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1. Introduction

Let (M,ω) be either an m-dimensional compact Kähler manifold or an m-dimensional
compact Kähler orbifold with isolated singularities. By definition, any point p∈M has
a neighborhood biholomorphic to a neighborhood of the origin in Cm/Γ, where Γ is a
finite subgroup of U(m) (this last fact is a consequence of the Kähler property) acting
freely on Cm\{0}. Observe that, when p is a smooth point of M , the group Γ reduces
to the identity. In the case where M is an orbifold, the Kähler form ω lifts, near any of
the singularities of M , to a Kähler form ω̃ on a punctured neighborhood of 0 in Cm. We
will always assume that ω̃ can be smoothly extended through the origin, i.e. that ω is an
orbifold metric.

If we further assume that the Kähler form ω has constant scalar curvature and if
we are given n distinct (smooth) points p1, ..., pn∈M , one of the questions we would like
to address in this paper is whether the blow-up of M at the points p1, ..., pn can still
be endowed with a constant scalar curvature Kähler form. In this direction, we have
obtained the following positive answer:

Theorem 1.1. Let (M,ω) be a constant scalar curvature compact Kähler manifold
or Kähler orbifold with isolated singularities. Assume that there is no nonzero holomor-
phic vector field vanishing somewhere on M . Then, given finitely many smooth points
p1, ..., pn∈M and positive numbers a1, ..., an>0, there exists ε0>0 such that the blow-up
of M at p1, ..., pn carries constant scalar curvature Kähler forms

ωε ∈π∗[ω]−ε2(a1PD[E1]+...+anPD[En]),

where the PD[Ej ] are the Poincaré duals of the (2m−2)-homology classes of the excep-
tional divisors of the blow-up at pj and ε∈(0, ε0).
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If the scalar curvature of ω is not zero then the scalar curvatures of ωε and of ω

have the same sign.

Following a suggestion of LeBrun, we also show that the proof of Theorem 1.1 can
be used to produce zero scalar curvature Kähler metrics provided the Kähler form ω we
start with has zero scalar curvature, and the first Chern class of M is not zero.

Corollary 1.1. Let (M,ω) be a zero scalar curvature compact Kähler manifold or
orbifold with isolated singularities. Assume that there is no nonzero holomorphic vector
field vanishing somewhere on M and that the first Chern class of M is not zero. Then
the blow-up of M at finitely many (smooth) points carries zero scalar curvature Kähler
forms.

Observe that, on manifolds (or orbifolds with isolated singularities) with discrete
automorphism group, there are no nontrivial holomorphic vector fields. Hence, if these
carry a constant scalar curvature Kähler form, they are examples to which our results
do apply.

On the other hand, the assumption is verified also by some manifolds with a continu-
ous family of automorphisms. For example Kähler flat tori can be used as base manifolds
in Theorem 1.1 (but not in Corollary 1.1, since their first Chern class vanish).

Theorem 1.1 and Corollary 1.1 are consequences of a more general construction which
also allows one to desingularize isolated singularities of orbifolds. This desingularization
procedure combined with Theorem 1.1 is enough to prove the following result:

Theorem 1.2. Any compact complex surface of general type admits constant scalar
curvature Kähler forms.

It is worth pointing out that some assumption on the initial manifold (M,ω) is indeed
necessary for either the desingularization or the blow-up procedure to be successful. In
the first place we know from the work of Matsushima [42] and Lichnerowicz [39] that the
automorphism group of a manifold with a Kähler constant scalar curvature metric must
be reductive, hence, for example, the projective plane blown up at one or two points
does not admit any constant scalar curvature Kähler metric (see [8, p. 331]). In the same
spirit let us recall that, given a compact complex orbifold M and a fixed Kähler class
[ω], there is another obstruction for the existence of a constant scalar curvature Kähler
metric in the class [ω]. This obstruction was discovered by Futaki in the 1980s [20], [21],
[22] for smooth metrics and was extended to singular varieties by Ding and Tian [16],
and to Kähler constant scalar curvature metrics by Bando, Calabi [12] and Futaki. This
obstruction will be briefly described in §4, since it will play some role in our construction.
The nature of this obstruction (being a character of the Lie algebra of the automorphism
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group) singles out two different types of Kähler manifolds or Kähler orbifolds with isolated
singularities where to look for constant scalar curvature metrics: those with no nonzero
holomorphic vector fields vanishing somewhere, where the obstruction is vacuous since
they do not have any nontrivial holomorphic vector field, and the others where the
Futaki invariant has to vanish for all holomorphic vector fields. We will say that (M,ω),
a constant scalar curvature Kähler manifold or Kähler orbifold with isolated singularities,
is nondegenerate if it does not carry any nontrivial holomorphic vector field vanishing
somewhere (note that this definition does not depend on the particular Kähler class on
M), and we will say that (M,ω) is Futaki-nondegenerate if the differential of the Futaki
invariant satisfies some nondegeneracy condition (this definition, which will be made
precise in §4, does depend on the Kähler class [ω]).

Note that, thanks to Matsushima–Lichnerowicz’s decomposition of the Lie algebra of
holomorphic vector fields on a manifold which admits a constant scalar curvature Kähler
metric (see [8] and [22]), a constant scalar curvature Kähler manifold is nondegenerate if
and only if every holomorphic vector field is parallel.

Our construction gives a quite precise description of the Kähler forms we obtain on
the blown-up manifold or on the desingularized orbifold. We shall now describe more
carefully the general construction and some of its consequences, but also we shall give
more details about the Kähler forms we construct.

The construction is obtained by choosing finitely many points p1, ..., pn∈M and
replacing a small neighborhood of each point pj , biholomorphic to a neighborhood of
the origin in Cm/Γj , by a (suitably scaled down by a small factor ε) piece of a Kähler
manifold or a Kähler orbifold with isolated singularities (Nj , ηj), biholomorphic to Cm/Γj

away from a compact subset. This generalized connected sum yields a Kähler manifold
or a Kähler orbifold with isolated singularities that we call

Mtp1,εN1tp2,ε ...tpn,εNn

and whose complex structure does not depend on ε>0. We proceed to perturb the Kähler
forms ω and ε2ηj on the various summands, analyzing in §5 the linear part and in §6
the nonlinear part of the constant scalar curvature equation in a given Kähler class.
This leads to a study of nonlinear fourth-order elliptic partial differential equations on
the Kähler potentials. Then, at the end of §6, we “glue” the Kähler potentials of the
perturbed Kähler forms on the different summands to get a Kähler form whose scalar
curvature is constant. The most important condition that ensures this program to be
successful is the following: Each (Nj , ηj) is an “Asymptotically Locally Euclidean” (ALE )
space and ηj is a zero scalar curvature Kähler form.

Since the term ALE has often been used with slightly different meanings, we make
this definition precise. In this paper, an ALE space (N, η) is an m-dimensional Kähler
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manifold or Kähler orbifold with isolated singularities, where N \K is, for some compact
set K, biholomorphic to (Cm\B)/Γ, where B is a closed ball and where Γ is a finite
subgroup of U(m) acting freely on Cm\{0}. The manifold N is assumed to be equipped
with a Kähler metric η which converges to the Euclidean metric at infinity. In the case
where N is an orbifold with isolated singularities, we assume that, near any singularity
modeled after a neighborhood of 0 in Cm/Γ̃, the Kähler form η lifts smoothly to a
neighborhood of 0 in Cm. In addition, we will always assume that there exist complex
coordinates (u1, ..., um) parameterizing N away from a compact set, in which the Kähler
form η can be expanded as

η= i∂∂̄
(

1
2 |u|

2+ϕ̃(u)
)

(1)

at infinity, where the potential ϕ̃ satisfies

ϕ̃(u) =
{

a|u|4−2m+O(|u|3−2m), when m> 3,
a log |u|+O(|u|−1), when m=2.

(2)

Here a∈R and we agree that O(|u|q) is a smooth function whose kth partial derivatives
are bounded by a constant times |u|q−k, for all k>2. The growth (or decay) of the
Kähler potentials for these models is a subtle problem of independent interest [4]. In
given examples, we will see in §7 that these potentials can arise with various orders and
decays, and we will show (Lemma 7.2) that, for zero scalar curvature metrics and under
reasonable growth assumptions on the potential, one can change suitably the potential
in order to get a potential for which (2) holds.

Let us now summarize the assumptions under which our general construction works.
We will assume that:

(i) (M,ω) is an m-dimensional compact Kähler manifold or orbifold with isolated
singularities.

(ii) The scalar curvature of ω is constant.
(iii) (M,ω) is either nondegenerate or is Futaki-nondegenerate.
(iv) Given points p1, ..., pn∈M which might be either singular or regular points ofM ,

let Γj be the finite subgroup of U(m) acting freely on Cm\{0} such that a neighborhood
of pj is biholomorphic to a neighborhood of the origin in Cm/Γj . Each Cm/Γj has an
ALE resolution (Nj , ηj) (which might either be a manifold or an orbifold with isolated
singularities) endowed with a zero scalar curvature Kähler form ηj . Furthermore, we
assume that, away from a compact set, the Kähler form ηj can be expanded as in (1)
with a potential satisfying (2).
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Our main result reads:

Theorem 1.3. Assume that (i)–(iv) are satisfied. Then, there exists ε0>0 and,
for all ε∈(0, ε0), there exists a constant scalar curvature Kähler form ω̃ε defined on
Mtp1,εN1tp2,ε ...tpn,εNn.

