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Blow-up Results for Nonlinear Hyperbolic Inequalities

STANISLAV POHOZAEV - LAURENT VÉRON

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXIX (2000),

Abstract. We study the nonexistence of global weak solutions for equations and
systems of the following types (1) + lu Iq and (II) att u &#x3E; Lm +

where the operators L m and L m are homogeneous
linear partial differential operators of order 2m and 2m1. The method relies on a
suitable choice of test functions, rescaling techniques and a dimensional analysis.

Mathematics Subject Classification (1991): 35L60.

1. - Introduction

The study of the existence (or the non-existence) of global solutions to
semilinear wave equations has been initiated in the seventies and intensively
developed since. The following equation can be considered as the simplest
model case

in R N x R+ where f is usually a continuous real-valued function. There exists
a wide class of nonlinearities f for which the Cauchy Problem for (1.1), that
is the local solvability in time of (1.1) with given initial data u(. , 0) = uo and
9~M(., 0) = u 1, is well posed. Defining F(r) = for f (s )d s, the first observation
is that the energy function of a solution u

is independent of time. Therefore a classical approach to prove global exis-
tence relies on the study of the energy. In the cases where the nonlinear term

F(u)dx can be kept under control by the quadratic term fRN IVul2dx, the

Pervenuto alla Redazione il 21 giugno 1999 e in forma definitiva il 20 ottobre 1999.
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global solvability occurs. In other cases, this is not possible. For example, if
f satisfies

for some E &#x3E; 0, Levine [Le] proved that no solution can exist for all time when
the energy is negative. Levine’s result proof is based on deriving a nonlinear
second order inequality that is satisfied by Another approach for the
non-existence of global solutions has been initiated by John and Kato. It is
based on an averaging method for positive solutions, usually with compact and
propagating support. Much has been devoted to the case of the equation

Defining q~, N as the positive root of

John first proved in [Jol] that when 1  q :5 q~, N there exist smooth initial
data, arbitrarily small in such that no corresponding global solution
exists. Actually, when N = 3, John’s result states that when 1  q  ~c,2 =
1 + ~ all solutions with data blow-up in finite time. Later
on the critical value q = was included in Glassey’s proof [G12] under the
additional assumption that the initial values uo and u 1 have both positive average.
Glassey’s technique was to derive differential inequalities which are satisfied by
the function t t-~ Based on these facts Strauss proposed the
general conjecture that, when N g 1, global solutions of (1.4) always exist,
provided the initial data are small enough in and q &#x3E; Some other
cases were considered by Sideris [Si], and Shaeffer [Sh] who gave extensions
of Glassey’s results for different dimensions, always with compactly supported
initial data, and with positive average. Many works have been devoted to this
conjecture which is, up to now, verified if 8 ([LS], [GLS], [Ku]). A
slightly less sharp result under much weaker assumptions was obtained by Kato
[Ka] with a much easier proof. In particular Kato pointed out the role of the
exponent q = qo = (N + 1)/(~ 2013 1) in order to have more general initial data,
but still with compact support. The fact that the support of u (. , t) is included
in a cone + R } plays a fundamental role in deriving the differential
inequalities. Up to now, if N &#x3E; 8, the exponent qo is the critical one under
which global solutions cannot exist. A comprehensive presentation of these
results can be found in [Jo2l, [LS] and [St].

In this paper we prove the non-existence of global weak solutions of a
very wide class of nonlinear hyperbolic type inequalities of the following type
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where wp is a locally bounded real-valued function which satisfies

for some c &#x3E; 0 and p &#x3E; 0, and where Lm§ = t ) ~ ) is an ho-

mogeneous differential operator of order m in which the aa are merely bounded
and measurable functions. By an adequate choice of test functions, rescaling
techniques, and a sharp dimensional analysis we prove that there exist no weak
solution of (1.6) defined in R N xR+ with JJRN at u (x, 0 if q &#x3E; max(I , p)
and

In opposition with the above mentioned results no assumption on the sign
of the average of uo (which may not be integrable), or on the support of the
solutions is made. In the particular case of the inequality

our conditions read: .

