t)|<X0

{
e−
|x̃|
K

}
.

Assume that x0 ≥ X0. For x such that |x− xz(t)| < X0, we have

∀t ∈ [0, t0], x̃ = x− xz(t0)− x0 −
1
4

(xz(t)− xz(t0)) ≤ x− xz(t)− x0 ≤ 0,

and so

|x̃| = −x+ xz(t0) + x0 +
1
4

(xz(t)− xz(t0)) ≥ (x0 −X0) +
3
4

(xz(t0)− xz(t)).

Thus,
d

dt
Ix0,t0(t) ≤ C(xz)t(t)e−

3
4K (xz(t0)−xz(t))e−

x0
K .
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By integration between t and t0, we obtain

∀t ∈ [0, t0], ∀x0 > X0, Ix0,t0(t0)− Ix0,t0(t) ≤ Ce−
x0
K .

Finally, if x0 ≤ X0, we have Ix0,t0(t0) ≤
∫
u2(0) ≤ C0e

− x0
K by choosing C0 ≥

e
X0
K

∫
u2(0). Thus Lemma 5 is proved.

2.3. Second decomposition of the solution under a priori control of
∫
y>0

ε̃.
This decomposition will be adapted to kill the oscillations in time in the variation
of λ. Indeed, we define ε(t), λ(t), x(t) so that

λs
λ ∼ −C

∫
εQ,

instead of λ̃s
λ̃
∼ 1

µ0

∫
ε̃ L

(((
Q
2 + yQy

))
y

)
by the previous choice of orthogonality

conditions (see Lemma 1). By using the energy relation, we will then relate
∫
εQ

to λ2 to obtain the lower bound of |λsλ | in some time integral form.
To do this, we impose that

ε(s) ⊥
∫ y

−∞

(
Q
2 + yQy

)
.

Since
∫ +∞
−∞

(
Q
2 + yQy

)
= − 1

2

∫
Q 6= 0, the function

∫ y
−∞

(
Q
2 + yQy

)
is not going

to 0 as y → +∞ and thus we need a control on
∫
y>0
|ε| to make the orthogonality

condition rigorous. From the fact that the problem is critical, it will not be con-
tinuous in L2 in the sense that

∫
ε2e−

|y|
4 >>

∫
ε̃ 2e−

|y|
4 . However, if one controls∫

y>0
|ε̃ | in some sense, this approach can be successful.

Note that in this new framework, we have

J(s) =
∫ ∫ y

−∞

(
Q
2 + yQy

)
ε(s) ≡ 0,

which is in fact related to an L1(R+) property.
Let us first give an existence result of such a decomposition under some smallness

condition in L1(R+).
For v ∈ H1(R), λ1 > 0, x1 ∈ R, we define

ελ1,x1(y) = λ
1/2
1 v(λ1y + x1)−Q(y).(52)

For β > 0, we consider

Vβ = {v ∈ H1(R) ∩ L1(R+), |v −Q|H1 ≤ β and |v −Q|L1(R+) ≤ β}.

For v ∈ Vβ , let ε̃ = v −Q. Let ε = ελ1,x1 as defined in (52). Then,

Q(y) + ε(y) = λ
1/2
1 Q(λ1y + x1) + λ

1/2
1 ε̃ (λ1y + x1).(53)

Lemma 6 (Decomposition related to L1(R+)). There exists β1 > 0 and a unique
map (λ1, x1) : Vβ1 → (1

2 , 2)× (−1, 1) such that if v ∈ Vβ1 and ελ1,x1 is defined as
in (52), then ∫ ∫ y

−∞

(
Q
2 + yQy

)
ελ1,x1 =

∫
y
(
Q
2 + yQy

)
ελ1,x1 = 0.(54)
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Moreover, there exists C1 > 0 such that if v ∈ Vβ1 , then

|λ1 − 1| ≤ C1

(∫
ε̃ 2e−|y|

)1/2

+ C1

∫
y>0

|ε̃ |,(55)

|x1| ≤ C1

(∫
ε̃ 2e−|y|

)1/2

+ C1

(∫
y>0

|ε̃ |
)2

,(56)

|ελ1,x1 |H1 ≤ C1|ε̃ |H1 + C1

∫
y>0

|ε̃ |.(57)

Note that |x1| ≤ C1

(∫
ε̃ 2e−

|y|
2

)1/2

+ C1

(∫
y>0 |ε̃ |

)2

will be implied by the
criticality of the problem.

Proof. The proof is similar to the one of Proposition 1 in [7]. We apply the implicit
function theorem to

ρ1
λ1,x1

(v) =
∫ ∫ y

−∞

(
Q
2 + yQy

)
ελ1,x1 ,

ρ2
λ1,x1

(v) =
∫
y
(
Q
2 + yQy

)
ελ1,x1 .

From d
dλλ

1/2w(λx)|λ=1 = w
2 + xwx, d

dx1
w(x + x1)|x1=0 = wx(x), the nondegen-

eracy conditions are given by:

∂ρ1
λ1,x1

∂x1
|λ1=1,x1=0,v=Q =

∫
Qy

∫ y

−∞

(
Q
2 + yQy

)
= −

∫
Q
(
Q
2 + yQy

)
= 0,(58)

∂ρ1
λ1,x1

∂λ1
|λ1=1,x1=0,v=Q =

∫ (
Q
2 + yQy

) ∫ y

−∞

(
Q
2 + yQy

)

=
(
∫ (

Q
2 + yQy

)
)2

2
=

(
∫
Q)2

8
,(59)

∂ρ2
λ1,x1

∂x1
|λ1=1,x1=0,v=Q =

∫
y
(
Q
2 + yQy

)
Qy =

∫ (
Q
2 + yQy

)2

,(60)

∂ρ2
λ1,x1

∂λ1
|λ1=1,x1=0,v=Q =

∫
y
(
Q
2 + yQy

)(
Q
2 + yQy

)
= 0.(61)

Now, let us obtain (55)–(57). By linearization of (53), we have, with ε = ελ1,x1 ,

ε(y) = (λ1 − 1)
(
Q
2 + yQy

)
+ x1Qy + λ

1/2
1 ε̃ (λ1y + x1)

+ (O(|λ1 − 1|2) +O(|x1|2))e−
|y|
2 .

(62)

By taking the scalar product of the preceding relation with
∫ y
−∞

(
Q
2 + yQy

)
and
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then with y
(
Q
2 + yQy

)
, we obtain, using (58)–(61),

(λ1 − 1) (
∫
Q)2

8 + λ
1/2
1

∫
ε̃ (λ1y + x1)

∫ y

−∞

(
Q
2 + yQy

)
= O(|λ1 − 1|2) +O(|x1|2),

x1

∫ (
Q
2 + yQy

)2

+ λ
1/2
1

∫
ε̃ (λ1y + x1)y

(
Q
2 + yQy

)
= O(|λ1 − 1|2) +O(|x1|2).

Since
∣∣∣∫ y−∞ (Q2 + yQy

)∣∣∣ ≤ C and ∀y < 0,
∣∣∣∫ y−∞ (Q2 + yQy

)∣∣∣ ≤ Ce−
2|y|

3 , we have
by the Cauchy–Schwartz inequality∣∣∣∣∫ ε̃ (λ1y + x1)

∫ y

−∞

(
Q
2 + yQy

)∣∣∣∣ ≤ C

(∣∣∣∣∫ ε̃ e−
2|y|

3

∣∣∣∣+
∫
y>0

|ε̃ |
)

≤ C

((∫
ε̃ 2e−|y|

)1/2

+
∫
y>0

|ε̃ |
)
.

Thus,

|λ1 − 1| ≤ C|x1|2 + C

((∫
ε̃ 2e−|y|

)1/2

+
∫
y>0

|ε̃ |
)
,

|x1| ≤ C
(∫

ε̃ 2e−|y|
)1/2

+ C|λ1 − 1|2,

and (55)–(56) follow. Finally, the estimate on |ε|H1 is clear from (62). This con-
cludes the proof of Lemma 6.

By performing this new decomposition on some interval of time (s1, s2), on which∫
y>0 |ε̃ (s)| is sufficiently small, the functions ε, λ and x have C1 regularity in time,

and satisfy the same equation as ε̃ , i.e. equation (20). Moreover, multiplying this
equation by

∫ y
−∞

(
Q
2 + yQy

)
and then by y

(
Q
2 + yQy

)
, we obtain the following

properties.

Lemma 7 (Properties of decomposition related to L1(R+)).

λs
λ

(
∫
Q)2

8 + 2
∫
εQ−

(
xs
λ − 1

) ∫
ε
(
Q
2 + yQy

)
+10

∫
Q3
(
Q
2 + yQy

)
ε2 +

∫
G(ε)

(
Q
2 + yQy

)
= 0

(63)

and (
xs
λ − 1

)
µ0 −

∫
εL

[(
y
(
Q
2 + yQy

))
y

]
−λsλ

∫
ε

[
y
(
y
(
Q
2 + yQy

))
y

]
−
(
xs
λ − 1

) ∫
ε
(
y
(
Q
2 + yQy

))
y

+10
∫
Q3
(
y
(
Q
2 + yQy

))
y
ε2 +

∫
G(ε)

(
y
(
Q
2 + yQy

))
y

= 0,

(64)

where |G(ε)| ≤ C(|ε|3 + |ε|5) and µ0 =
∫ (

Q
2 + yQy

)2

.
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In particular, we have

Corollary 4.∣∣∣∣λsλ (
∫
Q)2

8 + 2
∫
εQ

∣∣∣∣+
∣∣∣∣(xsλ − 1

)
µ0 −

∫
εL

[(
y
(
Q
2 + yQy

))
y

]∣∣∣∣
≤ C

∫
ε2e−

|y|
2 .

(65)

3. Reduction of the proof of Theorem 1

Recall that we have the following results from [11] and [9] concerning the dy-
namics for initial data with negative energy.

There exists α1 > 0 such that the following two properties are true.

Blow up result ([11]). Let u0 ∈ H1(R) be such that
∫
u2

0 ≤
∫
Q2 + α1 and

E(u0) < 0. Then the corresponding solution u(t) of (3) blows up in finite or
infinite time 0 < T ≤ +∞.

Blow up profile ([9]). Let u0 ∈ H1(R) be such that
∫
u2

0 ≤
∫
Q2+α1 and E(u0) <

0. Let u(t) be the corresponding solution of (3), and let 0 < T ≤ +∞ be its blow
up time. Then for all t ∈ [0, T ) there exist λ̃(t) > 0 and x̃(t) ∈ R such that

either λ̃1/2(t)u(t, λ̃(t)x+ x̃(t)) ⇀ Q or − λ̃1/2(t)u(t, λ̃(t)x+ x̃(t)) ⇀ Q

in H1(R) weak, as t ↑ T with λ̃(t)→ 0, as t ↑ T .