As ε!0, the sequence of Kähler forms ω̃ε converges (in C∞ topology) to the Kähler
metric ω, away from the points pj and the sequence of Kähler forms ε−2ω̃ε converges
(in C∞ topology) to the Kähler form ηj, on compact subsets of Nj.

If ω has positive (resp. negative) scalar curvature then the Kähler forms ω̃ε have
positive (resp. negative) scalar curvature.

Moreover, if (M,ω) is nondegenerate then

[ωε] = [ω]+ε2([η1]+...+[ηn]).

Note that, when (M,ω) is Futaki-nondegenerate, we cannot control the Kähler class
where we find the constant scalar curvature Kähler metric.

All the previous results are consequences of this theorem.
For example the blow-up at smooth points is obtained by our generalized connected

sum construction, taking Nj to be the total space of the line bundle O(−1) over Pm−1

(in this case Γj ={id}). The key property (iv) asks for an ALE zero scalar curvature
metric ηj on O(−1) such that [ηj ]=−PD[Ej ] and with appropriate decay at infinity.
These Kähler forms have been obtained by Calabi [11]. When m=2, η is usually referred
to in the literature as Burns metric, and it has been described (and generalized) in a
very detailed way by LeBrun [34]. In higher dimensions, m>3, these metrics have been
generalized by Simanca [53]. The ALE property and the issue of the rate of decay of these
metrics towards the Euclidean metric can be easily derived from these papers. In the 2-
dimensional case, the Kähler form η is explicit and these properties follow at once, while,
in higher dimensions, it can be shown that these metrics have a potential for which
(1) and (2) are satisfied. The analysis of these asymptotic properties will be done in
Lemma 7.1 (Raza [49] has given an alternative proof using toric geometry). In any case,
assumption (iv) is fulfilled and, given smooth points p1, ..., pn∈M and positive constants
a1, ..., an, the existence of such models can be plugged into Theorem 1.3 with all ALE
spaces equal to N=O(−1) over Pm−1 with the Burns–Calabi–Simanca form ηj =ajη.
This leads to the results of Theorem 1.1, which then also holds for Futaki-nondegenerate
manifolds (M,ω), only losing control on which Kähler class is represented.

In §8 we will observe that our gluing procedure decreases the starting scalar cur-
vature. Therefore, if (M,ω) has zero scalar curvature, Theorem 1.3 gives (small) nega-
tive scalar curvature metrics. Nonetheless, if the first Chern class is not zero, LeBrun–
Simanca [37] have shown that there exist nearby Kähler metrics ω+ and ω− of (small)



184 c. arezzo and f. pacard

positive and negative constant scalar curvature, respectively. We can then apply Theo-
rem 1.1 to (M,ω+) and (M,ω−) to get positive and negative Kähler metrics of constant
scalar curvature on the blow-up. We will show in §8 how this implies Corollary 1.1, a
result which also extends to Futaki-nondegenerate manifolds with nonzero first Chern
class. A similar result had been previously proved in complex dimension 2 by Rollin–
Singer [51], who have shown that one can desingularize compact orbifolds of zero scalar
curvature with cyclic orbifold groups, keeping the scalar curvature zero, by solving on
the desingularization the Hermitian anti-selfdual equation.

To prove Theorem 1.2 we need to apply Theorem 1.3 more than once. The idea,
which comes directly from algebraic geometry, is to associate withM a (possibly) singular
complex surface �M , such that M is obtained form �M by desingularizing and blowing up
smooth points a finite number of times. Algebraic geometry [7] tells us that if M is a
surface of general type then �M (which is called the pluricanonical model of the minimal
model of M) satisfies the following properties:

(i) �M is again a complex variety [30];
(ii) �M has only isolated singular points whose local structure groups Γj are in

SU(2) [9];
(iii) the first Chern class of �M is negative, hence it has only a discrete group of

automorphisms [29, Theorem 2.1, p. 82];
(iv) �M admits a Kähler–Einstein orbifold metric [29].

We will explain below how Theorem 1.3 can be used to resolve SU(2) singularities.
Granted this,M is then reobtained from this desingularized manifold after a finite number
of blow-ups at smooth points, and the constant scalar curvature Kähler metric is then
given by Theorem 1.1.

If pj is a singular point (and hence Γj is not the identity group), there is no unique
way to resolve the singularity, and in fact this is an extremely rich area of algebraic
geometry. Once again, whether constant scalar curvature metrics exist or not on such
resolutions depends, according to Theorem 1.3, on the existence of ALE scalar-flat Kähler
resolutions of Cm/Γ. For a general finite subgroup Γ⊂U(m), the existence of such a
resolution is unknown and this prevents us to state general existence results for constant
scalar curvature Kähler metrics. Nonetheless there are large classes of discrete nontrivial
groups for which a good local model is known to exist, looking at Ricci-flat metrics, very
much in the spirit of noncompact versions of the Calabi conjecture.

This is the line started by Tian–Yau [57] and Bando–Kobayashi [5], culminating in
Joyce’s proof of the ALE Calabi conjecture [26]. Joyce himself used this approach to have
good local models for his well-known special holonomy desingularization result. Joyce’s
theorem, recalled in Theorem 7.1, implies that given a Cm/Γ such that a Kähler crepant
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resolution N exists (i.e. a Kähler resolution with c1(N)=0), then N has a Ricci-flat
Kähler metric η which, at infinity, can be expanded as

η= i∂∂̄
(

1
2 |u|

2+ϕ̃(u)
)

for some potential ϕ̃ satisfying

ϕ̃=O(|u|2−2m),

so well inside the range of application of Theorem 1.3. This approach works for example
when Γ=Zm, acting diagonally on Cm [11], and for any finite subgroup of SU(2) and
SU(3), since in this case we know that Cm/Γ has a smooth Kähler crepant resolution.
We shall refer to [50] and [26, §6.4 and Chapter 8], for these results. The 2-dimensional
case can be handled directly also relying on Kronheimer’s result [33].

In light of these results, and when m=2, we can apply Theorem 1.3 when (M,ω)
is a 2-dimensional nondegenerate or Futaki-nondegenerate Kähler orbifold with isolated
singularities, and p1, ..., pn∈M is any set of points with a neighborhood biholomorphic
to a neighborhood of the origin in C2/Γj , where Γj is a finite subgroup of SU(2) acting
freely on C2\{0}. As explained above, this is enough to prove Theorem 1.2.

Let us mention that other local models are known, for example when Γ=Zk is act
ing on Cm by multiplication by a kth root of unity. In this case N is the total space of
the line bundle O(−k) over Pm and the metric has zero scalar curvature but, in general,
is not Ricci-flat. Rollin–Singer [52] have proved the required decay properties on the
corresponding Kähler potential.

Other examples should come from the work of Calderbank–Singer [13]. They have
in fact shown the existence of ALE zero scalar curvature resolutions of all U(2) cyclic
isolated singularities. The only piece of information missing at the moment to use them
in our construction is the behavior at infinity of a Kähler potential associated with these
ALE metrics.

One of the main sources of interest in Kähler metrics with constant scalar curvature
lies in its relation with algebraic geometric properties of the underlying manifold, such
as Chow–Mumford, Tian, or asymptotic Hilbert–Mumford stability [17], [41], [47], [48],
[55]. We know for example, by Mabuchi’s extension of Donaldson’s work [17], [41] that
if an integral class is represented by an extremal Kähler metric, then the underlying
algebraic manifold is asymptotically stable in a sense which depends on the structure of
the automorphism group which preserves the class. In particular if we have a Kähler
manifold with discrete automorphism group, this stability reduces to the classical Chow
stability. Rescaling the Kähler class [ωε] by a factor k to make it integral, our results
have the following corollary.
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Corollary 1.2. Let (M,L) be a polarized compact algebraic manifold of complex
dimension m>2, with discrete automorphism group, and ω a Kähler form with constant
scalar curvature in an integral class. Then all the manifolds obtained by blowing up
any finite set of points are asymptotically Chow-stable relative to the polarizing class
kπ∗[ω]−(PD[E1]+...+PD[En]), where the Ej are the exceptional divisors of the blow-up
and k is sufficiently big.

Note that playing with the weights aj in Theorem 1.1, one gets an abundance of
different polarizing classes for which the above corollary holds (in the above statement
we have used a1=...=an). Moreover similar results for the different versions of stability,
which are known to be implied by the existence of constant scalar curvature Kähler met-
rics, follow from our theorems. In this setting it is interesting to observe that Mabuchi’s
and Donaldson’s results do not apply to Kähler orbifolds, due to the failure of the Tian–
Catling–Zelditch expansion [54]. Nonetheless if a full desingularizing process were to go
through, then we would get the stability of the smooth polarized manifold obtained.

Another important phenomenon concerning constant scalar curvature Kähler metrics
is that they are unique in their class, up to automorphisms. This result was proved for
Kähler–Einstein metrics thanks to the work of Calabi [10] when c160, and Bando–
Mabuchi [6] when c1>0. Uniqueness of constant scalar curvature Kähler metrics was
then proved by Donaldson and Mabuchi [40] (for extremal metrics) in integral classes
(with either discrete or continuous automorphism group), and by Chen [14] for any
Kähler class on manifolds with c160. Recently Chen and Tian [15] have proved it for
any Kähler class, even for extremal metrics. This implies that all the constant scalar
curvature Kähler metrics produced in this paper are the unique such representative of
their Kähler class, up to automorphisms.