(i) either N = 1, or
(ii) and 

By computing an explicit global solution of (1.8) in the case where L2 = A
and q &#x3E; (N + 1 ) / (N -1 ), we prove that our results are sharp in the class of weak
solutions. We also give variant of this result when the operator is no longer
homogeneous, or have different orders of differentiation with respect to the
various variables (x 1, ... , xN ), or even has unbounded or vanishing coefficients

when + t ~ oo. An important fact to notice is that the operator Lm
is not of any specified type. We note, as far as we know, the first result
on the non-existence of global positive solution in JRN of semilinear equations
with linear differential operator with arbitrary type are due to Eidelman and
Kondratiev [EK]. In the different context of systems of quasilinear inequalities,
a new series of non-existence results for positive solutions have been recently
obtained by one of the authors (S. Pohozaev) and E. Mitidieri ([MP1], [MP2]).
As in many previous papers their approach is based on sharp energy techniques
(multiplication by suitable powers of the solutions) and absorption of those
terms by the source zero-order terms via a capacity type estimate.

By using similar arguments, we also prove non-existence results for systems
of the type

where &#x3E; 1, = t) ~) and the (pi satisfy
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for some p;. In that case, the type of results that we obtain is the natural
extension of the previous ones on the simple inequality, in the continuation of
Kato’s work, while, in a different spirit, an extension of John’s results has been
recently obtained by Del Santo, Georgiev and Mitidieri [DGM], [DM]. We can
also handle non-diagonal systems such as

or of mixed type hyperbolic-parabolic

or hyperbolic-elliptic

Again the main point is the fact that the proof heavily relies on a dimensional
analysis.

Our paper is organised as follows:
1 - Introduction
2 - Non-existence for equations
3 - Non-existence for hyperbolic systems ,

4 - Non-existence for systems of mixed type
5 - References

ACKNOWLEDGEMENTS. This work was prepared while the first author was

visiting Université Frangois Rabelais in Tours on a position of invited professor.
The authors are grateful to the Université Frangois Rabelais and the Laboratoire
de Mathématiques et Physique Theorique for warm hospitality and for giving
the opportunity to prepare this article in good conditions.

2. - Non-existence for equations

Let Lm be the homogeneous differential operator of order m defined by

where the aa are bounded and measurable functions defined in xR+ = 
and m is a positive integer, and wp a locally bounded real valued function which
satisfies for some p &#x3E; 0
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DEFINITION 1. A weak solution u of the differential inequality

on with initial data u(., 0) = uo(.) and 8tu(. , 0) = ul(.) belonging to
is a locally integrable function such that U E n 

which satisfies

for any ~ E C°° (11~++1 ), ~ &#x3E; 0, where Lm ~ _ 

THEOREM 1. Assume that q &#x3E; max ( 1, p). Then there exists no solution u of
inequality (2.3) defined on RN x R+ such that u 1 dx &#x3E; 0, if one of the following
assumptions is fulfilled:

PROOF. Let u be such a weak solution and ~ be a smooth nonnegative test
function. From (2.4) we get

If ~ is chosen such that

where q’ = q / (q - 1), then



398

and

We assume now that ~ is also chosen such that

Then (2.5)-(2.9) imply

Now we take ~ (x, t) = where w E satisfies 0 ::::: 1 and

R is a positive parameter, while K &#x3E; 1 and &#x3E; &#x3E; 0 will be determined later on.

Since = estimate (2.9) holds. In order to
estimate the right-hand side of (2.10) we consider the change of variables

Denoting S2 = {(y, r) E 2} and setting p (y, r) = TK+lylJ-L,
there holds
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and (by a straghtforward computation)

Therefore there exist two positive constants C3 and C4 such that

for any R &#x3E; 0. We choose K such that 2N/03BC+2/K- 2mg or
. 

A K K /-I K tt(q-p) I

equivalently, 
’ K K ’ K 03BC(q-p

Such a choice gives a common value a of the exponents of R in (2.15), namely

The sign of (2.17) does not depend on tt &#x3E; 0 while the condition K &#x3E; 1 is
then equivalent to m (q - 1 ) / (q - p)  2A. This is insured by taking it large
enough.