From the choice of the decomposition in Section 2 (since if u(t, x) is a solution of
(3), then −u(t, x) is also a solution), we have in fact λ̃1/2(t)u(t, λ̃(t)x+ x̃(t)) ⇀ Q.

For 0 < α2 < α1 to be chosen later, let u0 ∈ H1(R) be such that
∫
u2

0 ≤
∫
Q2+α2

and E(u0) < 0. Let u(t) be the corresponding solution of (3). From the blow up
result, we know that there exists 0 < T ≤ +∞, such that

|ux(t)|L2 → +∞ as t ↑ T.
We suppose α2 < a1 and we consider the decomposition of u(t) from Lemma 1.
Thus we define ε̃ , λ̃ and x̃ such that

Q(y) + ε̃ (t, y) = λ̃1/2(t)u(t, λ̃(t)y + x̃(t)),

with
∫ (

Q
2 + yQy

)
ε̃ =

∫
y
(
Q
2 + yQy

)
ε̃ = 0. By (26), we have

λ̃(t)→ 0 as t ↑ T.
From this, there exists t0 ≥ 0 such that ∀t ∈ [t0, T ), λ̃(t) ≤ 1. Such t0 ≥ 0 being
fixed, there exists β0 such that ∀t ∈ [0, t0], λ̃(t) ≤ β0. Assume in addition that u0

satisfies a property of decay in L2 on the right: for some θ > 0,

∀x0 > 0,
∫
x≥x0

u2
0(x)dx ≤ θ

x6
0

.

Then, by Lemma 4, there exists θ′ > 0 depending on θ, β0, x̃(t0) and x̃(0) such
that

∀x0 > 0,
∫
x≥x0

u2(t0, x)dx ≤ θ′

x6
0

.

Now, by changing u(0) to u(t0), we assume that t0 = 0, and we denote θ′ = θ in
the rest of this paper. Therefore, we have ∀t ∈ [0, T ), λ̃(t) ≤ 1.
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Let tn → T be the sequence defined by, for all n large,

|ux(tn)|L2 = 2n|Qx|L2 and ∀t ∈ (tn, T ), |ux(t)|L2 > 2n|Qx|L2 .(66)

Note that the existence of such a sequence (tn) is guaranteed by the result of blow
up in finite or infinite time. Recall that from (26), we have ∀t ∈ [0, T ),

|Qx|L2

(1.01)|ux(t)|L2
≤ λ̃(t) ≤ (1.01)|Qx|L2

|ux(t)|L2
,

and then (66) implies that

∀n, 1
(1.01)2n

≤ λ̃(tn) ≤ 1.01
2n

, ∀t ≥ tn, λ̃(t) <
1.01
2n
≤ (1.01)2λ̃(tn).(67)

Then we claim the following:
There exists 0 < α2 < α1 such that the following is true.
(i) The sequence (tn) is bounded, in particular

T < +∞,
and thus u(t) blows up in finite time.

(ii) Moreover, there exists n0 > 0 such that

∀n ≥ n0, |ux(tn)|L2 ≤ C0

|E0|(T − tn)
,(68)

where C0 = 4(
∫
Q)2|Qx|L2 .

First, we claim that (i)–(ii) and thus Theorem 1 follow from the following control
from above of tn+1 − tn by λ̃(tn):

Theorem 2 (Upper bounds on tn+1 − tn). There exists 0 < α2 < α1, such that if∫
u2

0 ≤
∫
Q2 + α2 and E(u0) < 0, then the following property is true. Assume that

u0 satisfies for some θ > 0,

∀x0 > 0,
∫
x≥x0

u2
0(x)dx ≤ θ

x6
0

.

Then, there exists n0 > 0 such that

∀n ≥ n0, tn+1 − tn ≤
(
∫
Q)2

|E0|
λ̃(tn).(69)

Remark. Note that the choice of α2 is independent of θ. However n0 = n0(u0)
depends on some constants related to the initial data. Indeed, we consider n0 such
that

∀t ≥ tn0 ,

∫
ε̃ 2(t)e−

|y|
100 ≤ C(|E0|, θ),

and therefore n0 = n0(|E0|, θ). Note that the existence of such n0 follows from the
result of asymptotic profile [9]. Indeed, from the blow up profile result, we have

ε̃ (t) ⇀ 0 in H1(R) weak as t ↑ T ,

and so, from the fact that H1(R) is compactly embedded in L2((−R,R)), for all
R > 0, and

∫
ε̃ 2 ≤ 1

4

∫
Q2, we have∫

ε̃ 2(t)e−
|y|
100 → 0 as t ↑ T.(70)

We prove that Theorem 2 implies Theorem 1 and next we prove Theorem 2.
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Theorem 2 implies Theorem 1. Let us first show that the blow up occurs in
finite time, i.e.

T < +∞.

Assuming that (69) holds, there exists n0 > 0 such that ∀n ≥ n0, ∀m > 0, we have

tm+n − tn =
m+n−1∑
k=n

(tk+1 − tk) ≤ 1.01
(
∫
Q)2

|E0|

+∞∑
k=n

1
2k

= 1.01
(
∫
Q)2

|E0|
1

2n−1
.(71)

This implies ∀m > 0,

tm+n0 ≤ tn0 + 1.01
(
∫
Q)2

|E0|
1

2n0−1
.(72)

Therefore, the sequence (tm+n0)m>0 is increasing and bounded, and since
limn→+∞ tn = T by the definition of the sequence (tn) and the well posedness
of the Cauchy problem in H1, we obtain T < +∞ and thus u(t) blows up in finite
time.

Moreover, from (71), letting m→ +∞, we have

∀n ≥ n0, T − tn ≤ 1.01
(
∫
Q)2

|E0|
1

2n−1
≤ (1.01)2 2(

∫
Q)2

|E0|
λ̃(tn),

and so by (26),

∀n ≥ n0, |ux(tn)|L2 ≤ (1.01)|Qx|L2

λ̃(tn)
≤ 2(1.01)3(

∫
Q)2|Qx|L2

|E0|(T − tn)
≤ C0

|E0|(T − tn)
,

where C0 = 4(
∫
Q)2|Qx|L2 , which is the desired result.

Therefore, we are reduced to understanding the dynamics on the time interval
(tn, tn+1) and to prove Theorem 2. For this, we will use the following two funda-
mental propositions, which will be proved in the next sections.

Proposition 1 (Integration of conservation laws). There exist 0 < αI < α1 and
δI > 0 such that if

∫
u2

0 ≤
∫
Q2 + αI and E(u0) < 0, then the following is true. If

0 < t1 < t2 < T are such that

∀t ≥ t1,
∫
ε̃ 2(t)e−

|y|
100 ≤ δI(73)

and

∀t ∈ (t1, t2),
∫
y≥0

|ε̃ (t)| ≤
(∫

ε̃ 2(t)e−
|y|
100

)3/8

,(74)

then

1
100

+ log
λ̃(t1)

λ̃(t2)
≥ 8|E0|

(
∫
Q)2

∫ t2

t1

dt

λ̃(t)
.

Remark. In (74), the power 3/8 has no particular significance. Indeed, any power
strictly less than 1/2 close to 1/2 would work, if one also modifies the power 1

100 in
the local L2 norm of ε. This would not affect the rest of the proof.

Proof. See Section 4.
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Proposition 2 (L1-control on the right for slow dynamics). Suppose that for some
θ > 0,

∀x0 > 0,
∫
x≥x0

u2
0(x)dx ≤ θ

x6
0

and

∀t ∈ [0, T ), λ̃(t) ≤ 1.

Let A > 0. There exists δII = δII(A, |E0|, θ) such that the following is true. Suppose
that 0 < t1 < t2 < T satisfy

∀t ∈ (t1, t2), λ̃(t) ≤ (4.1)λ̃(t2)(75)

and

t2 − t1 ≥ Aλ̃(t2).(76)

If in addition
∫
ε̃ 2(t2)e−

|y|
100 ≤ δII , then∫

y>0

|ε̃ (t2, y)|dy ≤
(∫

ε̃ 2(t2)e−
|y|
100

)3/8

.(77)

Proof. See Section 5.

Assume these two propositions and let us prove Theorem 2.

Proof of Theorem 2. Suppose
∫
u2

0 ≤
∫
Q2 + α2. By (70), there exists n0 > 0 such

that

∀t ≥ tn0 ,

∫
ε̃ 2(t)e−

|y|
100 ≤ min(δI , δII),

where δI , δII = δII(A, |E0|, θ), for A = (
∫
Q)2/(4|E0|), are defined in Propositions

1 and 2, respectively.
Now, n0 being fixed, we want to prove that (69) is true for all n ≥ n0. We argue

by contradiction. Assume that we can find n1 ≥ n0 so that

tn1+1 − tn1 >
(
∫
Q)2

|E0|
λ̃(tn1).(78)

The contradiction is obtained in two steps.
Step 1. Monotonicity property on ( tn1+1+tn1

2 , tn1).
Claim.

∀t ∈
(
tn1+1 + tn1

2
, tn1+1

)
, λ̃(t) >

λ̃(tn1)
4

.(79)

This follows from the fact that under the regime of Proposition 1, λ̃ is almost
monotone in time.

Suppose for the sake of contradiction that (79) is not true. Since λ̃ is a continuous
function, and λ̃(tn+1) ≥ 1

2(1.01)2 λ̃(tn), there exists

tn1 ∈
(
tn1+1 + tn1

2
, tn1+1

)
such that

λ̃(tn1) =
λ̃(tn1)

4
and ∀t ∈ (tn1 , tn1+1), λ̃(t) > λ̃(tn1)/4.
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For all t ∈ (tn1 , tn1+1), we have

t− tn1 ≥ tn1 − tn1 ≥
tn1+1 − tn1

2
≥ (
∫
Q)2

2|E0|
λ̃(tn1)

by hypothesis of contradiction (78). By (67), we have λ̃(t) ≤ (1.01)2λ̃(tn1), and so

t− tn1 ≥
(
∫
Q)2

4|E0|
λ̃(t).

Moreover, ∀t′ ∈ (tn1 , t), by using (67) and the definition of tn1 , we have

λ̃(t′) ≤ (1.01)2λ̃(tn1) ≤ (4.1)λ̃(t).

Therefore, we can apply Proposition 2 between tn1 and t, with A = (
∫
Q)2

4|E0| . We
obtain

∀t ∈ (tn1 , tn1+1),
∫
y>0

|ε̃ (t)| ≤
(∫

ε̃ 2(t)e−
|y|
100

)3/8

.