Despite these important works, our knowledge of concrete examples is still limited
and mainly confined in complex dimension 2. For example, Hong [24], [25] has proved
the existence of such metrics in some Kähler classes of ruled manifolds, and Fine [19] has
studied this problem for complex surfaces projecting over Riemann surfaces with fibres
of genus at least 2. The only case completely understood, and giving a rich source of
examples, is the one of zero scalar curvature Kähler surfaces thanks to the work of Kim,
LeBrun, Pontecorvo and Singer [27], [28], [35], [38], and the recent results of Rollin–
Singer [51]. Our construction allows one to produce many new constant scalar curvature
Kähler manifolds.

In our construction, it is possible to keep track of the geometric meaning of the
parameter ε. Indeed, for the blow-up construction am−1

j ε2m−2 gives the volume of the
exceptional divisor Ej (up to a universal constant depending only on the dimension).
The role of ε in our results has a direct analogue in Fine–Hong’s papers [19], [24], [25],
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replacing the exceptional divisor with the fiber of the projection onto the Riemann surface
or the projectivized fiber of the vector bundle.

The last sources of interest in our results we would like to mention is that they give
a reverse picture to Tian–Viaclovsky’s [56] and Anderson’s [1] study of degenerations of
critical metrics, in the special case of constant scalar curvature Kähler metrics in (real)
dimension 4. If we look at the sequence of Kähler forms ωε on Mtp1,εN1tp2,ε ...tpn,εNn

seen as a fixed smooth manifold, we get from our analysis that they degenerate in the
Gromov–Hausdorff sense to the orbifold (M,ω), so they provide many examples of the
phenomenon studied in these works.

A natural generalization of these results is to look for gluing theorems for Kähler
metrics with nontrivial automorphisms. The technical difficulties of this extension give
rise to some new interesting phenomena and will be the subject of a forthcoming paper [3].

After the first version of these results were posted in electronic form, Claude Le-
Brun has indicated some implications of our main theorem that we first missed (notably
Corollary 1.1 and Theorem 1.2). We wish to thank him for his suggestions.

2. Gluing the orbifold and the ALE spaces together

We start by describing the Kähler orbifold near each of its singularities and we proceed
with a description of the ALE spaces near infinity.

Let (M,ω) be an m-dimensional Kähler manifold or Kähler orbifold with isolated
singularities. We choose points p1, ..., pn∈M . By assumption, near pj , the orbifold M is
biholomorphic to a neighborhood of 0 in Cm/Γj , where Γj is a finite subgroup of U(m)
acting freely on Cm\{0}. The group Γj depends on the point pj as the subscript is
meant to remind the reader. In the particular case where pj is a regular point of M , the
group Γj reduces to the identity.

We can choose complex coordinates z :=(z1, ..., zm) in a neighborhood of 0 in Cm

to parameterize a neighborhood of pj in M and, in these coordinates, the Kähler form
ω can be expanded as

ω=
i

2

∑
a

dza∧dz̄a+
∑
a,b

Oj,a,b(|z|2) dza∧dz̄b (3)

near 0∈Cm [23]. The complex-valued functions Oj,a,b(|z|2) are smooth functions which
depend on j, a and b, vanish at the origin and whose first order partial derivatives also
vanish at the origin. Even though the coordinates z do depend on pj , we shall not make
this dependence apparent in the notation and we hope that the meaning will be clear
from the context.
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It will be convenient to denote by

Bj,r := {z ∈Cm/Γj : |z|<r},

B∗
j,r := {z ∈Cm/Γj : 0< |z|<r},

B∗

j,r := {z ∈Cm/Γj : 0< |z|6 r},

(4)

the open ball, the punctured open ball and the punctured closed ball of radius r centered
at pj (in the above defined coordinates which parameterize a neighborhood of pj in M).
We define, for all r>0 small enough (say r∈(0, r0)),

Mr :=M \
⋃n

j=1Bj,r. (5)

In other words, Mr is obtained from M by excising small balls centered at the points pj .
The boundaries of Mr will be denoted by ∂B1,r, ..., ∂Bn,r.

As promised, we now turn to the description of the ALE spaces near infinity. We as-
sume that, for each j=1, ..., n, we are given an m-dimensional Kähler manifold or Kähler
orbifold with isolated singularities (Nj , ηj), with one end biholomorphic to a neighbor-
hood of infinity in Cm/Γj . We further assume that the Kähler metric gj , which is asso-
ciated with the Kähler form ηj , converges at order 2−2m towards the Euclidean metric.
These assumptions imply that one can choose complex coordinates u:=(u1, ..., um) de-
fined outside a neighborhood of 0 in Cm to parameterize a neighborhood of infinity in
Nj and, in these coordinates, the Kähler form ηj can be expanded as

ηj =
i

2

∑
a

dua∧dūa+
∑
a,b

Oj,a,b(|u|2−2m) dua∧dūb, (6)

outside a fixed neighborhood of the origin in Cm. Here, the complex-valued function
Oj,a,b(|u|2−2m) is a smooth function which depends on j, a and b, is bounded by a
constant times |u|2−2m and whose kth partial derivatives are bounded by a constant
(depending on k) times |u|2−2m−k. As will be explained in §7, this decay assumption is
a natural one and, under some mild assumption, one can prove that this rate of decay is
indeed achieved.

It will be convenient to denote by

Cj,R := {u∈Cm/Γj : |u|>R},

Cj,R := {u∈Cm/Γj : |u|>R},

(7)

the complement of a closed large ball and the complement of an open large ball in Nj

(in the coordinates which parameterize a neighborhood of infinity in Nj). We define, for
all R>0 large enough (say R>R0),

Nj,R :=Nj\Cj,R, (8)
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which corresponds to the manifold Nj whose end has been truncated. The boundary of
Nj,R is denoted by ∂Cj,R.

We are now in a position to describe the generalized connected sum construction.
For all ε>0 small enough, we define a complex manifold by removing from M small
balls centered at the points pj , for j=1, ..., n, and by replacing them by properly rescaled
versions of the ALE spaces Nj . More precisely, for all ε∈(0, r0/R0), we choose rε∈
(εR0, r0) and define

Rε :=
rε
ε
. (9)

By construction
Mε :=Mtp1,εN1tp2,ε ...tpn,εNn

is obtained by connecting Mrε with the truncated ALE spaces N1,Rε , ..., Nn,Rε . The iden-
tification of the boundary ∂Bj,rε in Mrε with the boundary ∂Cj,Rε of Nj,Rε is performed
using the change of variables

(z1, ..., zm) = ε(u1, ..., um),

where (z1, ..., zm) are the coordinates in Bj,r0 and (u1, ..., um) are the coordinates in
Cj,R0 . Observe that, when all singularities of M are in the set {p1, ..., pn} and the Nj

are all smooth manifolds, then Mε is a manifold, otherwise Mε is still an orbifold.

3. Weighted spaces

In this section, we describe weighted spaces on (M∗, ω), where

M∗ :=M \{pj : j=1, ..., n}, (10)

as well as weighted spaces on each (Nj , ηj).
To begin with, we define the weighted space on (M∗, ω). These weighted spaces are

by now well known and have been extensively used in many connected sum constructions.
Roughly speaking, we are interested in functions whose rate of decay or blow-up near any
of the points pj is controlled by a power of the distance to pj . To make this definition
precise, we first need the following one.

Definition 3.1. Given r̄>0, k∈N, α∈(0, 1) and δ∈R, the space Ck,α
δ (
B∗

j,r̄) is defined
to be the space of functions ϕ∈Ck,α

loc (
B∗
j,r̄) for which the norm

‖ϕ‖Ck,α
δ (
B∗j,r̄) := sup

0<r6r̄
r−δ‖ϕ(r · )‖Ck,α(
Bj,1\Bj,1/2)

is finite.
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Observe that the function
z 7−! |z|δ

′
,

belongs to Ck,α
δ (
B∗

j,r̄) if and only if δ6δ′. This being understood, we have the following
definition.

Definition 3.2. Given k∈N, α∈(0, 1) and δ∈R, the weighted space Ck,α
δ (M∗) is

defined to be the space of functions ϕ∈Ck,α
loc (M∗) for which the norm

‖ϕ‖Ck,α
δ (M∗) := ‖w‖Ck,α(Mr0/2)+

n∑
j=1

‖ϕ|
B∗j,r0
‖Ck,α

δ (
B∗j,r0
)

is finite.