If a  0, the right-hand side of (2.15) goes to 0 when R goes to infinity,
while the left-hand side converges to lulq dx dt. Clearly this
implies that u cannot exist.

If a = 0, then fo JJRN d t  oo. We return to inequality (2.5), which
actually reads
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by using the fact that the exponent a of R in (2.13), (2.14) vanishes. But

implies that 0.

This infers that lulqdx dt = 0.
Now the assumption a  0 means

It must be noticed that if 2N - m  0, then (2.19) is obviously fulfilled. 0

REMARK 1. The integrability assumption on u i can be relaxed and the sign
condition replaced by the following weaker one:

REMARK 2. The positive sign assumption on u 1 can hardly be avoided
since for any 8 &#x3E; 0 there exists a unique positive function z satisfying

For such a function there always holds  0 0) and particular
Z’(0) = y (8 )  0. Therefore the Cauchy problem associated with equation
(2.20) and initial data z (0) = s, and z’(0) = y (8) has a global solution defined
on R+.

The sign of the derivative of a solution at initial time is important since
it is easily shown that, for this inequality, there exists some q satisfying 1 

q  (N -+- 1 ) / (N - 1) and a positive global solution u of

in RN+l 1 under the form

~ for to &#x3E; 0 and some A &#x3E; 0, a and /3 such that a + 2fl = -2/ (q - 1),
-2/ (q - 1)  p  0, provided there holds

However the derivative of this solution is negative for t = 0.
The next result is an immediate consequence of Theorem 1.
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COROLLARY 1. Assume that q &#x3E; 1 and that the ai,j are measurable uniformly
bounded functions in Then, if 1  q  (N + 1 ), there exists no
weak solution u of

such that JIRN at u (x, 0.

REMARK 3. The results concerning the nonlinear wave equations (1.4)
([Jol], [G], [Sc], [Si]) with compactly supported initial data give a larger upper
limit for the non-existence of global solutions. However their assumptions are
more restrictive since they also need uodx &#x3E; 0 and 0. Kato’s
result [Ka] is closer to our since 0. If we analyse Kato’s proof,
the key ingredient is the fact that for any t &#x3E; 0 the solutions have a compact
support in a ball which propagates at constant speed. The type of the differential
operator is not fundamental in his proof.

The next result points out the sharpness of our results when we only deal
with weak solutions without any compact support assumption.

THEOREM 2. Let N &#x3E; 1 and q &#x3E; (N -~ 1 ) / (N -1 ). Then there exists a positive
weak solution u of

defined on and such that alu(x, 0.

PROOF. Let v(x, t) = s’ - sx with s = 2-1(lxI2 - t 2 ) + so, ~, _ -1 / (q - 1 )
and so &#x3E; 0. A straightforward computation yields

in C+ = f(x, t) E IX12 &#x3E; If q &#x3E; (N + 1)/(N - 1), then (N - 1)q -
(N + 1) &#x3E; 0. Clearly the function 5 = Av satisfies

If we take 0  A  there holds

We define u in 1 by setting
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then u E since it is bounded. Denoting C- = then

for any ~ E such that ~ &#x3E; 0. Because u is radial with respect to
x, we can assume that the same holds for the test function ~ . Therefore an

integration by parts gives

Up to the multiplicative factor NWN = which will be always forgotten,
we have

(here we denote ~ (x , t ) = ~(r, t ) with r &#x3E; 0) and
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This gives

From the definition of ~, we have

and

Since j~ AM 2013 0, we obtain

It follows from (2.28) and (2.34) that

Moreover --_ 0. Therefore the function u is a global weak positive
solution of (2.23) and it satifies JJRN atu(x, o

By using the techniques developed in Theorem 1, we can handle the case
of a non-homogeneous partial differential operator ,C determined by

with i E N* and

We define a weak solution u of the differential inequality
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on with initial data u(., 0) = uo and U1 (.) belonging to

as a locally integrable function such that u E 
which satisfies

for any ~ E 0 where

The main fact is that the conclusion of Theorem 1 still holds for the coefficients

corresponding to the lower order term Le in C.