Now, we are able to apply Proposition 1 between tn1 and tn1+1 and we obtain

1
100

+ log
λ̃(tn1)

λ̃(tn1+1)
≥ 8|E0|

(
∫
Q)2

∫ tn1+1

t

dt

λ̃(t)
≥ 0.

Since

λ̃(tn1) =
λ̃(tn1)

4
≤ (1.01)2

2n1−2
≤ (1.01)4

2
λ̃(tn1+1),

we obtain

− log 2
2

>
1

100
− log

2
(1.01)4

>
1

100
+ log

λ̃(tn1)

λ̃(tn1+1)
> 0,

which is a contradiction. Thus,

∀t ∈
(
tn1+1 + tn1

2
, tn1+1

)
, λ̃(t) >

λ̃(tn1)
4

.(80)

Step 2. Conclusion by integration of the conservation laws.
Now let

tn1 =
tn1+1 + tn1

2
.

Since we have the monotonicity properties on (tn1 , tn1+1), we are able from Propo-
sition 1 to obtain a control from above of tn1+1−tn1 which will give a contradiction.

As in Step 1, for any t ∈ (tn1 , tn1+1), we apply Proposition 2 between tn1 and t.
We obtain

∀t ∈ (tn1 , tn1+1),
∫
y>0

|ε̃ (t)| ≤
(∫

ε̃ 2(t)e−
|y|
100

)3/8

.

We apply Proposition 1 between tn1 and tn1+1, and we obtain

1
100

+ log
λ̃(tn1)

λ̃(tn1+1)
≥ 8|E0|

(
∫
Q)2

∫ tn1+1

tn1

dt

λ̃(t)
.

Since by definition of the sequence (tn),

λ̃(tn1) ≤ (1.01)2

2n1
≤ 2(1.01)4λ̃(tn1+1),
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we have

1 ≥ 1
100

+ log(2(1.01)4) ≥ 1
100

+ log
λ̃(tn1)

λ̃(tn1+1)
≥ 8|E0|

(
∫
Q)2

∫ tn1+1

tn1

dt

λ̃(t)
.

Since by the definition of the sequence (tn), ∀t ∈ (tn1 , tn1+1), λ̃(t) ≤ (1.01)2λ̃(tn1),
we obtain

1 ≥ 8|E0|
(1.01)2(

∫
Q)2

1

λ̃(tn1)
(tn1+1 − tn1) =

4|E0|
(1.01)2(

∫
Q)2

1

λ̃(tn1)
(tn1+1 − tn1),

and so

tn1+1 − tn1 ≤
(
∫
Q)2

2|E0|
λ̃(tn1),

which contradicts (78), and concludes the proof of Theorem 2.

Now, we prove Corollary 1.

Proof of Corollary 1. In the context of Theorem 1, we assume in addition that for
some t1 ∈ [0, T ),

if t1 < t < t′ < T , then |ux(t′)|L2 ≥ 1
2 |ux(t)|L2 .(81)

Then, we claim that there exists t(u0) ∈ (0, T ) such that

∀t ∈ (t(u0), T ), |ux(t)|L2 ≤ 4C0

|E0|(T − t)
.(82)

Recall that in the proof of Theorem 1, we have proved that there exists n0 =
n0(u0) such that

∀n ≥ n0, |ux(tn)|L2 ≤ C0

|E0|(T − tn)
,(83)

where C0 = 4(
∫
Q)2|Qx|L2 .

Set t(u0) = max(t1, tn0). Let t ∈ (t(u0), T ), and let n1 ≥ n0 such that

tn1 ≤ t < tn1+1.

By (81), and then by the definition of the sequence (tn) in Theorem 1, we have

|ux(t)|L2 ≤ 2|ux(tn1+1)|L2 = 4|ux(tn1)|L2 .

Therefore, by (83), and since T − t ≤ T − tn1 , we have

|ux(t)|L2 ≤ 4C0

|E0|(T − tn1)
≤ 4C0

|E0|(T − t)
,

and Corollary 1 is proved.

Now, we prove Corollary 2.

Proof of Corollary 2. Still in the context of Theorem 1, we assume in addition that
for some B > 0, n1 > 0, we have

∀n ≥ n1, |ux(tn)|L2 ≥ B

(T − tn)
.(84)

Then, we claim that there exists t(u0) ∈ (0, T ) such that

∀t ∈ (t(u0), T ), |ux(t)|L2 ≤ 8C0

|E0|(T − t)
.(85)
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By the proof of Theorem 1, there exists n0 = n0(u0) such that

∀n ≥ n0, |ux(tn)|L2 ≤ C0

|E0|(T − tn)
,(86)

where C0 = 4(
∫
Q)2|Qx|L2 . Let n2 = max(n0, n1).

Step 1. First, we claim that there exists k0 > 0 such that ∀n ≥ n2, we have

tn+k0 − tn ≥
C0

(1.01)|E0|
λ̃(tn+k0 ).(87)

Indeed, let k0 > 0 be the smallest integer such that 2k0 ≥ 2C0
B|E0| . For any n ≥ n2,

by (84), we have T − tn ≥ B
|ux(tn)|L2

= B 2−n

|Qx|L2
, and, by Theorem 1, T − tn+k0 ≤

C0
|E0||ux(tn+k0)|L2

= C02−n−k0

|E0||Qx|L2
. Therefore,

tn+k0 − tn = (T − tn)− (T − tn+k0) ≥ 2−n−k0

|Qx|L2

(
2k0B − C0

|E0|

)
≥ C0 2−n−k0

|E0||Qx|L2
≥ C0λ̃(tn+k0)

(1.01)|E0|
,

by (26) and thus (87) is proved.
Step 2. Let n ≥ n2. We claim that

∀t ∈ (tn+k0 , tn+k0+1), λ̃(t) ≥ 1
4
λ̃(tn+k0 ).(88)

The argument is the same as the one of Step 1 in the proof of Theorem 2. If
we suppose that (88) fails, since λ̃(tn+k0+1) ≥ 1

2(1.01)2 λ̃(tn+k0), there exists tn ∈
(tn+k0 , tn+k0+1) such that

λ̃(tn) =
1
4
λ̃(tn+k0), ∀t ∈ (tn, tn+k0+1), λ̃(t) >

1
4
λ̃(tn+k0).

Then, ∀t ∈ (tn, tn+k0+1), we have by Step 1,

t− tn ≥ tn − tn ≥ tn+k0 − tn ≥
C0λ̃(tn+k0)
(1.01)|E0|

≥ C0λ̃(t)
(1.01)3|E0|

.

Moreover, ∀t′ ∈ (tn, t), we have

λ̃(t′) ≤ (1.01)2λ̃(tn) ≤ (1.01)42k0 λ̃(tn+k0) ≤ (1.01)422+k0 λ̃(t),

by the definition of the sequence (tn) and the definition of tn. Now, we apply a
variant of Proposition 2 between t and tn, and conclude that

∀t ∈ (tn, tn+k0+1),
∫
y>0

|ε̃ (t, y)|dy ≤
(∫

ε̃ 2(t)e−
|y|
K0

)3/8

,(89)

for some constant K0 > 0 (the constant K0 is related to the fact that instead of
4.1 in (75), we have (1.01)422+k0).

Therefore, we can now apply Proposition 1 between tn and tn+k0+1. We find a
contradiction exactly in the same way as in Step 1 of the proof of Theorem 2.

Thus, claim (88) is proved.
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Step 3. Conclusion.
Set t(u0) = tn2+k0 . Let t ∈ (t(u0), T ), and consider n ≥ n2 + k0 such that

t ∈ [tn, tn+1). By Step 2, (26) and Theorem 1, we have

|ux(t)|L2 ≤ 4(1.01)2|ux(tn)|L2 ≤ 4(1.01)2C0

|E0|(T − tn)
≤ 8C0

|E0|(T − t)
,

and Corollary 2 is proved.

4. Proof of a time integral form

of the control from below of the focusing speed

In this section, we prove Proposition 1, i.e. we prove that under a control on the
right in L1, and smallness conditions in L2

loc, λ̃(t) satisfies in an integral form in
time the following inequality:

− λ̃t
λ̃
≥ 8|E0|

(
∫
Q)2

1

λ̃
.

More precisely, we want to prove that:
There exist αI > 0 and δI > 0 such that if

∫
u2

0 ≤
∫
Q2 + αI and E(u0) < 0,

then the following is true. If 0 < t1 < t2 < T are such that

∀t ≥ t1,
∫
ε̃ 2(t)e−

|y|
100 ≤ δI(90)

and

∀t ∈ (t1, t2),
∫
y≥0

|ε̃ (t)| ≤
(∫

ε̃ 2(t)e−
|y|
100

)3/8

,(91)

then

1
100

+ log
λ̃(t1)

λ̃(t2)
≥ 8|E0|

(
∫
Q)2

∫ t2

t1

dt

λ̃(t)
.

Proof. Let us first give the strategy of the proof. We begin by introducing the
decomposition of Section 2.3, i.e.

ε(t, y) = λ1/2(t)u(t, λ(t)y + x(t)) −Q(y),(92)

such that ∫ ∫ y

−∞

(
Q
2 + yQy

)
ε(t, y)dy =

∫
y
(
Q
2 + yQy

)
ε(t, y)dy = 0.(93)

The fundamental advantage of this decomposition is to be adapted to the equation
of the scaling parameter.

First, applying Lemma 6 to v(t) = Q + ε̃ (t), by (90) and (91), for αI and δI
small enough (related to β1), for all t ∈ (t1, t2), we consider ε(t), λ1(t) and x1(t)
with

ε(t, y) = λ
1/2
1 (t)ε̃ (t, λ1(t)y + x1(t)) + λ

1/2
1 (t)Q(λ1(t)y + x1(t))−Q(y),
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such that (93) holds. Then, by (55)–(57), λ1, x1 satisfy

|λ1 − 1| ≤ C
(∫

ε̃ 2e−|y|
)1/2

+ C

∫
y>0

|ε̃ |,

|x1| ≤ C
(∫

ε̃ 2e−|y|
)1/2

+ C

(∫
y>0

|ε̃ |
)2

.