With this definition in mind, we can now give a quantitative statement about the
rate of convergence of a potential associated with ω toward the potential associated with
the standard Kähler form on Cm, at any of the points pj . More precisely, near pj , we
can write

ω= i∂∂̄
(

1
2 |z|

2+ϕj), (11)

where ϕj is a function which lifts smoothly to a neighborhood of 0 in Cm.
We claim that, without loss of generality, it is possible to choose the potential ϕj

in such a way that ϕj∈C4,α
4 (
B∗

j,r0
) (more precisely, ϕj∈C4,α(
Bj,r0) and has all its partial

derivatives up to order 3 vanishing at 0). Indeed, the potential ϕj lifts to a smooth
potential defined on a neighborhood of 0 in Cm. We can then perform the Taylor
expansion of this potential at 0, namely

ϕj =
3∑

k=0

ϕ
(k)
j +ϕ′j ,

where the polynomial ϕ(k)
j is homogeneous of degree k and ϕ′j , together with its partial

derivatives up to order 3, vanish at 0. Obviously ϕ
(0)
j and ϕ

(1)
j are not relevant for

the computation of the Kähler form ω, since ∂∂̄(ϕ(0)
j +ϕ(1)

j )=0, hence we might as well

assume that ϕ(0)
j ≡0 and ϕ

(1)
j ≡0. Next, making use of the fact that the coordinates

(z1, ..., zm) are chosen so that (3) holds, we see that

∂∂̄(ϕ(2)
j +ϕ(3)

j ) =O(|z|2)

but, as ∂∂̄ϕ(2)
j and ∂∂̄ϕ

(3)
j are homogeneous polynomials of degree 0 and 1 respectively,

we conclude that ∂∂̄(ϕ(2)
j +ϕ(3)

j )≡0. Considering ϕ′j instead of ϕj , we have found a
potential which satisfies the desired property.
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Similarly, we define weighted spaces on the ALE spaces (Nj , ηj). This time we are
interested in functions which decay or blow up near the end of Nj at a rate which is
controlled by a power of the distance from a fixed point in Nj . To be more specific, we
first make the following definition.

Definition 3.3. Given 	R>0, k∈N, α∈(0, 1) and δ∈R, the space Ck,α
δ (
Cj,	R) is defined

to be the space of functions ϕ∈Ck,α
loc (
Cj,	R) such that the norm

‖ϕ‖Ck,α
δ (	Cj,	R) := sup

R>	R
R−δ‖ϕ(R · )‖Ck,α(
Bj,2\Bj,1)

is finite.

Again, observe that the function

u 7−! |u|δ
′

belongs to Ck,α
δ (
Cj,	R) if and only if δ′6δ. We can now make the following definition.

Definition 3.4. Given k∈N, α∈(0, 1) and δ∈R, the weighted space Ck,α
δ (Nj) is

defined to be the space of functions ϕ∈Ck,α
loc (Nj) for which the norm

‖ϕ‖Ck,α
δ (Nj)

:= ‖ϕ‖Ck,α(Nj,2R0 )+‖ϕ|	Cj,R0
‖Ck,α

δ (	Cj,R0 )

is finite.

We can now explain the assumption on the rate of convergence at infinity of the
Kähler form ηj toward the standard Kähler form on Cm. We will assume that, away
from a compact set in Nj ,

ηj = i∂∂̄
(

1
2 |u|

2+ϕ̃j

)
, (12)

for some potential ϕ̃j which satisfies

ϕ̃j +aj | · |4−2m ∈C4,α
3−2m(
Cj,R0), (13)

when m>3, and
ϕ̃j−aj log | · | ∈ C4,α

−1 (
Cj,R0), (14)

when m=2, for some aj∈R. As already mentioned in the introduction, this is a rather
natural assumption which is fulfilled in many important examples.

Remark 3.1. We will show in Section 7 that, if one simply assumes that the potential
ϕ̃j associated with ηj satisfies

ϕ̃j ∈C4,α
2−γ(
Cj,R0)

for some γ>0, then one can always replace ϕ̃j by some potential ϕ̃′j satisfying (13)–(14).
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4. The geometry of the equation

The material contained in this section is well known (see for example [22]); we include
it for completeness and to introduce the reader to the objects entering into the proofs
of our results. Recall that (M,ω) is an m-dimensional compact Kähler manifold or a
Kähler orbifold with isolated singularities. We will indicate by g the Riemannian metric
associated with ω, Ricg its Ricci tensor, %g the Ricci form, and s(ω) its scalar curvature.

Following [36] and [8], we want to understand the behavior of the scalar curvature
under deformations of the Kähler form ω, of the form

ω̃ :=ω+i∂∂̄ϕ+β,

where β is a closed (1, 1)-form and ϕ a function defined on M . In local coordinates
(v1, ..., vm), if we write

ω̃=
i

2

∑
a,b

g̃ab̄ dv
a∧dv̄b,

then the scalar curvature of ω̃ is given by

s(ω̃) =−
∑
a,b

g̃ab̄ ∂va∂v̄b log(det(g̃)), (15)

where g̃ab̄ are the coefficients of the inverse of the matrix (g̃ab̄). The following result is
proven in [36] and [8, Lemma 2.158].

Proposition 4.1. The scalar curvature of ω̃ can be expanded in terms of β and ϕ

as

s(ω̃) = s(ω)−
(

1
2∆2

gϕ+Ricg ·∇2
gϕ+∆g(ω, β)+2(%g, β)

)
+Qg(∇2ϕ, β),

where Qg collects all the nonlinear terms and where all the operators on the right-hand
side of this identity are computed with respect to the Kähler metric g.

Being a local calculation, this formula holds for orbifolds with isolated singularities
too. Of crucial importance will be the two linear operators which appear in this formula.
First, we set

Lg :=∆g(ω, · )+2(%g, · ), (16)

which is a linear operator acting on closed (1, 1)-forms, and we also define the operator

Lg := 1
2∆2

g+Ricg ·∇2
g, (17)

which acts on functions.
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For a general Kähler metric it can be very difficult to analyze these operators.
Nevertheless geometry comes to the rescue for a constant scalar curvature metric. Indeed,
in this case we have

Lg =2(∂̄∂#
g )∗(∂̄∂#

g ), (18)

where ∂#
g ϕ denotes the (1, 0)-part of the g-gradient of ϕ. In other words,

∂#
g := (∂̄ · )#g ,

where # is the inverse of
[:TM⊗C−!T ∗M⊗C,

Ξ 7−! g(Ξ, · ).

Using (18) one observes that with any element ϕ∈KerLg one can associate a holomorphic
vector field, namely ∂#

g ϕ, which vanishes somewhere on M . Indeed, just multiply Lgϕ=0
by ϕ and integrate the result over M using (18) to conclude that∫

M

|∂̄∂#
g ϕ|2 dvg =0,

where dvg denotes the volume form associated with g. Therefore, ∂̄(∂#
g ϕ)=0. Moreover,

if g is of constant scalar curvature and ϕ∈KerLg, [36, Proposition 1] proves that Im(∂#
g ϕ)

is a Killing vector field, and that any Killing vector field vanishing somewhere on M

arises in this way. This means that the image of KerLg by ∂#
g is equal to the real

span of the holomorphic vector fields vanishing somewhere whose imaginary part are
Killing. By the Matsushima–Lichnerowicz theorem [39], the complexification of this
space gives the space h0(M) of holomorphic vector fields vanishing somewhere on M , so
that dimR(KerLg)−1=dimC(h0(M)).

We define the nonlinear mapping

Sω: C4,α(M)−! C0,α(M)/R,
ϕ 7−! s(ω+i∂∂̄ϕ) modulo constant.

LeBrun–Simanca applied the implicit function theorem to the map Sω and proved, in
the case of manifolds, the following result which extends immediately to orbifolds with
isolated singularities.

Proposition 4.2. ([36]) Assume that (M,ω) is nondegenerate and further assume
that its scalar curvature s(ω) is constant. Then, the operator

ϕ 7−!DSω|0 ϕ=−Lgϕ

is surjective and has a kernel which is spanned by a constant function.
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Let ψg be the function (up to constants) which gives

%g = %h
g +i∂∂̄ψg

(where %h
g is the harmonic representative for [%g]) and let Ξ∈h(M), where h(M) is the

space of holomorphic vector fields on M . Then, we can define the Futaki invariant

F(Ξ, [ω]) :=
∫

M

Ξψg dvg,

where dvg denotes the volume form associated with g. Recall that h0(M) denotes the
space of holomorphic vector fields which vanish somewhere on M . By definition, (M,ω)
is Futaki-nondegenerate if the “linearization” of the Futaki invariant

DF[ω]: h0(M)−! (H(1,1)(M,C))∗

is injective. It is a standard fact, though not obvious, that F(Ξ, [ω]) only depends on the
Kähler class and does not depend on its representative. On the other hand, if [ω] has a
representative with constant scalar curvature, then F(Ξ, [ω]) vanishes for any Ξ∈h(M).

Now define the nonlinear mapping

Ŝω: C4,α(M)×H1,1(M,C)−! C0,α(M)/R,
(ϕ, β) 7−! s(ω+i∂∂̄ϕ+β) modulo constant,

whereH1,1(M,C) is the space of ω-harmonic (1, 1)-forms. The result of [36] again extends
to orbifolds with isolated singularities, and we have the following result.

Proposition 4.3. ([36]) Assume that (M,ω) is Futaki-nondegenerate and further
assume that its scalar curvature s(ω) is constant. Then, the operator

(ϕ, β) 7−!DŜω|(0,[0])(ϕ, β) =−(Lgϕ+Lgβ)

is surjective.

5. Mapping properties

We construct right inverses for the operator Lg defined in the previous section.