THEOREM 3. Assume that q &#x3E; max(l, p). Then there exists no solution u of
inequality (2.38) defined on RN x R+ and such that u 0, if one of the
following assumptions is fulfilled:

PROOF. We first have

for any nonnegative test function. Choosing ~ such that

for any k = f, ... , m, yields
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Therefore

Taking ~ as in the proof of Theorem 1, with an exponent K to be determined
later on, yields (2.13) and

We choose K such that + 2/K - 4q’/K = 2N/~ + 2/K - 2tql(tt(q - p)),
that is

and we get

with

Therefore, the conditions 2N - t s 0, or 2N - i &#x3E; 0 and N  2 p implyq-p
that 0 and ak  0 for k &#x3E; i. We end the proof as in Theorem 1. 0

Our technique can also be applied to anisotropic operators, that means

operators with different orders of partial differentiation in the variables. For
such a task, we write x = (x 1, ... , xN ) the variable in JRN, and introduce
operators with order of differentiation flj in the variable xj of the following
form

We consider the following inequality

on R N+l with initial data u(., 0) = uo(.) and a, u (. , 0) = u I (.), two locally
integrable functions in This means again that u E 
and (2.4) holds with Lm replaced by Z*, the formal adjoint of Z.
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THEOREM 4. Assume that q &#x3E; max(l, p). Then there exists no solution u of
inequality (2.48) defined on and such that u 0, if 

I 
:5

q+l
2(q-P)  

*

PROOF. As in the previous theorems, we start from the estimate

Choosing ~ such that

for N, we get

We now t ) = with qJ as before, K &#x3E; 1 and

the Kj &#x3E; 0 to be determined later on. We consider the change of variables

Denoting Q = iCy, -r) E JRN x + 2} and pCy, t) _
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and

Consequently, there exist positive constants Ci (i = 0,..., N) such that

We now choose the Kj &#x3E; 0 and K in order all the exponents of R be the same
in (2.54), that is

In that case, the common value 8 of the exponents is

and the constraint on K is  4Kj, which can always be fulfilled
by taking the Kj large enough. Since by assumption 0, we conclude as in ’
the previous theorems by letting R go to infinity. D

The techniques developed above can also be used to handle the case of
operators the coefficients of which have a strong dependence upon the variables
x and t at infinity. Instead of assuming that the coefficients aa in the operator
Lm defined in (2.1) are merely bounded, we assume that

for some positive C and 8 and y belonging to R.

THEOREM 5. Assume that q &#x3E; max(I , p), 8  m and y &#x3E; -2 (q - p) / (q - 1).
Then there exists no solution u of inequality (2.3) defined on ~~+1 and such that

uldx &#x3E; 0, if the inequality N  (m8)(q+1) holds.JRN U1 2(q p)+y(q-1) 0 s.
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PROOF. We follow Theorem 1 and, by using the same test function, we first
obtain (2.10). Performing the change of variables (2.12), the relation (2.13)
remains valid while (2.14) is replaced by

Consequently

Since = 0 for Ro &#x3E; I, depending on
K and 03BC &#x3E; 0, the problem is reduced to equalise the two exponents of R in
(2.60). This means

We choose

with 0 = p/K, and this gives the common value w for the exponents of R:

The end of the proof is as in Theorem 1. D

APPLICATION 1. We take m = 2, p - 1, 8 - 1 and y = 0. Then the
conditions on y and 3 are satisfied, while the condition on N reads 1  N 
(q + 1)/(2(~ - 1 ) ) or, equivalently, 1  q  (2N + 1)/(2~V - 1).

REMARK 4. By using the same method, we can also derive non-existence
results for stationary solutions of the preceding inequalities (that is solutions

independent of the t variable and only depending on x E and in such a case,
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we assume that aa = Since the proofs are straightforward imitations of
the above ones, we just state the results without any proof.
A - Assume that q &#x3E; max(l, p). Then there exists no stationary solution of

(2.3) defined in R N if mq/(q - p).
B - Assume that q &#x3E; max(l, p). Then there exists no stationary solution of

(2.38) defined in JRN if N  p).
C - Assume that q &#x3E; max(I, p). Then there exists no stationary solution of

(2.48) defined in if p).
D - Assume that q &#x3E; max(l, p), 8  m and (2.58) holds with y = 0. Then

there exists no stationary solution of (2.3) defined in if q(m -
6)/(q - p).