From (91), we obtain

|λ1 − 1| ≤ C
(∫

ε̃ 2e−
|y|
100

)3/8

, |x1| ≤ C
(∫

ε̃ 2e−
|y|
100

)1/2

.(94)

Note that we have (92) where λ(t) = λ1(t)λ̃(t), x(t) = λ̃(t)x1(t) + x̃(t). Therefore,
λ(t) and x(t) satisfy the relations given in Lemma 7 (see also Step 1 below) and by
(94), we have ∣∣∣∣λ

λ̃
− 1
∣∣∣∣ = |λ1 − 1| ≤ C

(∫
ε̃ 2e−

|y|
100

)3/8

≤ Cδ3/8
I .(95)

Thus we can choose δI > 0 so that in the rest of the proof

∀t ∈ (t1, t2),
1

1.01
≤
∣∣∣∣λ
λ̃

∣∣∣∣ ≤ 1.01.

Let us call s the new time variable defined as follows:

s =
∫ t

t1

dt′

λ3(t′)

(we use the same notation as for the time variable defined from λ̃(t); this will
not lead to confusion). We call s1 = 0 and s2 the time associated to t1 and t2
respectively.

From the fact that J(ε) =
∫ ∫ y
−∞

(
Q
2 + yQy

)
ε = 0 and

∫
y
(
Q
2 + yQy

)
ε = 0,

we have the following relations, for s ∈ (s1, s2):

λs
λ

(
∫
Q)2

8 + 2
∫
εQ−

(
xs
λ − 1

) ∫
ε
(
Q
2 + yQy

)

+ 10
∫
Q3
(
Q
2 + yQy

)
ε2 +

∫
G(ε)

(
Q
2 + yQy

)
= 0

(96)

and (
xs
λ − 1

)
µ0 −

∫
εL

[(
y
(
Q
2 + yQy

))
y

]

− λs
λ

∫
ε

[
y
(
y
(
Q
2 + yQy

))
y

]
−
(
xs
λ − 1

) ∫
ε
(
y
(
Q
2 + yQy

))
y

+ 10
∫
Q3
(
y
(
Q
2 + yQy

))
y
ε2 +

∫
G(ε)

(
y
(
Q
2 + yQy

))
y

= 0,

(97)

where |G(ε)| ≤ C(|ε|3 + |ε|5) (see Lemma 7).
The fact that

∫
εQ has a slow variation in time and is related to λ̃2 by the energy

relation together with equations (96)–(97) will allow us to give an equation in λ̃.
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To have such a property, we have to compare
∫
εQ and

∫
ε2e−

|y|
100 . Here, we see

that without more information, we cannot reach a conclusion. Thus we have to use
the decomposition suitable for the Virial identity, that is, the function ε̃ , to obtain
a comparison between

∫
ε̃ Q and

∫
ε̃ 2e−

|y|
100 . Indeed, the Virial identity will give a

certain control of
∫
ε̃ 2e−

|y|
100 by

(∫
ε̃ Q
)2

.
From the critical structure which gives cancellations at the first order and a

surprising additional degeneracy, which gives cancellations at the second order, we
are able to use this information in order to conclude.

Step 1. Relation between λs
λ and

∫
ε̃ Q.

We claim the following relation between λs
λ and

∫
ε̃ Q coming from a surprising

degeneracy at the second order of the relation between ε and ε̃ .

Lemma 8 (Relation between λs
λ and

∫
ε̃ Q). We have ∀s ∈ (s1, s2),∣∣∣∣λsλ (

∫
Q)2

8 + 2
∫
ε̃ Q+ 5(λ1 − 1)

∫
ε̃ Q

∣∣∣∣ ≤ C(|x1|2 + |λ1 − 1|3 +
∫
ε̃ 2e−

|y|
4 ).(98)

Proof of Lemma 8. First, replacing ε by its expression in terms of ε̃ and λ1, x1, in
all terms of (96), (97), we find the following estimates.

Lemma 9 (Relation between ε and ε̃ , λ1, x1).∣∣∣∣∫ εQ−
∫
ε̃ Q+ (λ1 − 1)

∫
ε̃
(
Q
2 + yQy

)
+ 1

4 (λ1 − 1)2

∫
y2Q2

∣∣∣∣
≤ C(|x1|2 + |λ1 − 1|3 +

∫
ε̃ 2e−

|y|
4 ).(99) ∣∣∣∣∫ ε

(
Q
2 + yQy

)
−
∫
ε̃
(
Q
2 + yQy

)
− (λ1 − 1)

∫ (
Q
2 + yQy

)2
∣∣∣∣

≤ C(|λ1 − 1|2 + |x1|2 +
∫
ε̃ 2e−

|y|
4 ).(100) ∣∣∣∣ ∫ εL

[(
y
(
Q
2 + yQy

))
y

]
−
∫
ε̃ L

[(
y
(
Q
2 + yQy

))
y

]
− 2(λ1 − 1)

∫ (
Q
2 + yQy

)2
∣∣∣∣

≤ C(|λ1 − 1|2 + |x1|2 +
∫
ε̃ 2e−

|y|
4 ).(101) ∣∣∣∣ ∫ Q3

(
Q
2 + yQy

)
ε2 − 2(λ1 − 1)

∫
Q3
(
Q
2 + yQy

)2

ε̃

− |λ1 − 1|2
∫
Q3
(
Q
2 + yQy

)3
∣∣∣∣

≤ C(|x1|2 + |λ1 − 1|3 +
∫
ε̃ 2e−

|y|
4 ).(102) ∣∣∣∣∫ Q3

(
y
(
Q
2 + yQy

))
y
ε2

∣∣∣∣+
∣∣∣∣λsλ ∫ ε

[
y
(
y
(
Q
2 + yQy

))
y

]∣∣∣∣
+
∣∣∣∣(xsλ − 1

) ∫
ε
(
y
(
Q
2 + yQy

))
y

∣∣∣∣
≤ C(|λ1 − 1|2 + |x1|2 +

∫
ε̃ 2e−

|y|
4 ).(103)
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(
Q
2 + yQy

)∣∣∣∣+
∣∣∣∣∫ G(ε)

(
y
(
Q
2 + yQy

))
y

∣∣∣∣
≤ C(|x1|3 + |λ1 − 1|3 +

∫
ε̃ 2e−

|y|
4 ).(104)

Proof of Lemma 9. See the Appendix. To find these estimates, we replace ε(y) by

λ
1/2
1 ε̃ (λ1y + x1) + λ

1/2
1 Q(λ1y + x1)−Q(y),

and we use the following expansion of λ1/2
1 Q(λ1y + x1)−Q(y):

λ
1/2
1 Q(λ1y + x1)−Q(y) = (λ1 − 1)

(
Q
2 + yQy

)
+ x1Qy

+
(λ1 − 1)2

2

(
−Q

4
+ yQy + y2Qyy

)
+ (λ1 − 1)x1

(
Qy
2

+ yQyy

)
+
x2

1

2
Qyy

+O(|λ1 − 1|3)e−|y|/2 +O(|x1|3)e−|y|/2.

Note that to use cancellations of equation (96), we have to expand at the second
order (since relation (96) has linear and quadratic terms) and use the orthogonality
conditions on ε and ε̃ to simplify some expressions at the linear level. We refer to
the Appendix for the rest of the proof of Lemma 9.

In particular, by using (101)–(104), we have from (97) (recall µ0 =
∫ (

Q
2 + yQy

)2

)∣∣∣∣(xsλ − 1
)
− 1

µ0

∫
ε̃ L

[(
y
(
Q
2 + yQy

))
y

]
− 2(λ1 − 1)

∣∣∣∣
≤ C(|λ1 − 1|2 + |x1|2 +

∫
ε̃ 2e−

|y|
4 ).

Then, by using (100), we have∣∣∣∣(xsλ − 1
)(∫

ε
(
Q
2 + yQy

))
−
(

1
µ0

∫
ε̃ L

[(
y
(
Q
2 + yQy

))
y

]
+ 2(λ1 − 1)

)(∫
ε̃
(
Q
2 + yQy

)
+ µ0(λ1 − 1)

)∣∣∣∣
≤ C

(
|λ1 − 1|3 + |x1|3 +

(∫
ε̃ 2e−

|y|
4

)3/2
)
,

and so∣∣∣∣(xsλ − 1
)(∫

ε
(
Q
2 + yQy

))
− 2µ0(λ1 − 1)2 − 2(λ1 − 1)

∫
ε̃
(
Q
2 + yQy

)
−(λ1 − 1)

∫
ε̃ L

[(
y
(
Q
2 + yQy

))
y

]∣∣∣∣ ≤ C (|λ1 − 1|3 + |x1|3 +
∫
ε̃ 2e−

|y|
4

)
.(105)

Finally, by using (99), (102), (104), and (105), we have from (96)∣∣∣∣λsλ (
∫
Q)2

8 + 2
∫
ε̃ Q + |λ1 − 1|2µ∗ + (λ1 − 1)

∫
ε̃W ∗

∣∣∣∣
≤ C(|x1|2 + |λ1 − 1|3 +

∫
ε̃ 2e−

|y|
4 ),(106)
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where

µ∗ = − 1
2

∫
y2Q2 − 2

∫ (
Q
2 + yQy

)2

+ 10
∫
Q3
(
Q
2 + yQy

)3

,

W ∗ = −4
(
Q
2 + yQy

)
− L

[(
y
(
Q
2 + yQy

))
y

]
+ 20Q3

(
Q
2 + yQy

)2

.

A crucial fact is the following claim which gives for formula (106) a degeneracy
at the second order. Note that this degeneracy is not related to the choice of
orthogonality conditions on ε̃ .

Lemma 10 (Cancellations of second order terms in (λ1 − 1)).

µ∗ = 0 and W ∗ = 5Q.(107)

Assuming this lemma, we have from (106),∣∣∣∣λsλ (
∫
Q)2

8 + 2
∫
ε̃ Q+ 5(λ1 − 1)

∫
ε̃ Q

∣∣∣∣ ≤ C(|x1|2 + |λ1 − 1|3 +
∫
ε̃ 2e−

|y|
4 ),

which proves (98). Thus Lemma 8 is proved. Therefore, we are now reduced to
prove Lemma 10.

Proof of Lemma 10. (i) µ∗ = 0.
We begin with two elementary calculations. Since Q5 = Q − Qyy, we have by

integration

Q2
y = Q2 − 1

3
Q6.(108)

By integration by parts, we have∫
y2Q6 =

∫
y2Q2 −

∫
y2QyyQ =

∫
y2Q2 + 2

∫
yQyQ+

∫
y2Q2

y

= 2
∫
y2Q2 −

∫
Q2 − 1

3

∫
y2Q6.

Thus, ∫
y2Q6 =

3
2

∫
y2Q2 − 3

4

∫
Q2.

By a similar calculation and using
∫
Q6 = 3

2

∫
Q2 (by E(Q) = 0 and (108)), we

have ∫
y2Q10 =

9
4

∫
y2Q6 − 1

8

∫
Q6 =

9
4

∫
y2Q6 − 3

16

∫
Q2.