5.1. Analysis of the operators defined on (M∗, ω)

Assume that (M,ω) is a compact Kähler manifold or Kähler orbifold with isolated sin-
gularities and further assume that ω has constant scalar curvature. We first construct a
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right inverse for the operator Lg when m>3 and when (M,ω) is nondegenerate, i.e. when
there are no nontrivial holomorphic vector field vanishing somewhere on M . Next, we
proceed with the proof of the corresponding result when m=2 and with the modifications
which are needed to handle the case where the kernel of Lg is nontrivial but (M,ω) is
Futaki-nondegenerate, i.e. when the linearized Futaki invariant is nondegenerate.

The mapping properties of Lg, when defined between weighted spaces, heavily de-
pend on the choice of the weight parameter. Recall that, by definition, ζ∈R is an indicial
root of Lg at pj if there exists some nontrivial function v∈C∞(∂Bj,1) such that

Lg(|z|ζv) =O(|z|ζ−3) (19)

near 0 (here we have implicitly used the coordinates defined in §2 to parameterize M
close to the point pj).

Let ∆0 denote the Laplacian in Cm with its standard Kähler form. Using (3), it is
easy to check that, near each pj , (19) holds for some function v if and only if

∆2
0(|z|ζv) =O(|z|ζ−3).

Therefore, the set of indicial roots of Lg at pj is equal to the set of indicial roots at
the origin for the operator ∆2

0 defined on Cm/Γj . This later turns out to be included
in Z\{5−2m, ...,−1} when m>3 and included in Z when m=2 (observe that the set of
indicial roots depends on the group Γj). Indeed, let e be an eigenfunction of ∆S2m−1 which
is invariant under the action of Γj and is associated with the eigenvalue γ(2m−2+γ),
where γ∈N, hence

∆S2m−1e=−γ(2m−2+γ)e.

If we identify S2m−1 with the unit sphere in Cm, then

∆2
0(|z|ζe) = (ζ−γ)(ζ−γ−2)(ζ−2+2m+γ)(ζ−4+2m+γ)|z|ζ−4e.

Therefore, we find that γ, γ+2, 2−2m−γ and 4−2m−γ are indicial roots of ∆2
0 at 0.

Since the eigenfunctions of the Laplacian on the sphere constitute a Hilbert basis of
L2(S2m−1), we have obtained all the indicial roots of ∆2

0 at the origin.
It is clear that the operator

L′δ: C
4,α
δ (M∗)−! C0,α

δ−4(M
∗),

ϕ 7−!Lgϕ,

is well defined. It follows from the general theory in [44], where weighted Sobolev spaces
are considered instead of weighted Hölder spaces, and in [43], where the corresponding
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analysis in weighted Hölder spaces is performed (see also [46]) that the operator L′δ has
closed range and is Fredholm, provided δ is not an indicial root of Lg at the points
p1, ..., pn. Under this condition, a duality argument (in weighted Sobolev spaces) shows
that the operator L′δ is surjective if and only if the operator L′4−2m−δ is injective. And,
still under this assumption,

dim KerL′δ =dim CokerL′4−2m−δ. (20)

Using these, we obtain the following result.

Proposition 5.1. Assume that m>3, δ∈(4−2m, 0) and assume that (M,ω) is
nondegenerate so that the kernel of Lg is spanned by a constant function. Then, the
operator

Lδ: C4,α
δ (M∗)×R−! C0,α

δ−4(M
∗),

(ϕ, ν) 7−!Lgϕ+ν,

is surjective and has a 1-dimensional kernel spanned by a constant function.

Proof. We claim that, when δ∈(4−2m, 0), the operator L′δ has a 1-dimensional
kernel spanned by a constant function. Indeed, when δ∈(4−2m, 0), standard regularity
theory implies that the isolated singularities of any element of the kernel of L′δ are
removable, and hence the elements of the kernel of L′δ are in fact smooth functions in M .
Therefore, it follows from our assumption that the kernel of L′δ reduces to the constant
functions. It follows from (20) that the operator L′δ also has a 1-dimensional cokernel,
which is easily seen to be spanned by a constant function since (by (18))∫

M

Lgϕdvg =0,

for any ϕ∈C4,α
δ (M∗). This completes the proof of the result.

When m=2, the above result has to be modified (since 4−2m=0 in this case). We
set

D := Span{χ1, ..., χn},

where χj is a cutoff function which is identically equal to 1 in Bj,r0/2 and identically
equal to 0 in M \Bj,r0 . This time, we have the following result.

Proposition 5.2. Assume that m=2, δ∈(0, 1) and assume that (M,ω) is nonde-
generate so that the kernel of Lg is spanned by a constant function. Then

Lδ: (C4,α
δ (M∗)⊕D)×R−! C0,α

δ−4(M
∗),

(ϕ, ν) 7−!Lgϕ+ν,

is surjective and has a 1-dimensional kernel spanned by a constant function.
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Proof. We keep the notation of the previous proof. Assume that δ>0. Then the
operator L′δ is injective (since we have assumed that the kernel of Lg is spanned by
a constant function and a nonzero function does not belong to C4,α

δ (M∗) when δ>0).
Therefore, when δ>0, δ /∈N, the operator L′−δ is surjective and admits a right inverse,
which, unfortunately, is not unique.

Moreover, when δ∈(0, 1), a relative index argument [44] shows that the dimension of
the kernel of L′−δ and the dimension of the cokernel of L′δ are both equal to n. The kernel
of L′−δ is rather explicit since it is spanned by a constant function and, for j=1, ..., n−1,
the unique function γj which is a solution (in the sense of distributions) of

Lgγj = δpj+1−δpj

and whose mean value over M is 0.
Let us now assume that δ∈(0, 1). Given ψ∈C0,α

δ (M∗), we choose ν∈R to be equal
to the mean value of the function ψ. Since L′−δ is surjective, we have the existence of a
solution of

Lgϕ=ψ−ν,

which belongs to C4,α
−δ (M∗) (this solution is for example obtained by applying to ψ−ν a

given right inverse for L′−δ). It follows from elliptic regularity theory that, near any pj ,
the function ϕ can be expanded as

ϕ(z) = dj +bj log |z|+ϕ̃j(z),

where dj , bj∈R and ϕ̃j∈C4,α
δ (B∗

j,r0
). This implies that the function ϕ is a solution (in

the sense of distributions) of

Lgϕ+ν=ψ−c2
n∑

j=1

bj δpj
, (21)

where c2=2|S3| 6=0. Using the fact that the functions γj are in the kernel of L′−δ, we may
assume without loss of generality that the bj at the different points pj are all equal, by
adding to ϕ a suitable linear combination of the functions γj (this amounts to choosing a
particular right inverse of L′−δ). Integration of (21) over M implies that 0=−c2

∑n
j=1 bj .

Hence, all bj are equal to 0 and, near pj , the function ϕ can be expanded as

ϕ(z) = dj +ϕ̃j(z).

This shows that there exists a choice of the right inverse G′−δ of L′−δ such that, if
ψ∈C0,α

δ−4(M
∗) and if ν is the mean value of ψ, then

G′−δ(ψ−ν)∈C
4,α
δ (M∗)⊕D.

This completes the proof of the result.
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Remark 5.1. Observe that, given ψ∈C0,α
δ−4(M

∗), the constant ν∈R in the equation
Lg ϕ+ν=ψ is equal to the mean value of ψ so that ψ−ν is L2-orthogonal to the kernel
of Lg which is spanned by a constant function.

We turn to the case where the kernel of Lg is not only spanned by a constant
function and we now assume that (M,ω) is Futaki-nondegenerate. The proof relies on
the following result which replaces Proposition 5.1 and whose proof is identical.

Proposition 5.3. Assume that m>3 and that (M,ω) is Futaki-nondegenerate.
Then, for all δ∈(4−2m, 0) the operator

Lδ: C4,α
δ (M∗)×H1,1(M,C)×R−! C0,α

δ−4(M
∗),

(ϕ, β, ν) 7−!Lgϕ+Lgβ+ν,

is surjective and has a kernel which is equal to the kernel of Lg.

Given ψ∈C0,α
δ−4(M

∗), the (1, 1)-form β∈H1,1(M,C) and the constant ν∈R in the
equation Lgϕ+Lgβ+ν=ψ are chosen in such a way that ψ−LMβ−ν is L2-orthogonal
to the elements of the kernel of Lg.

Clearly, in the above statement, one can replace H1,1(M,C) by a finite-dimensional
subspace D⊂H1,1(M,C) whose dimension is equal to dimR(KerLg)−1=dimC(h0). We
claim that one can further replace the space D by a subspace Dr̄0 of the space of closed
(1, 1)-forms which are supported in Mr̄0 , provided r̄0 is fixed small enough. Indeed, near
each pj , any element β∈H1,1(M,C) can be decomposed as

β= dπj .

We truncate the potential πj between 2r̄0 and r̄0 and define

βr̄0 := d((1−χr̄0)πj),

where χr̄0 is a cutoff function identically equal to 0 in M2r̄0 and identically equal to 1 in
each Bj,r̄0 . If β(1), ..., β(b) is a basis of D, we set

Dr̄0 := Span {β(1)
r̄0
, ..., β

(b)
r̄0
}.