3. - Non-existence for hyperbolic systems

Let Lmi be differential operators of order mi (i - 1, 2) defined by

where the ai,a are bounded and measurable functions defined in x R+ =
and the CfJPi are real-valued continuous functions which satisfy

for some Pi &#x3E; 0 and c &#x3E; 0.

DEFINITION 2. The couple 
is a weak solution of

in with initial data (u(.,0), v(.,0)) _ (uo(.), vo(.)) and 
(u 1 (.), vl (.)), all data belonging to if for any ~ E C°° (II~++1 ), ~ &#x3E; 0,
there holds

and

where
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THEOREM 6. Assume that q, 1 &#x3E; max ( 1, p2 ) and q2 &#x3E; max ( 1, pl). Then there
exists no solution (u, v) of the differential inequalities (3.3) such that 0
and v 0, if one of the following assumptions is fulfilled:

I - If ql &#x3E; q2 and m2q1/(ql - p2) ? mlq2l(q2 - PI), then N :5 mlq2(q, +
1)/~2q1 (q2 - Pl)).

II - If ql &#x3E; q2 and m2ql/(ql - P2)  mlq2l(q2 - then N  m2(ql +
1)/(2(ql - P2)).

III - If q2 &#x3E; ql 1 and p 1 ) ~ P2), then N  ml(q2 +
1)/(2(q2 - Pl))-

IV - If q2 &#x3E; ql andmIq2/(q2 - PI) &#x3E; m2q1/(ql - P2), then N  m2q1(q2 +
1)/(Zq2Cq1 - P2)).

PROOF. As in Section 2, we consider a nonnegative test function ~ E

such that

where q’ = 1). We first have

and

Similarly



411

and

We choose ~ such that

and

By summing the two next inequalities (derived from (3.7)-(3.10)),

and

we deduce that the following estimate holds

We take = where w E C§°(R+) satisfies 0 :::: w 1

and
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R is a positive parameter and K &#x3E; 1 and it &#x3E; 0 will be determined later on.

Clearly (3.9) holds.
In order to estimate the right-hand side of (3.14) we perform the same

change of variables as in Theorem 1, that is

This yields

Setting 0 &#x3E; 0 the exponents of R will be nonpositive if the following
inequalities are all satisfied for some 0 &#x3E; 0.

Therefore, if we define N by

then N = E(N) is the largest integer such that (3.18) holds. For example, if
q 1 ? q2 and p2) a miq2 /(q2 - is defined by the relation

and the conditions (3.18) read N &#x3E; + 1 ) / (2q 1 (q2- - which is I.
While if q2 and P2)  is defined by

and the conditions (3.18) read N  + l)/(2(~i - ~2)). which is II. We

proceed similarly if q1  q2. We conclude as in the previous theorems: by
letting R go to infinity, and since + 0, we infer that

(Ivlql -I- dx dt = 0. 0
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APPLICATION 2. In the case where mi = 2 and p1 - 1 for i = 1, 2, the
relation q2 implies P2) = 1) ~ 
2q2/(q2 - 1). The blow-up occurs when N  (q1 + l)/(~i 2013 1) 4=~ 

(N ~- 1 ) / (N - 1 ), which the same condition as in the single equation case.

REMARK 5. This result has to be compared with the recent ones of Del
Santo, Georgiev and Mitidieri [DGM], [DM] dealing with the case mi = 2,
N = 3 1 and Lmi = A. In this case it is proved that if

any solution of the above mentionned inequalities, with compactly-supported
small enough initial data, blows-up in finite time. On the contrary, if A(p, q ) 
1, the corresponding system of equations admits global solutions provided the
initial data are small enough. This type of results, with stronger assumptions
but obviously sharper statements, are the natural extension to systems of the
ones of John, Glassey or Shaeffer ([Jol], [G12], [Sc]). Our results, dealing with
weak solutions with general initial data, are much more in the continuation of
Kato’s works ([Ka]).