Thus,∫ (
Q
2 + yQy

)2

=
1
4

∫
Q2 +

∫
yQyQ+

∫
y2Q2

y = −1
4

∫
Q2 +

∫
y2Q2

y

= −1
4

∫
Q2 +

∫
y2Q2 − 1

3

∫
y2Q6 =

1
2

∫
y2Q2.
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Next,∫
Q3
(
Q
2 + yQy

)3

=
1
8

∫
Q6 +

3
4

∫
yQyQ

5 +
3
2

∫
y2Q2

yQ
4 +

∫
y3Q3

yQ
3

=
1
8

∫
Q6 − 1

8

∫
Q6 +

3
2

∫
y2Q6 − 1

2

∫
y2Q10

+
∫
y3QyQ

5 − 1
3

∫
y3QyQ

9

=
∫
y2Q6 − 2

5

∫
y2Q10

=
1
10

(∫
y2Q6 +

3
4

∫
Q2

)
=

3
20

∫
y2Q2.

Therefore, µ∗ = 0.
(ii) W ∗ = 5Q.
By the expression Lv = −vyy + v − 5Q4v, we have for any function v,

L(yvy) = −2vyy + yL(vy) = −2vyy + y((Lv)y + 5(Q4)yv).

Thus, from L
(
Q
2 + yQy

)
= −2Q, Qyy = Q−Q5, Q2

y = Q2 − Q6

3 , we have

L

[(
y
(
Q
2 + yQy

))
y

]
= L

(
Q
2 + yQy

)
+ L

(
y
(
Q
2 + yQy

)
y

)
= −2Q− 2

(
Q
2 + yQy

)
yy

+ y
(
−2Qy + 20QyQ3

(
Q
2 + yQy

))
= −2Q− 5Qyy − 2y(Q−Q5)y − 2yQy + 10yQyQ4

+20y2Q3(Q2 − Q6

3 )

= −7Q+ 5Q5 − 4yQy + 20y2Q5 − 20
3
y2Q9 + 20yQyQ4.

Since

20Q3
(
Q
2 + yQy

)2

= 5Q5 + 20yQyQ4 + 20y2Q3(Q2 − Q6

3 )

= 5Q5 + 20y2Q5 − 20
3
y2Q9 + 20yQyQ4,

we obtain from the definition of W ∗ that

W ∗ = 5Q.

Step 2. Inequality satisfied by λ̃.
Now, we claim that from Step 1 and the energy identity in ε̃ , we have

1
200

+ log
λ̃(t1)

λ̃(t2)
≥ 13|E0|

(
∫
Q)2

∫ t2

t1

dt

λ̃
+

1
(
∫
Q)2

∫ t2

t1

∣∣∫ ε̃ Q∣∣
λ̃3

dt− C
∫ t2

t1

∫
ε̃ 2e−

|y|
100

λ̃3
dt.

(109)

By (94), we have

|λ1 − 1|3 ≤ C
(∫

ε̃ 2e−
|y|
100

)9/8

≤ C
∫
ε̃ 2e−

|y|
100 , |x1|2 ≤ C

∫
ε̃ 2e−

|y|
100 ,
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and

|λ1 − 1|
∣∣∣∣∫ ε̃ Q

∣∣∣∣ ≤ |λ1 − 1|3 +
∣∣∣∣∫ ε̃ Q

∣∣∣∣3/2 .
Thus, from Step 1, ∀s ∈ (s1, s2),

−λs
λ
≥ 16

(
∫
Q)2

∫
ε̃ Q− C

∣∣∣∣∫ ε̃ Q

∣∣∣∣3/2 − C ∫ ε̃ 2e−
|y|
100 .(110)

One difficulty here is that
∫
ε̃ Q is not supposed to be nonnegative for all time.

However, using the energy identity, we are able to control
∫
εQ when it is negative.

Indeed, from (39), we have∫
ε̃ Q ≥

∣∣∣∣∫ ε̃ Q

∣∣∣∣− C ∫ ε̃ 2e−|y|.(111)

Therefore,

−λs
λ
≥ 16

(
∫
Q)2

∣∣∣∣∫ ε̃ Q

∣∣∣∣− C ∣∣∣∣∫ ε̃ Q

∣∣∣∣3/2 − C ∫ ε̃ 2e−
|y|
100 .

Since, by the Cauchy–Schwarz inequality,∣∣∣∣∫ ε̃ Q

∣∣∣∣1/2 ≤ C (∫ ε̃ 2e−|y|
)1/4

≤ Cδ1/4
I ,(112)

for δI small enough, we obtain

−λs
λ
≥ 15

(
∫
Q)2

∣∣∣∣∫ ε̃ Q

∣∣∣∣− C ∫ ε̃ 2e−
|y|
100 .

Now, we go back to the t variable (recall dt = λ3ds), dividing by λ3(t):

−λt
λ
≥ 15

(
∫
Q)2

∣∣∫ ε̃ Q∣∣
λ3

− C
∫
ε̃ 2e−

|y|
100

λ3
.

Integrating between t1 and t2, we obtain

log
λ(t1)
λ(t2)

≥ 15
(
∫
Q)2

∫ t2

t1

∣∣∫ ε̃ Q∣∣
λ3

dt− C
∫ t2

t1

∫
ε̃ 2e−

|y|
100

λ3
dt.(113)

Therefore, by (95), for δI small,

1
200

+ log
λ̃(t1)

λ̃(t2)
≥ log

λ(t1)
λ(t2)

≥ 14
(
∫
Q)2

∫ t2

t1

∣∣∫ ε̃ Q∣∣
λ̃3

dt− C
∫ t2

t1

∫
ε̃ 2e−

|y|
100

λ̃3
dt.(114)

Recall that from (40) we have
∣∣∫ ε̃ Q∣∣ ≥ λ̃2|E0| − C

∫
ε̃ 2e−|y|, and claim (109)

follows.
Step 3. Conclusion using the local Virial identity on ε̃ .
We have from (45), written in the t variable, for some A0 ≥ 100,(∫

ψA0 ε̃
2

)
t

≤ −δ0

∫
(ε̃ 2 + ε̃ 2

y)e−
|y|
A0

λ̃3
+

1
δ0

(∫
ε̃ Q
)2

λ̃3
.
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Integrating between t1 and t2, we obtain∫ t2

t1

∫
ε̃ 2e−

|y|
100

λ̃3
dt ≤

∫ t2

t1

∫
(ε̃ 2 + ε̃ 2

y)e−
|y|
A0

λ̃3
dt

≤ C
∣∣∣∣∫ ψA0 ε̃

2(t1)
∣∣∣∣+ C

∣∣∣∣∫ ψA0 ε̃
2(t2)

∣∣∣∣+ C

∫ t2

t1

(∫
ε̃ Q
)2

λ̃3
dt.

From (25), we have
(∫

ε̃ 2
)1/2

≤ C√αI , and so∫ t2

t1

∫
ε̃ 2e−

|y|
100

λ̃3
dt ≤ C

∫ t2

t1

(∫
ε̃ Q
)2

λ̃3
dt+ CαI .(115)

From (109) and (115), and taking αI small enough, we have

1
100

+ log
λ̃(t1)

λ̃(t2)
≥ 13|E0|

(
∫
Q)2

∫ t2

t1

dt

λ̃
+

1
(
∫
Q)2

∫ t2

t1

∣∣∫ ε̃ Q∣∣
λ̃3

dt− C
∫ t2

t1

(∫
ε̃ Q
)2

λ̃3
dt.

Therefore, by choosing δI small enough, by (112), we obtain

1
100

+ log
λ̃(t1)

λ̃(t2)
≥ 13|E0|

(
∫
Q)2

∫ t2

t1

dt

λ̃
,

and Proposition 1 is proved.

Remark. Blow up rate under control on
∫
ε̃ 2
y. From the proof of Theorem 1, we

can obtain the blow up rate, if we assume in addition that the gradient term
∫
ε̃ 2
y

is controlled by
∣∣∫ ε̃ Q∣∣, and a control of

∫
y>0 |ε̃ |. More precisely, we claim the

following.

Under the assumptions of Theorem 1, suppose in addition that there exists t0 ∈
(0, T ) such that ∀t ∈ (t0, T ),∫

ε̃ 2
y(t) ≤ 1

10

∣∣∣∣∫ ε̃ (t)Q
∣∣∣∣ and

∫
y>0

|ε̃ (t)| ≤
(∫

ε̃ 2(t)e−
|y|
100

)3/8

.(116)

Then, for some t1 ∈ (t0, T ), we have ∀t ∈ (t1, T ),

C′0
|E0|(T − t)

≤ |ux(t)|L2 ≤ 8C0

|E0|(T − t)
,(117)

where C′0 = (log 2)|Qx|L2(
∫
Q)2

2000 .

Proof of (117). Reduction to a control of tn+1 − tn. First, we note that (117) is
implied by the following control from below of tn+1 − tn, for n1 > 0 large enough:

∀n > n1, tn+1 − tn ≥
8C′0

|Qx|L2 |E0|
λ̃(tn).(118)

Indeed, if (118) is satisfied for n large by similar arguments as before, then

C0λ̃(tn)
4|Qx|L2 |E0|

≥ T − tn ≥
4C′0

(1.01)2|Qx|L2 |E0|
λ̃(tn)

and
C0

|E0|(T − tn)
≥ |ux(tn)|L2 ≥ 2C′0

|E0|(T − tn)
.
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Thus, from the definition of the sequence (tn), we have, for all t ∈ (tn, tn+1), where
n > n1,

|ux(t)|L2 ≥ |ux(tn)|L2 =
|ux(tn+1)|L2

2
≥ C′0
|E0|(T − tn+1)

≥ C′0
|E0|(T − t)

.

Moreover, from Corollary 2, for t close to T , |ux(t)|L2 ≤ 8C0
|E0|(T−t) . Therefore, we

are reduced to proving (118) under assumptions (116).

Proof of (118). Let δ > 0 be fixed later, and take t0 > 0 large enough so that
∀t > t0,

∫
ε̃ 2e−

|y|
100 ≤ δ. Recall that by Lemma 8, in the proof of Proposition 1, we

have∣∣∣∣λsλ (
∫
Q)2

8
+ 2

∫
ε̃ Q+ 5(λ1 − 1)

∫
ε̃ Q

∣∣∣∣ ≤ C(|x1|2 + |λ1 − 1|3 +
∫
ε̃ 2e−

|y|
4 ).