When m>3, it is easy to check that, given δ∈(4−2m, 0), the operator

L′δ: C
4,α
δ (M∗)×Dr̄0×R−! C0,α

δ−4(M
∗),

(ϕ, β, ν) 7−!LMϕ+LMβ+ν,

is surjective provided r̄0 is chosen small enough.
In dimension m=2, this result has to be modified. As above we find that, given

δ∈(0, 1), the operator

L′δ: (C
4,α
δ (M∗)⊕D)×Dr̄0×R−! C0,α

δ−4(M
∗),

(ϕ, β, ν) 7−!Lgϕ+Lgβ+ν,

is surjective and has a kernel which is equal to the kernel of Lg.
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5.2. Operators defined on (Nj, ηj)

Assume that (Nj , ηj) is an ALE space with zero scalar curvature Kähler metric ηj .
Further assume that, at infinity, the Kähler form ηj can be expanded as

ηj = i∂∂̄
(

1
2 |u|

2+ϕ̃j(u)
)
,

where ϕ̃j satisfies
∇2ϕ̃j ∈C2,α

2−2m(Cj,R0).

We denote by gj the metric associated with the Kähler form ηj . Again the analysis of
Lgj , when defined between weighted spaces, follows from the general theory developed
in [44] and [43] (see also [46]) and the mapping properties of Lgj , when defined between
weighted spaces, heavily depend on the choice of the weight parameter.

Recall that ζ∈R is an indicial root of Lgj at infinity if there exists some nontrivial
function v∈C∞(∂Bj,1) such that

Lgj (|u|ζv) =O(|u|ζ−5) (22)

near ∞ (we have implicitly used the coordinates defined in §2 to parameterize Nj near
its end).

Again, it is easy to check that (22) holds for some function v if and only if

∆2
0(|u|ζv) =O(|u|ζ−5)

(here one uses the fact that gj =gEucl+O(|z|2−2m) at infinity and hence the coefficients
of the Ricci tensor at infinity are bounded by a constant times |u|−2m). Therefore, the
set of indicial roots of Lgj at infinity is equal to the set of indicial roots at infinity for the
operator ∆2

0 defined on Cm/Γj . Again, this set is included in Z\{5−2m, ...,−1} when
m>3 and is included in Z when m=2 (the set of indicial roots depends on the group
Γj). The proof of this fact follows the analysis done in §5.1.

The operator
L̃δ: C4,α

δ (Nj)−! C0,α
δ−4(Nj),

ϕ 7−!Lgjϕ,

is well defined (again one uses the fact that gj =gEucl+O(|z|2−2m) at infinity). Moreover,
according to [44] and [43] (see also [46]), this operator has closed range and is Fredholm,
provided δ is not an indicial root of Lgj at infinity. Under this condition, a duality
argument (in weighted Sobolev spaces) shows that the operator L̃δ is surjective if and
only if the operator L̃4−2m−δ is injective. And, still under this assumption,

dim KerL̃δ =dim CokerL̃4−2m−δ. (23)

The construction of a right inverse for the operator Lgj relies on the following result
whose proof is essentially borrowed from [32].
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Proposition 5.4. Assume that (Nj , ηj) is a constant scalar curvature ALE Kähler
manifold or Kähler orbifold with isolated singularities. Then, there is no nontrivial so-
lution of Lgjϕ=0, which belongs to C4,α

δ (Nj) for some δ<0.

Proof. Assume that Lgj
ϕ=0 and that ϕ∈C4,α

δ (Nj) for some δ<0. Then, as explained
in §4, the vector field ∂#

gj
ϕ is a holomorphic vector field which tends to 0 at infinity.

Indeed, we have

Lgj =2(∂̄∂#
gj

)∗(∂̄∂#
gj

)

and, multiplying Lgjϕ=0 by ϕ and integrating by parts, we get∫
Nj

|∂̄∂#
gj
ϕ|2 dvgj =0

All integrations are justified because of the decaying behavior of ϕ at infinity which
implies that ϕ∈C4,α

4−2m(Nj) when m>3. Therefore ∂#
gj
ϕ=0. Using Hartogs’ theorem, the

restriction of ∂#
gj
ϕ to Cj,R0 can be extended to a holomorphic vector field on Cm. Since

this vector field decays at infinity, it has to be identically equal to 0. This implies that
∂#

gj
ϕ is identically equal to 0 on Cj,R0 . However, ϕ being a real-valued function, this

implies that ∂ϕ=∂̄ϕ=0 in Cj,R0 . Hence the function ϕ is constant in Cj,R0 and decays
at infinity. This implies that ϕ is identically equal to 0 in Cj,R0 and satisfies Lgjϕ=0 in
Nj . Now, we use the unique continuation theorem for solutions of linear elliptic equations
to conclude that ϕ is identically equal to 0 in Nj .

This being understood, we have the following result.

Proposition 5.5. Assume that δ∈(0, 1). Then

L̃δ: C4,α
δ (Nj)−! C0,α

δ−4(Nj),
ϕ 7−!Lgjϕ,

is surjective and has a 1-dimensional kernel spanned by the constant function.

Proof. It follows from Proposition 5.4 that, when δ′<0, the operator L̃δ′ is injective,
and this implies that L̃δ is surjective whenever δ>4−2m is not an indicial root of Lgj

at infinity.

5.3. Biharmonic extensions

We end this section with the following simple result whose proof follows at once from
the application of the maximum principle. Here, as usual, Γ is a finite subgroup of U(m)
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acting freely on Cm\{0}. We define


BΓ := {z ∈Cm/Γ : |z|6 1},

B∗

Γ := {z ∈Cm/Γ : |z|6 1},

CΓ := {z ∈Cm/Γ : |z|> 1}.

Therefore, when Γ=Γj , we have 
BΓj =
Bj,1, 
B∗
Γj

=
B∗
j,1 and 
CΓj =
Cj,1. Recall that ∆0

denotes the Laplacian in Cm with the standard Kähler form. With this notation in mind,
we have the following result.

Proposition 5.6. Assume that m>3. Given h∈C4,α(∂BΓ) and k∈C2,α(∂BΓ),
there exist biharmonic functions Hi

h,k∈C4,α(
BΓ) and Ho
h,k∈C

4,α
4−2m(
CΓ) such that

∆2
0H

i
h,k =0 in BΓ,

∆2
0H

o
h,k =0 in CΓ,

with
Hi

h,k =Ho
h,k =h and ∆0H

i
h,k =∆0H

o
h,k = k on ∂BΓ.

Moreover,

‖Hi
h,k‖C4,α(
BΓ)+‖Ho

h,k‖C4,α
4−2m(	CΓ) 6 c(‖h‖C4,α(∂BΓ)+‖k‖C2,α(∂BΓ)).

For later use, it will be convenient to get explicit formulas for Hi
h,k and Ho

h,k. We
decompose both functions h and k over eigenfunctions of the Laplacian on the sphere.
Namely

h=
∞∑

γ=0

h(γ)eγ and k=
∞∑

γ=0

k(γ)eγ ,

where the function eγ satisfies

∆S2m−1eγ =−γ(2m−2+γ)eγ

and is normalized so that ‖eγ‖L2 =1. Observe that we only have to consider the eigen-
values corresponding to eigenfunctions which are invariant under the action of Γ. Then,
the functions Hi

h,k and Ho
h,k are explicitly given by

Hi
h,k(z) =

∞∑
γ=0

((
h(γ)− k(γ)

4(m+γ)

)
|z|γ +

k(γ)

4(m+γ)
|z|γ+2

)
eγ (24)

and

Ho
h,k(z) =

∞∑
γ=0

((
h(γ)+

k(γ)

4(γ+m−2)

)
|z|2−2m−γ− k(γ)

4(γ+m−2)
|z|4−2m−γ

)
eγ . (25)
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Proof of Proposition 5.6. The existence of Hi
h,k is clear and the estimate follows at

once. The explicit expression of Ho
h,k provides a direct proof of the estimate of this

function. First observe that elliptic regularity implies that there exists c=c(m)>0 and
N=N(m)∈N such that

‖eγ‖L∞ 6 c(1+γ)N‖eγ‖L2 = c(1+γ)N ,

since we have normalized the functions eγ to have L2-norm equal to 1. In addition,
Cauchy–Schwartz inequality yields

|h(γ)|+|k(γ)|6 c(‖h‖C4,α +‖k‖C2,α),

for some constant which does not depend on γ. Using this information together with
(25), we conclude that

sup
|z|>2

(|z|2m−4|Ho
h,k|+|z|2m−2|∆0H

o
h,k|) 6 c(‖h‖C4,α +‖k‖C2,α),

since the series are absolutely convergent for |z| larger than 1. The maximum principle
applied in {z∈CΓ :|z|∈[1, 2]} then allows us to fill in the gap in the estimate, and we
conclude that

sup
|z|>1

(|z|2m−4|Ho
h,k|+|z|2m−2|∆0H

o
h,k|) 6 c(‖h‖C4,α +‖k‖C2,α).

The estimates for the derivatives of Ho
h,k follow from Schauder’s estimates.