In the next theorems we give blow-up results for non-diagonal hyperbolic
systems of the following types

and

A couple (u, v) E as a weak

solution in of (3.22) with initial data (u(. , 0), v(. , 0)) = (uo(.), vo(.)) and
0,M(.,0),9~(.,0)) = (U1 (.), VI (.»), if for any ~ E C~(R~+’), ~ ~ 0, there
holds

and
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Similarly (u, v) E x is a weak
N+l loc + loc + loc + loc +

solution in RN+1 of (3.23) with initial data (u(. , 0), v(. , 0)) = (uo(.), vo(.)) and
(atu(., 0).atv(., 0)) = (ul(.), VI (.», if for any ~ E C°°(I~++1), ~ &#x3E; 0, there
holds 

c + -

and

Since the techniques involved are the same as the one of Theorem 6, we
just state with a very reduced proof our results concerning these non-diagonal
systems.

THEOREM 7. Assume that q1 &#x3E; max(l, P2) and q2 &#x3E; max(l, pl), then there
exists no solution (u, v) of the differential inequalities (3.22) such that 0
and 0 if one of the following assumptions is fulfilled:

PROOF. The only difference with the proof of Theorem 6 is that (3.7) and
(3.9) are respectively replaced by
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and

with a test function a test function satisfying (3.6) while (3.8) and (3.10) holds.
By summation the inequality (3.14) is still valid, and the conclusion follows by
the same discussion. R

THEOREM 8. Assume that q, 1 &#x3E; max ( 1, pl) and q2 &#x3E; max( 1, P2). Then there
exists no solution (u, v) of the differential inequalities (3.23) such that 0
and 0 if one of the following assumptions is fulfilled:

PROOF. We consider a nonnegative test function ~ E C~ (~~ + 1) such that

Estimates (3.7) and (3.9) hold, while (3.8) and (3.10) are replaced by
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and

Consequently, (3.14) is replaced by

and (3.17) becomes

In order to have the exponents of R nonpositive, we have to find a positive
8 = such that

Defining

then N = E (N) is the largest integer such that (3.35) holds. The conclusion
follows. D
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4. - Non-existence for systems of mixed type

In this Section we consider systems of mixed type parabolic-hyperbolic

and elliptic-hyperbolic

We define the operators Lml, Lm2, and L:n2 as in Section III.
DEFINITION 3. We say that (u, v) E LPl (JRN+1) . , loc + loc + loc +

is a weak solution of (4.1 ) (resp. (4.2)) in R N+l with initial data
(M(., 0), v(. , 0)) = (uo(.), vo(.)) and atu(. , 0) = ul (.), all belonging to 
(resp. u (., 0) = uo(.) and 0) = u 1 (.))), if the two inequalities

and

hold for any ~ e C~ (1R~ + 1 ), ~ ~ 0 (resp. inequality (4.3) and

THEOREM 9. Assume that q1 &#x3E; max(l, P2) and q2 &#x3E; pl). Then there
exists no solution (u, v) of the differential inequalities (4.1) such that 0
and vodx &#x3E; 0 if one of the following assumptions is fulfilled:
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PROOF. We consider a nonnegative test function ~ E such that

Inequality (3.7)-(3.8)-(3.10) holds while (3.10) is replaced by

We choose ~ such that

and obtain

Taking §, and It as above yields

The inequality (3.18) is transformed into (with 0 = p/K &#x3E; 0)

Then N is the largest integer such that (4.11) holds. Since the discussion occurs
according 1 / (q 1-1 ) &#x3E; (q2 + 1 ) / (q2 -1 ) ~=~ 2q2 / (q2 + 1 ), the conclusion
follows. D
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THEOREM 10. Assume that q, 1 &#x3E; max ( 1, p2 ) and q2 &#x3E; max ( 1, p 1 ) . Then there
exists no solution (u, v) of the differential inequalities (4.2) such that 0

if one of the following assumptions is fulfilled:

PROOF. Using the same techniques as in Theorem 8, the inequality (4.10)
is replaced by

Then (4.11) reduces to

The end of the proof is the same as in Theorem 8, case III or IV. D
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