From this, as in Step 2 of the proof of Proposition 1, by using the control of |λ1−1|
and |x1| in (94), and the assumption (116) on

∫
y>0
|ε̃ |, we obtain, in the s variable

defined by ds
dt = 1/λ3,

−λs
λ
≤ 17

(
∫
Q)2

∣∣∫ ε̃ Q∣∣
λ3

+ C

∫
ε̃ 2e−

|y|
100

λ3
.

By integration between tn and tn+1, and (95), we obtain for δ small,

log
λ̃(tn)

λ̃(tn+1)
≤ 1

200
+ log

λ(tn)
λ(tn+1)

≤ 1
200

+
18

(
∫
Q)2

∫ tn+1

tn

|
∫
ε̃ Q|
λ̃3

dt+ C

∫ tn+1

tn

∫
ε̃ 2e−

|y|
100

λ3
dt.

Now, by the energy relations (41) and (116), ∀t ∈ (tn, tn+1),∣∣∣∣∫ ε̃ Q

∣∣∣∣ ≤ λ̃2|E0|+
1
2

∫
ε̃ 2
y + C

∫
ε̃ 2e−|y| ≤ λ̃2|E0|+

1
20

∣∣∣∣∫ ε̃ Q

∣∣∣∣+ C

∫
ε̃ 2e−|y|,

we obtain

log
λ̃(tn)

λ̃(tn+1)
≤ 1

200
+

20|E0|
(
∫
Q)2

∫ tn+1

tn

dt

λ̃
− 1

(
∫
Q)2

∫ tn+1

tn

|
∫
ε̃ Q|
λ̃3

dt

+ C

∫ tn+1

tn

∫
ε̃ 2e−

|y|
100

λ3
dt.

As in Step 3 of the proof of Proposition 1, we use the Virial identity on ε̃ to control
the local L2 norm of ε̃ in integral in time, and from the control of

∫
y>0
|ε̃ |, we have

∀t ∈ (tn, tn+1), λ̃(t) ≥ 1
4 λ̃(tn). Thus,

tn+1 − tn ≥
(
∫
Q)2 log 2
200|E0|

λ̃(tn),

which proves (118).
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5. Control of the L1
norm of ε̃ on the right

by L2
polynomial decay

In this section, we prove the following result, which gives a control of
∫
y>0
|ε̃ | in

terms of
(∫

ε̃ 2e−
|y|
100

)3/8

in the situation of a slow dynamics. This control is based

on the conservation of L2 polynomial decay on the right. It allows us to control the
L1 norm on the right of the soliton pointwise in time by a sublinear estimate close
enough to the linear estimate. For this, as in [11], we need a control from above of
|ux(t)|L2 . Let us recall the statement of Proposition 2.

Suppose that for some θ > 0,

∀x0 > 0,
∫
x≥x0

u2
0(x)dx ≤ θ

x6
0

and

∀t ∈ [0, T ), λ̃(t) ≤ 1.

Let A > 0. There exists δII = δII(A, |E0|, θ) such that the following is true. Suppose
that 0 < t1 < t2 < T satisfy

∀t ∈ (t1, t2), λ̃(t) ≤ (4.1)λ̃(t2)(119)

and

t2 − t1 ≥ Aλ̃(t2).(120)

If in addition
∫
ε̃ 2(t2)e−

|y|
100 ≤ δII , then∫

y>0

|ε̃ (t2, y)|dy ≤
(∫

ε̃ 2(t2)e−
|y|
100

)3/8

.(121)

Remark. Assumption (119) on (t1, t2) concerns only the size of the soliton to which
the solution is close. Note that the conclusion of the proposition is a control of∫
y>0 |ε̃ | by

(∫
ε̃ 2e−

|y|
100

)3/8

pointwise in time (not in the form of a space-time
integral). We do not expect a linear control in (121), since the proof is based on
nonlinear properties. Note that the result is also valid for any power of the form
1
2 (1− η0), for η0 ∈ (0, 1), instead of 3/8, with the following conclusion:∫

y>0

|ε̃ (t2, y)|dy ≤
(∫

ε̃ 2(t2)e−
|y|
B0

) 1
2 (1−η0)

,

where B0 = B0(η0).

Proof. Step 1. Reduction to exponential estimates.
We control the integral

∫
y>0
|ε̃ (t2, y)|dy by considering two regions: a part on

the compact set and a part for y large. Let

yt2 = −10 log
(∫

ε̃ 2(t2)e−
|y|
100

)
.
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Let 0 < δII < 1 be such that yt2 ≥ −10 log δII > 1. Then∫
y>0

|ε̃ (t2, y)|dy = I1 + I2,(122)

where I1 =
∫

0<y<yt2
|ε̃ (t2, y)|dy and I2 =

∫
y>yt2

|ε̃ (t2, y)|dy.
(i) Estimates on the compact set. First, we have

I1 =
∫

0<y<yt2

|ε̃ (t2, y)|dy ≤ e
yt2
100

∫
y>0

|ε̃ (t2)|e−
y

100

≤ e
yt2
100

(∫
y>0

e−
y

100

)1/2(∫
ε̃ 2(t2)e−

|y|
100

)1/2

≤ 10 e
yt2
100

(∫
ε̃ 2(t2)e−

|y|
100

)1/2

≤ 10
(∫

ε̃ 2(t2)e−
|y|
100

)2/5

≤ 10δ1/40
II

(∫
ε̃ 2(t2)e−

|y|
100

)3/8

≤ 1
2

(∫
ε̃ 2(t2)e−

|y|
100

)3/8

,(123)

for δII satisfying δ1/40
II < 1/20.

(ii) Estimates for y large. Now, to control the second term I2 =
∫
y>yt2

|ε̃ (t2)|,
we proceed in two steps:

(a) We first use L2 estimates in rescaled variables from t1 to t2. Here, we use a
similar idea as in [11]. The strength of these estimates is that they are of nonlinear
type and allow singular behavior (no control from below of λ̃(t)). In fact, linear
estimates break down in this situation.

(b) Then, we prove L2 estimates in the original variables from 0 to t1.
Note that to conclude the proof, we need that t2 and t1 are not too close to each

other so that the estimates obtained in the first step allow us to reduce the problem
to estimates of u(t, x) itself in the second step.

First, we use a dyadic decomposition of the half line [yt2 ,+∞) to reduce ourselves
to control L2 expressions.

I2 =
+∞∑
k=0

∫
2kyt2<y<2k+1yt2

|ε̃ (t2)| ≤
+∞∑
k=0

√
2kyt2

(∫
y>2kyt2

ε̃ 2(t2, y)dy

)1/2

.

Step 2. Exponential estimates in the rescaled variable from t2 to t1.
For all k ≥ 0, we control

∫
y>2kyt2

ε̃ 2(t2) going back to the time t1 in the rescaled
variable. Unfortunately, in this variable, we cannot go directly backwards from t2
to 0 because of some interactions in the exponential estimates.

Here, we need the assumption of the proposition on λ̃(t) on this interval. For
t′ ∈ ( t1−t2

λ̃3(t2)
, 0), x′ ∈ R, let

z(t′, x′) = λ̃1/2(t2)u(λ̃3(t2)t′ + t2, λ̃(t2)x′ + x̃(t2)).
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By the invariances of the critical KdV equation by scaling and translation, z satisfies
(3) on ( t1−t2

λ̃3(t2)
, 0). Moreover,

z(0, x′) = Q+ ε̃ (t2, x′),

z(
t1 − t2
λ̃3(t2)

, x′) = λ̃1/2(t2)u(t1, λ̃(t2)x′ + x̃(t2)),

and λz(t′) = λ̃(λ̃3(t2)t′+t2)

λ̃(t2)
≤ 4.1, xz(t′) = x̃(λ̃(t2)t′+t2)−x̃(t2)

λ̃(t2)
.

Now, we use the notation from Section 2.2, considering the function ψ = ψK , for
K = 9 > 2(1.01)(4.1) (see the assumption in Lemma 5), and the quantity Ix0,t0(t)
defined for the purposes of Lemma 5.

First, let us remark that, since for x ≥ 0, ψ(x) ≥ 1/2,∫
y>2kyt2

ε̃ 2(t2, y)dy ≤ 2
∫
y>2kyt2

(Q + ε̃ (t2))2 + 2
∫
y>2kyt2

Q2

≤ 4
∫

(Q + ε̃ (t2))2ψ(y − 2kyt2)dy + Ce−2kyt2

= 4
∫
z2(0, x′)ψ(x′ − 2kyt2)dx′ + Ce−2kyt2 .(124)

Next, by applying Lemma 5 on z with t0 = 0, t = t1−t2
λ̃(t2)

< 0, and with x0 = 2kyt2 ,
we have ∫

z2(0, x′)ψ(x′ − 2kyt2)dx′

≤ Ce−
2kyt2

9 +
∫
z2(

t1 − t2
λ̃(t2)

, x′)ψ(x′ − 2kyt2 −
1
4
xz(

t1 − t2
λ̃(t2)

))dx′
(125)

(note that xz(0) = 0). Next,∫
z2(

t1 − t2
λ̃(t2)

, x′)ψ(x′ − 2kyt2 −
1
4
xz(

t2 − t1
λ̃(t2)

))dx′

= λ̃(t2)
∫
u2(t1, λ̃(t2)x′ + x̃(t2))ψ(x′ − 2kyt2 −

1
4
x̃(t1)− x̃(t2)

λ̃(t2)
)dx′

=
∫
u2(t1, x+ x̃(t1))ψ(

x

λ̃(t2)
− 2kyt2 −

3
4
x̃(t2)− x̃(t1)

λ̃(t2)
)dx.(126)

Now, by (26), (119) and (120),

∀t ∈ (t1, t2), x̃t(t) ≥
1

(1.01)λ̃2(t)
≥ 1

18λ̃2(t2)
and t2 − t1 ≥ Aλ̃(t2).