When m=2, the result has to be slightly modified since in this case we can choose

Ho
h,k(z) =h(0)|z|−2+

k(0)

2
log |z|+

∞∑
γ=1

((
h(γ)+

k(γ)

4γ

)
|z|−2−γ− k

(γ)

4γ
|z|−γ

)
eγ . (26)

This time, one can check that

Ho
h,k ∈C

4,α
−1 (
CΓ)⊕Span{log |z|} (27)

and that
‖Ho

h,k‖C4,α
−1 (	CΓ)⊕Span{log |z|} 6 c(‖h‖C4,α(∂BΓ)+‖k‖C2,α(∂BΓ)). (28)

6. Constant scalar curvature Kähler metrics

We set
rε := ε(m−1)/m and Rε :=

rε
ε

= ε−1/m.
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6.1. Perturbation of ω

We will now use the result of the previous sections to perturb ω, the Kähler form on
Mrε

, into infinite families of constant scalar curvature Kähler forms which are defined
on Mrε and which are parameterized by the boundary data of their potentials. We carry
out this analysis when (M,ω) is Futaki-nondegenerate, since this case clearly includes
the nondegenerate case. We consider the perturbed Kähler form

ω̃=ω+i∂∂̄ϕ+β, (29)

where β is a closed (1, 1)-form and ϕ is a function defined on Mrε . The scalar curvature
of ω̃ is given by

s(ω̃) = s(ω)−(Lgϕ+Lgβ)+Qg(∇2ϕ, β), (30)

where the operators Lg and Lg have been defined in (16) and (17), and where Qg collects
all the nonlinear terms. The structure of Qg is quite complicated; however, away from
the support of the elements of Dr̄0 (i.e. in each 
Bj,r̄0), we have Qg(∇2ϕ, β)=Qg(∇2ϕ, 0)
and this operator, only acting on the function ϕ, enjoys the following decomposition:

Qg(∇2ϕ, 0) =
∑

q

Bq,4,2(∇4ϕ,∇2ϕ)Cq,4,2(∇2ϕ)

+
∑

q

Bq,3,3(∇3ϕ,∇3ϕ)Cq,3,3(∇2ϕ)

+|z|
∑

q

Bq,3,2(∇3ϕ,∇2ϕ)Cq,3,2(∇2ϕ)

+
∑

q

Bq,2,2(∇2ϕ,∇2ϕ)Cq,2,2(∇2ϕ),

(31)

where the sum over q is finite, the operators (U, V ) 7!Bq,a,b(U, V ) are bilinear in the
entries and have coefficients which are smooth functions on 
Bj,r̄0 . The nonlinear oper-
ators W 7!Cq,a,b(W ) have Taylor expansions (with respect to W ) whose coefficients are
smooth functions on 
Bj,r̄0 . These facts follow at once from the expression of the scalar
curvature of ω̃ in local coordinates as given in (15).

We would like to solve the equation

s(ω̃) = s(ω)+ν (32)

in Mrε , where ν∈R.
We fix a (large) constant �>0. Assume that we are given boundary data hj∈

C4,α(∂BΓj ) and kj∈C2,α(∂BΓj ), for j=1, ..., n, satisfying

‖hj‖C4,α(∂BΓj
) 6�r4ε and ‖kj‖C2,α(∂BΓj

) 6�r4ε . (33)
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When m>3, we define

Hh,k :=
n∑

j=1

χjH
o
hj ,kj

( ·/rε), (34)

where we have set
h := (h1, ..., hn) and k := (k1, ..., kn),

and where we recall that the cutoff functions χj are identically equal to 1 in Bj,r0/2 and
identically equal to 0 in M \Bj,r0 . When m=2, some modifications are necessary. We
decompose each kj as

kj = k
(0)
j +k⊥j ,

where k(0)
j is a constant function and k⊥j has mean 0 on ∂BΓj . With this decomposition

in mind, we define

Hh,k :=
n∑

j=1

χj

(
Ho

hj ,k⊥j
( ·/rε)+

k
(0)
j

2
log | · |

)
. (35)

We replace in (29) the function ϕ by Hh,k+ϕ. Then, (32) leads to the equation

Lg(Hh,k+ϕ)+Lgβ+ν=Qg(Hh,k+ϕ, β), (36)

which we would like to solve in Mrε
.

Definition 6.1. Given r̄∈(0, r0/2), k∈N, α∈(0, 1) and δ∈R, the weighted space
Ck,α

δ (Mr̄) is defined to be the space of functions ϕ∈Ck,α(Mr̄) endowed with the norm

‖ϕ‖Ck,α
δ (Mr̄) := ‖ϕ‖Ck,α(Mr0/2)+

n∑
j=1

sup
2r̄6r6r0

r−δ‖ϕ|(Bj,r0−Bj,r̄)(r · )‖Ck,α(
Bj,1\Bj,1/2)
.

For each r̄∈(0, r0/2), it will be convenient to define an “extension” (linear) operator

Er̄: C0,α
δ′ (Mr̄)−! C0,α

δ′ (M∗)

as follows:
(i) in Mr̄, we set Er̄(ψ)=ψ;
(ii) in each Bj,r̄\Bj,r̄/2, we set

Er̄(ψ)(z) =
2|z|−r̄
r̄

ψ

(
r̄
z

|z|

)
;

(iii) in each Bj,r̄/2, we set Er̄(ψ)=0.
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It is easy to check that there exists a constant c=c(δ′)>0, independent of r̄∈(0, r0/2),
such that

‖Er̄(ψ)‖C0,α

δ′ (M∗) 6 c‖ψ‖C0,α

δ′ (Mr̄). (37)

We fix
δ ∈ (4−2m, 5−2m).

With the above notation and definitions, we rephrase the equation we would like to
solve as

Lδ(ϕ, β, ν) = Erε(Qg(∇2(Hh,k+ϕ), β)−LgHh,k), (38)

where ϕ∈C4,α
δ (M∗) when m>3, and ϕ∈C4,α

δ (M∗)⊕D when m=2, β∈Dr̄0 and ν∈R have
to be determined. Recall that D and Dr̄0 have been defined in §5.1. Observe that any
solution of (38) is a solution of (36). The advantage of the latter versus the former is
that we can now make use of the analysis of §6.1 which allows us to find Gδ, a right
inverse for the operator Lδ, and rephrase the solvability of (38) as a fixed point problem:

(ϕ, β, ν) =N (ε,h,k;ϕ, β),

where the nonlinear operator N is defined by

N (ε,h,k;ϕ, β) :=Gδ(Erε(Qg(∇2(Hh,k+ϕ), β)−LgHh,k)).

It will be convenient to set

F :=
{
C4,α

δ (M∗)×Dr̄0×R, when m> 3,
(C4,α

δ (M∗)⊕D)×Dr̄0×R, when m=2.

This space is naturally endowed with the product norm.
We first estimate the terms on the right-hand side of (38) when ϕ=0 and β=0, and

next show that N is a contraction on a suitable small ball in F . This is the content of
the following lemma.

Lemma 6.1. There exist c�=c(�)>0, c̃�=c̃(�)>0 and ε�=ε(�)>0 such that, for
all ε∈(0, ε�),

‖N (ε,h,k; 0, 0)‖F 6 c�r
2m
ε . (39)

In addition,

‖N (ε,h,k;ϕ, β)−N (ε,h,k;ϕ′, β′)‖F 6 c̃�r
2
ε‖(ϕ−ϕ′, β−β′)‖F (40)

and

‖N (ε,h,k;ϕ, β)−N (ε,h′,k′;ϕ, β)‖F 6 c̃�r
2m−4
ε ‖(h−h′,k−k′)‖(C4,α)n×(C2,α)n (41)
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provided (ϕ, β, 0), (ϕ′, β′, 0)∈F satisfy

‖(ϕ, β, 0)‖F 6 2c�r2m
ε and ‖(ϕ′, β′, 0)‖F 6 2c�r2m

ε ,

and h:=(h1, ..., hn), h′ :=(h′1, ..., h
′
n), k:=(k1, ..., kn) and k′ :=(k′1, ..., k

′
n) satisfy (33).

Proof. We give a precise proof of the first estimate. The other estimates follow from
similar considerations. In the proof, the constants c(l)� >0 only depend on �.

Step 1. We first estimate LgHh,k. Using the result of Proposition 5.6, together with
(33), we obtain

‖∇2Hh,k‖C2,α
2−2m(Mrε ) 6 c(1)

�
r2m
ε . (42)

Now observe that, by construction, ∇2Hh,k=0 in Mr0 and hence LgHh,k=0 in this set.
Next,

∆2
0Hh,k =0

in each Bj,r0/2\Bj,rε , hence

LgHh,k =
(
Lg− 1

2∆2
0

)
Hh,k

in each such set. Using (3), we conclude that

‖LgHh,k‖C0,α
δ−4(Mrε ) 6 c(2)

�
r2m
ε

and ∫
M

|Erε(LgHh,k)| dvg 6 c(2)
�
r2m
ε .

These two estimates together with the properties of Gδ immediately imply that

‖Gδ(Erε
(LgHh,k))‖F 6 c(3)

�
r2m
ε .

Step 2. We turn to the estimate of Qg(∇2Hh,k, 0). To this end, we use the structure
of Qg as described in (31) together with (42) to get

‖Qg(∇2Hh,k, 0)‖C0,α(Mr̄0/2) 6 c(4)
�
r4m
ε ,

and

‖Erε
(Bq,a,b(∇2+aHh,k,∇2+bHh,k)Cq,a,b(∇2Hh,k))‖C0,α

δ−4(B̄j,r̄0 ) 6 c(4)
�
r8−a−b−δ
ε .