Therefore,

x̃(t2)− x̃(t1)

λ̃(t2)
≥ A

18λ̃2(t2)
.
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By using the monotonicity of ψ, ψ < 1, ∀x < 0, ψ(x) ≤ Ce
x
9 , and λ̃(t2) ≤ 1, we

have

∫
u2(t1, x+ x̃(t1))ψ(

x

λ̃(t2)
− 2kyt2 −

3
4
x̃(t2)− x̃(t1)

λ̃(t2)
)dx

≤
∫
u2(t1, x+ x̃(t1))ψ(

x

λ̃(t2)
− 2kyt2 −

A

24λ̃2(t2)
)dx

≤
∫
x< 1

2 (2kyt2 λ̃(t2)+ A

24λ̃(t2)
)

u2(t1, x+ x̃(t1))ψ(
x

λ̃(t2)
− 2kyt2 −

A

24λ̃2(t2)
)dx

+
∫
x> 1

2 (2kyt2 λ̃(t2)+ A

24λ̃(t2)
)

u2(t1, x+ x̃(t1))ψ(
x

λ̃(t2)
− 2kyt2 −

A

24λ̃2(t2)
)dx

≤
(∫

u2(t1)
)
|ψ|L∞(x<− 1

2 (2kyt2+ A

24λ̃2(t2)
))

+
∫
x> 1

2 (2kyt2 λ̃(t2)+ A

24λ̃(t2)
)

u2(t1, x+ x̃(t1))dx

≤ C
(∫

u2
0

)
e
− 1

18 (2kyt2 λ̃(t2)+ A

24λ̃(t2)
)

+
∫
x> 1

2 (2kyt2 λ̃(t2)+ A

24λ̃(t2)
)

u2(t1, x+ x̃(t1))dx.(127)

Here, we use in a crucial way that t2− t1 is large enough. Note that the remaining
estimates concern values of x > A

48λ̃(t2)
far away from 0.

Step 3. L2 exponential property in the u variable and final estimates.
We use Lemma 5 with K = 3 > 2(1.01) (recall that λ̃(t) ≤ 1) directly on u(t)

between t1 and 0. As in the proof of Lemma 4 (see (49)), and then by the property
of the initial data u0, we obtain

∫
x> 1

2 (2kyt2 λ̃(t2)+ A

24λ̃(t2)
)

u2(t1, x+ x̃(t1))dx

≤ 2
∫
x> 1

2 (2kyt2 λ̃(t2)+ A

24λ̃(t2)
)

u2
0(x+ x̃(0))dx + Ce

− 1
6 (2kyt2 λ̃(t2)+ A

24λ̃(t2)
)

≤ 2θ(
1
2 (2kyt2 λ̃(t2) + A

24λ̃(t2)
)
)6 + Ce

− 1
6 (2kyt2 λ̃(t2)+ A

24λ̃(t2)
)
.(128)

Since for x ≥ 0, e−
1
x ≤ Cx6, for some C > 0, we obtain, for a constantC = C(θ) > 0

independent of A and α0, from (124)–(128),

(∫
y>2kyt2

ε̃ 2(t2, y)dy

)1/2

≤ Ce−
2kyt2

18 +
C(

2kyt2 λ̃(t2) + A

λ̃(t2)

)3 .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BLOW UP FOR CRITICAL GKDV 657

In conclusion, for C = C(θ) > 0, we have

I2 ≤
+∞∑
k=0

√
2kyt2

(∫
y>2kyt2

ε̃ 2(t2, y)dy

)1/2

≤ C

+∞∑
k=0

√
2kyt2e

−
2kyt2

18 + C

+∞∑
k=0

√
2kyt2(

2kyt2 λ̃(t2) + A

λ̃(t2)

)3 .(129)

Step 4. Conclusion of the proof.
We conclude the proof by elementary calculations and an estimate of λ̃2 by∫
ε̃ 2e−|y|. Indeed, recall from (42) that from the energy relation and E0 < 0, we

have

λ̃2(t2) ≤ C

|E0|

(∫
ε̃ 2(t2)e−|y|

)1/2

.(130)

Since there exists c > 0 such that ∀x > 0,
√
xe−

x
18 ≤ ce− x

20 , we have

+∞∑
k=0

√
2kyt2e

− 2kyt2
18 ≤ C

+∞∑
k=0

e−
2kyt2

20 ≤ C
+∞∑
n=1

e−
nyt2

20 =
Ce−

yt2
20

1− e−
yt2
20

≤ Ce−
yt2
20

≤ C

(∫
ε̃ 2(t2)e−

|y|
100

)1/2

.

Finally, by the inequality b2a+ 1
a ≥ 2b, we have

2kyt2 λ̃(t2) +
A

λ̃(t2)
≥ 2
√
A
√

2kyt2 .

Therefore, by applying the preceding inequality twice and by yt2 > 1,√
2kyt2(

2kyt2 λ̃(t2) + A

λ̃(t2)

)3 ≤ 1
2
√
A

1(
2kyt2 λ̃(t2) + A

λ̃(t2)

)2

≤
(

1
2
√
A

)5/4( 1
2kyt2

)1/8 1(
2kyt2 λ̃(t2) + A

λ̃(t2)

)7/4

≤
(

1
2
√
A

)5/4( 1
2k

)1/8
(
λ̃(t2)
A

)7/4

,

and thus
+∞∑
k=0

√
2kyt2(

2kyt2 λ̃(t2) + A

λ̃(t2)

)3 ≤
C

A19/8
λ̃7/4(t2).

Therefore, by (130),

+∞∑
k=0

√
2kyt2(

2kyt2 λ̃(t2) + A

λ̃(t2)

)3 ≤
C

A19/8|E0|7/8

(∫
ε̃ 2(t2)e−

|y|
100

)7/16

.
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In conclusion

I2 ≤ C1

(∫
ε̃ 2(t2)e−

|y|
100

)1/2

+
C2

A19/8|E0|7/8

(∫
ε̃ 2(t2)e−

|y|
100

)7/16

≤
(
C1δ

1/8
II +

C2δ
1/16
II

A19/8|E0|7/8

)(∫
ε̃ 2(t2)e−

|y|
100

)3/8

.

By taking δII satisfying δ1/8
II ≤ 1

4C1
and δ

1/16
II < A19/8|E0|7/8

4C2
, we obtain

I2 ≤
1
2

(∫
ε̃ 2(t2)e−

|y|
100

)3/8

.

Thus Proposition 2 is proved.

Appendix: Proof of Lemma 9

With the notation of Section 4, we want to prove the following estimates, for
|λ1 − 1|+ |x1| small enough:∣∣∣∣∫ εQ−

∫
ε̃ Q+ (λ1 − 1)

∫
ε̃
(
Q
2 + yQy

)
+ 1

4 (λ1 − 1)2

∫
y2Q2

∣∣∣∣
≤ C(|x1|2 + |λ1 − 1|3 +

∫
ε̃ 2e−

|y|
4 ).(131) ∣∣∣∣∫ ε

(
Q
2 + yQy

)
−
∫
ε̃
(
Q
2 + yQy

)
− (λ1 − 1)

∫ (
Q
2 + yQy

)2
∣∣∣∣

≤ C(|λ1 − 1|2 + |x1|2 +
∫
ε̃ 2e−

|y|
4 ).(132) ∣∣∣∣∫ εL

[(
y
(
Q
2 + yQy

))
y

]
−
∫
ε̃ L

[(
y
(
Q
2 + yQy

))
y

]
−2(λ1 − 1)

∫ (
Q
2 + yQy

)2
∣∣∣∣

≤ C(|λ1 − 1|2 + |x1|2 +
∫
ε̃ 2e−

|y|
4 ).(133) ∣∣∣∣∫ Q3

(
Q
2 + yQy

)
ε2 − 2(λ1 − 1)

∫
Q3
(
Q
2 + yQy

)2

ε̃

−|λ1 − 1|2
∫
Q3
(
Q
2 + yQy

)3
∣∣∣∣

≤ C(|x1|2 + |λ1 − 1|3 +
∫
ε̃ 2e−

|y|
4 ).(134) ∣∣∣∣∫ Q3

(
y
(
Q
2 + yQy

))
y
ε2

∣∣∣∣+
∣∣∣∣λsλ ∫ ε

[
y
(
y
(
Q
2 + yQy

))
y

]∣∣∣∣
+
∣∣∣∣(xsλ − 1

) ∫
ε
(
y
(
Q
2 + yQy

))
y

∣∣∣∣
≤ C(|λ1 − 1|2 + |x1|2 +

∫
ε̃ 2e−

|y|
4 ).(135)
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(
Q
2 + yQy

)∣∣∣∣+
∣∣∣∣∫ G(ε)

(
y
(
Q
2 + yQy

))
y

∣∣∣∣
≤ C(|x1|3 + |λ1 − 1|3 +

∫
ε̃ 2e−

|y|
4 ).(136)

Recall that

ε(y) = λ
1/2
1 ε̃ (λ1y + x1) + λ

1/2
1 Q(λ1y + x1)−Q(y).(137)

Moreover, if for λ1 > 0, x1 ∈ R, we define

vλ1,x1 = λ
1/2
1 v(λ1x+ x1),

then

∂

∂λ1
vλ1,x1 |λ1=1,x1=0 =

v

2
+ xvx,

∂

∂x1
vλ1,x1 |λ1=1,x1=0 = vx,(138)

∂2

∂λ2
1

vλ1,x1 |λ1=1,x1=0 = −v
4

+ xvx + x2vxx,
∂2

∂x2
1

vλ1,x1 |λ1=1,x1=0 = vxx,(139)

∂2

∂λ1∂x1
vλ1,x1 |λ1=1,x1=0 =

vx
2

+ xvxx.(140)

In particular, by the decay properties of Q and its derivatives, we have

λ
1/2
1 Q(λ1y + x1)−Q(y) = (λ1 − 1)

(
Q

2
+ yQy

)
+ x1Qy

+
(λ1 − 1)2

2

(
−Q

4
+ yQy + y2Qyy

)
+ (λ1 − 1)x1

(
Qy
2

+ yQyy

)
+
x2

1

2
Qyy

+O(|λ1 − 1|3)e−|y|/2 +O(|x1|3)e−|y|/2.(141)

Proof of (131). By (137), we have∫
εQ−

∫
ε̃ Q = λ

1/2
1

∫
ε̃ (λ1y + x1)Q−

∫
ε̃ Q+

∫
(λ1/2

1 Q(λ1y + x1)−Q(y))Q(y).

First, by using (141) at the first order in (λ1 − 1), x1, we have

λ
1/2
1

∫
ε̃ (λ1y + x1)Q−

∫
ε̃ Q =

∫
ε̃ (λ−1/2

1 Q(λ−1
1 (y − x1))−Q(y))

= (λ−1
1 − 1)

∫
ε̃
(
Q
2 + yQy

)
− x1

λ1

∫
ε̃ Qy +

∫
κ1(y)e−

|y|
2 ε̃ (y),

where κ1 is a function of y satisfying ∀y ∈ R, |κ1(y)| ≤ C(|λ1 − 1|2 + |x1|2). We
obtain∣∣∣∣λ1/2

1

∫
ε̃ (λ1y + x1)Q−

∫
ε̃ Q+ (λ1 − 1)

∫
ε̃
(
Q
2 + yQy

)∣∣∣∣
≤ C(|λ1 − 1|2 + |x1|)

(∫
ε̃ 2e−

|y|
2

)1/2

≤ C(|λ1 − 1|4 + |x1|2 +
∫
ε̃ 2e−

|y|
4 ).(142)
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Second, by using (141) at the second order, we have∫
(λ1/2

1 Q(λ1y + x1)−Q(y))Q(y) = (λ1 − 1)
∫ (

Q
2 + yQy

)
Q+ x1

∫
QyQ

+
(λ1 − 1)2

2

∫ (
−Q4 + yQ+ y2Qyy

)
Q+ (λ1 − 1)x1

∫ (
Qy
2 + yQyy

)
Q

+O(|x1|2) +O(|λ1 − 1|3).

We have
∫ (

Q
2 + yQy

)
Q =

∫
QyQ =

∫ (Qy
2 + yQyy

)
Q = 0, and∫ (

−Q4 + yQ+ y2Qyy

)
Q = −3

4

∫
Q2 − 2

∫
yQyQ−

∫
y2Q2

y

=
1
4

∫
Q2 −

∫
y2Q2 +

1
3

∫
Q6 = −1

2

∫
y2Q2,

using
∫
y2Q6 = 3

2

∫
y2Q2 − 3

4

∫
Q2 (see the proof of Lemma 10). Therefore

∣∣∣∣∫ (λ1/2
1 Q(λ1y + x1)−Q(y))Q(y) +

(λ1 − 1)2

4

∫
y2Q2

∣∣∣∣ ≤ C(|x1|2 + |λ1 − 1|3).

(143)

Finally, (142) and (143) give (131).

Proof of (132). By (137), we have∫
ε
(
Q
2 + yQy

)
= λ

1/2
1

∫
ε̃ (λ1y + x1)

(
Q
2 + yQy

)
+
∫

(λ1/2
1 Q(λ1y + x1)−Q(y))

(
Q
2 + yQy

)
.

First, we have∣∣∣∣λ1/2
1

∫
ε̃ (λ1y + x1)

(
Q
2 + yQy

)
−
∫
ε̃
(
Q
2 + yQy

)∣∣∣∣
=
∣∣∣∣∫ ε̃

(
λ
−1/2
1

(
Q
2 + yQy

)
(λ−1

1 (y − x1))
)
−
∫
ε̃
(
Q
2 + yQy

)∣∣∣∣
=
∣∣∣∣∫ ε̃

(
λ
−1/2
1

(
Q
2 + yQy

)
(λ−1

1 (y − x1))−
(
Q
2 + yQy

)
(y)
)∣∣∣∣

≤ C(|λ1 − 1|+ |x1|)
∫
e−
|y|
2 ε̃ (y) ≤ C(|λ1 − 1|2 + |x1|2 +

∫
ε̃ 2e−

|y|
2 ).(144)

Second, by using (141) at the first order, we have∫
(λ1/2

1 Q(λ1y + x1)−Q(y))
(
Q
2 + yQy

)
= (λ1 − 1)

∫ (
Q
2 + yQy

)2

+ x1

∫
Qy

(
Q
2 + yQy

)
+O(|x1|2) +O(|λ1 − 1|2).

Since
∫
Qy

(
Q
2 + yQy

)
= 0, we obtain∣∣∣∣∫ (λ1/2

1 Q(λ1y + x1)−Q(y))
(
Q
2 + yQy

)
− (λ1 − 1)

∫ (
Q
2 + yQy

)2
∣∣∣∣

≤ C(|x1|2 + |λ1 − 1|2).(145)
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Finally, (144) and (145) give (132).

Proof of (133). By (137), we have

∫
εL

[(
y
(
Q
2 + yQy

))
y

]
= λ

1/2
1

∫
ε̃ (λ1y + x1)L

[(
y
(
Q
2 + yQy

))
y

]
+
∫

(λ1/2
1 Q(λ1y + x1)−Q(y))L

[(
y
(
Q
2 + yQy

))
y

]
.

First, we have

λ
1/2
1

∫
ε̃ (λ1y + x1)L

[(
y
(
Q
2 + yQy

))
y

]
=
∫
ε̃

(
λ
−1/2
1 L

[(
y
(
Q
2 + yQy

))
y

]
(λ−1

1 (y − x1))
)

=
∫
ε̃ L

[(
y
(
Q
2 + yQy

))
y

]
+
∫
κ4(y)e−

|y|
2 ε̃ (y),

where κ4 is a function of y satisfying ∀y ∈ R, |κ4(y)| ≤ C(|λ1 − 1|+ |x1|). Second,
by using (141) at the first order, we have

∫
(λ1/2

1 Q(λ1y + x1)−Q(y))L
[(
y
(
Q
2 + yQy

))
y

]
= (λ1 − 1)

∫ (
Q
2 + yQy

)
L

[(
y
(
Q
2 + yQy

))
y

]
+x1

∫
QyL

[(
y
(
Q
2 + yQy

))
y

]
+O(|x1|2) +O(|λ1 − 1|2).

Since ∫ (
Q
2 + yQy

)
L

[(
y
(
Q
2 + yQy

))
y

]
= −2

∫
Q
(
y
(
Q
2 + yQy

))
y

= 2
∫
Qy

(
y
(
Q
2 + yQy

))
= 2

∫ (
Q
2 + yQy

)2

and
∫
QyL

[(
y
(
Q
2 + yQy

))
y

]
= 0, we obtain

∣∣∣∣∫ (λ1/2
1 Q(λ1y + x1)−Q(y))L

[(
y
(
Q
2 + yQy

))
y

]
− 2(λ1 − 1)

∫ (
Q
2 + yQy

)2
∣∣∣∣

≤ C(|x1|2 + |λ1 − 1|2).

Thus (133) is proved.
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Proof of (134). By (137), we have∫
Q3
(
Q
2 + yQy

)
ε2

=
∫
Q3
(
Q
2 + yQy

)
[λ1/2

1 ε̃ (λ1y + x1) + λ
1/2
1 Q(λ1y + x1)−Q(y)]2

= λ1

∫
Q3
(
Q
2 + yQy

)
ε̃ 2(λ1y + x1)

+2
∫
Q3
(
Q
2 + yQy

)
(λ1/2

1 Q(λ1y + x1)−Q(y))λ1/2
1 ε̃ (λ1y + x1)

+
∫
Q3
(
Q
2 + yQy

)
(λ1/2

1 Q(λ1y + x1)−Q(y))2.

First,∣∣∣∣λ1

∫
Q3
(
Q
2 + yQy

)
ε̃ 2(λ1y + x1)

∣∣∣∣ =
∣∣∣∣∫ (Q3

(
Q
2 + yQy

))
(λ−1

1 (y − x1))ε̃ 2(y)
∣∣∣∣

≤ C

∫
ε̃ 2e−|y|.

Second,∫
Q3
(
Q
2 + yQy

)
(λ1/2

1 Q(λ1y + x1)−Q(y))λ1/2
1 ε̃ (λ1y + x1)

=
∫ (

Q3
(
Q
2 + yQy

))
(λ−1

1 (y − x1))(Q(y)− λ−1/2
1 Q(λ−1

1 (y − x1)))ε̃ (y)

= (λ1 − 1)
∫
Q3
(
Q
2 + yQy

)2

ε̃ + x1

∫
Q3
(
Q
2 + yQy

)
Qy ε̃ +

∫
κ3(y)e−

|y|
2 ε̃ (y),

where ∀y ∈ R, |κ3(y)| ≤ C(|x1|2 + |λ1 − 1|2). Therefore,∣∣∣∣∫ Q3
(
Q
2 + yQy

)
(λ1/2

1 Q(λ1y + x1)−Q(y))λ1/2
1 ε̃ (λ1y + x1)

−(λ1 − 1)
∫
Q3
(
Q
2 + yQy

)2

ε̃

∣∣∣∣
≤ C

(
|x1|2 + |λ1 − 1|2

(∫
ε̃ 2e−

|y|
4

)1/2

+
∫
ε̃ 2e−

|y|
4

)

≤ C(|x1|2 + |λ1 − 1|4 +
∫
ε̃ 2e−

|y|
4 ).

Third,∫
Q3
(
Q
2 + yQy

)
(λ1/2

1 Q(λ1y + x1)−Q(y))2

=
∫
Q3
(
Q
2 + yQy

)(
(λ1 − 1)

(
Q
2 + yQy

)
+ x1Qy

)2

+O(|λ1 − 1|3) +O(|x1|3),

so that, since
∫
Q3
(
Q
2 + yQy

)2

Qy = 0, we have∣∣∣∣∫ Q3
(
Q
2 + yQy

)
(λ1/2

1 Q(λ1y + x1)−Q(y))2 − (λ1 − 1)2

∫
Q3
(
Q
2 + yQy

)3
∣∣∣∣

≤ C(|x1|2 + |λ1 − 1|3).
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Therefore,∣∣∣∣∫ Q3
(
Q
2 + yQy

)
ε2−2(λ1−1)

∫
Q3
(
Q
2 + yQy

)2

ε̃−(λ1−1)2

∫
Q3
(
Q
2 + yQy

)3
∣∣∣∣

≤ C(|x1|2 + |λ1 − 1|3 +
∫
ε̃ 2e−

|y|
2 ),

and so (134) is proved.

Proof of (135). First, recall that from (65), we have∣∣λs
λ

∣∣+
∣∣(xs

λ − 1
)∣∣ ≤ C (∫ ε2e−

|y|
2

)1/2

.

Therefore, by the decay property of Q and its derivatives, we have∣∣∣∣∫ Q3
(
y
(
Q
2 + yQy

))
y
ε2

∣∣∣∣+
∣∣∣∣λsλ ∫ ε

[
y
(
y
(
Q
2 + yQy

))
y

]∣∣∣∣
+
∣∣∣∣(xsλ − 1

) ∫
ε
(
y
(
Q
2 + yQy

))
y

∣∣∣∣ ≤ C ∫ ε2e−
|y|
2 .

By (137) and (141), it is clear that∫
ε2e−

|y|
2 ≤ C(|λ1 − 1|2 + |x1|2 +

∫
ε̃ 2e−

|y|
4 ),

so that we obtain (135).

Proof of (136). Recall that |G(ε)| ≤ C(|ε|3 + |ε|5). We can assume |ε|L∞ ≤ 1, by
the Gagliardo–Nirenberg inequality, so that |G(ε)| ≤ C|ε|3. Therefore,∣∣∣∣∫ G(ε)

(
Q
2 + yQy

)∣∣∣∣+
∣∣∣∣∫ G(ε)

(
y
(
Q
2 + yQy

))
y

∣∣∣∣
≤ C

∫
|ε|3e−

|y|
2 ≤ C(|x1|3 + |λ1 − 1|3 +

∫
ε̃ 2e−

|y|
4 ).

Thus (136) is proved.
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