Therefore, we conclude that

‖Erε
(Qg(∇2Hh,k, 0))‖C0,α

δ−4(M
∗) 6 c(5)

�
r6−δ
ε ,
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as well as ∫
M

|Erε
(Qg(∇2Hh,k, 0))| dvg 6 c(5)

�
r2m+2
ε .

The properties of Gδ yield

‖Gδ(Erε(Qg(∇2Hh,k, 0)))‖F 6 c(6)
�
r6−δ
ε .

This completes the proof of the first estimate.
Step 3. We now turn to the derivation of the second estimate. Again, we use the

structure of Qg as described in (31) to get

‖Qg(∇2(Hh,k+ϕ), β)−Qg(∇2(Hh,k+ϕ′), β′)‖C0,α(Mr̄0 ) 6 c(7)
�
r2ε‖(ϕ−ϕ′, β−β′, 0)‖F ,

and, arguing as above, we find that

‖Erε(Qg(∇2(Hh,k+ϕ), β)−Qg(∇2(Hh,k+ϕ′), β′))‖C0,α
δ−4(


Bj,r̄0 ) 6 c(7)
�
r2ε‖(ϕ−ϕ′, 0, 0)‖F .

Therefore, we conclude that

‖Erε(Qg(∇2(Hh,k+ϕ), β)−Qg(∇2(Hh,k+ϕ′), β′))‖C0,α
δ−4(M

∗) 6 c(8)
�
r2ε‖(ϕ−ϕ′, β−β′, 0)‖F ,

as well as∫
M

|Erε(Qg(∇2(Hh,k+ϕ), β)−Qg(∇2(Hh,k+ϕ′), β′))| dvg

6 c(8)
�
r2m−2+δ
ε ‖(ϕ−ϕ′, β−β′, 0)‖F .

Observe that, in order to derive the second estimate, we have implicitly used the fact
that the computation of the scalar curvature only involves second and higher partial
differential of the functions ϕ and ϕ′, and hence, in dimension m=2, the effect of the
elements of D have no influence in 
Bj,r0 \Bj,rε

. The estimate then follows from the
boundedness of Gδ.

Step 4. In order to prove the third estimate, we first observe that

‖Lg(Hh,k−Hh′,k′)‖C0,α
δ−4(Mrε ) 6 c(9)

�
r2m−4
ε ‖(h−h′,k−k′)‖(C4,α)n×(C2,α)n

and ∫
M

|Erε(Lg(Hh,k)−Hh′,k′))| dvg 6 c(9)
�
r2m−4
ε ‖(h−h′,k−k′)‖(C4,α)n×(C2,α)n .

Next, we have

‖Erε
(Qg(∇2(Hh,k+ϕ), β)−Qg(∇2(Hh′,k′+ϕ), β))‖C0,α

δ−4(M
∗)

6 c(10)
�

r2−δ
ε ‖(h−h′,k−k′)‖(C4,α)n×(C2,α)n ,
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as well as∫
M

|Erε
(Qg(∇2(Hh,k+ϕ), β)−Qg(∇2(Hh′,k′+ϕ), β))| dvg

6 c(10)
�

r2m−2
ε ‖(h−h′,k−k′)‖(C4,α)n×(C2,α)n .

The third estimate now follows from the boundedness of Gδ.
This completes the proof of the result.

Reducing ε�>0 if necessary, we can assume that

c̃�r
2
ε 6 1

2 (43)

for all ε∈(0, ε�). Then, the estimates (39) and (40) in the above lemma are enough to
show that

(ϕ, β, ν) 7−!N (ε,h,k;ϕ, β)

is a contraction from

{(ϕ, β, ν)∈F : ‖(ϕ, β, ν)‖F 6 2c�r2m
ε }

into itself, and hence has a unique fixed point (ϕε,h,k, βε,h,k, νε,h,k) in this set. This fixed
point is a solution of (36) in Mrε and hence provides a constant scalar curvature Kähler
form on Mrε .

Remark 6.1. When m=2, ϕε,h,k can be decomposed as

ϕε,h,k = ϕ̂ε,h,k+cε,h,k+
n∑

j=1

χj

k
(0)
j

2
log rε,

where ϕ̂ε,h,k∈C4,α
δ (M∗) and cε,h,k∈D. When m>3, we agree that ϕ̂ε,h,k=ϕε,h,k.

To summarize, we have obtained the following result.

Proposition 6.1. Given �>0, there exist ĉ�>0 and ε�>0 such that, for all ε∈
(0, ε�), for all hj∈C4,α(∂BΓj ) and all kj∈C2,α(∂BΓj ) satisfying (33), the Kähler form

ωε,h,k :=ω+i∂∂̄ϕε,h,k+βε,h,k,

defined on Mrε , has constant scalar curvature equal to

s(ωε,h,k) = s(ω)+νε,h,k.

Moreover, βε,h,k∈Dr̄0 ,

‖ϕ̂ε,h,k|
Bj,2rε\Bj,rε
(rε · )−Ho

hj ,kj
‖C4,α(
Bj,2\Bj,1) 6 ĉ�r

2m+δ
ε

and
|νε,h,k|6 ĉ�r

2m
ε .
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Using (40) and (41), and increasing ĉ� if necessary, one can check that

‖(ϕ̂ε,h,k−ϕ̂ε,h′,k′)|
Bj,2rε\Bj,rε
(rε · )−Ho

hj−h′j ,kj−k′j
‖C4,α(
Bj,2\Bj,1)

6 ĉ�r
2m−4+δ
ε ‖(h−h′,k−k′)‖(C4,α)n×(C2,α)n

(44)

and

|νε,h,k−νε,h′,k′ |6 ĉ�r
2m−4
ε ‖(h−h′,k−k′)‖(C4,α)n×(C2,α)n . (45)

Indeed, if

(ϕ, β, ν) =N (ε,h,k;ϕ, β) and (ϕ′, β′, ν′) =N (ε,h′,k′;ϕ′, β′),

then we can write

(ϕ′−ϕ, β′−β, ν′−ν) = (N (ε,h′,k′;ϕ′, β′)−N (ε,h′,k′;ϕ, β))

+(N (ε,h′,k′;ϕ, β)−N (ε,h,k;ϕ, β)).

Using (40), we get

‖(ϕ′−ϕ, β′−β, ν′−ν)‖F 6 2‖N (ε,h′,k′;ϕ, β)−N (ε,h,k;ϕ, β)‖F ,

and the result follows from (41).

6.2. Perturbation of ηj

Now, we would like to perturb the Kähler form on Nj,Rε into some infinite-dimensional
family of constant scalar curvature Kähler forms which are parameterized by their scalar
curvature and the boundary data of their potentials.

We consider the perturbed Kähler form

η̃j = ηj +i∂∂̄ϕ. (46)

The scalar curvature of η̃j is given by

s(η̃j) =−Lgjϕ+Qgj (∇2ϕ), (47)

since the scalar curvature of ηj is identically equal to 0. Again, the structure of the non-
linear operator Qgj is quite complicated but, in Cj,R0 , it enjoys a decomposition similar
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to the one described in (31). Indeed, using (12)–(15), we see that we can decompose

Qgj (∇2ϕ) =
∑

q

Bq,4,2(∇4ϕ,∇2ϕ)Cq,4,2(∇2ϕ)

+
∑

q

Bq,3,3(∇3ϕ,∇3ϕ)Cq,3,3(∇2ϕ)

+
∑

q

|u|1−2mBq,3,2(∇3ϕ,∇2ϕ)Cq,3,2(∇2ϕ)

+
∑

q

|u|−2mBq,2,2(∇2ϕ,∇2ϕ)Cq,2,2(∇2ϕ),

where the sum over q is finite, the operators (U, V ) 7!Bq,a,b(U, V ) are bilinear in the
entries and have coefficients which are bounded functions in C0,α(
Cj,R0). The nonlinear
operators W 7!Cq,a,b(W ) have Taylor expansion (with respect to W ) whose coefficients
are bounded functions on C0,α(
Cj,R0). Even though these operators do depend on j we
have not made this dependence apparent in the notation.

We would like to solve the equation

s(η̃j) = ε2ν (48)

in Nj,Rε , where ν∈R and where we recall that Rε :=rε/ε.
We fix a constant �>0 large enough and assume that we are given ν∈R and bound-

ary data h∈C4,α(∂BΓj ) and k∈C2,α(∂BΓj ) satisfying

|ν|6 |s(ω)|+1, ‖h‖C4,α(∂BΓj
) 6�R4−2m

ε and ‖k‖C2,α(∂BΓj
) 6�R4−2m

ε . (49)

We decompose
h=h(0)+h⊥,

where h(0) is a constant function and h⊥ has mean 0 on ∂BΓj
, and we define

H̃h,k := χ̃jH
i
h⊥,k( ·/Rε)+h(0) = χ̃j(Hi

h,k( ·/Rε)−Hi
h,k(0))+Hi

h,k(0), (50)

where χ̃j is a cutoff function which is identically equal to 1 in Cj,2R0 and identically
equal to 0 in Nj,R0 .

Replacing in (46) the function ϕ by H̃h,k+ϕ, we see that (45) can be written as

Lgj (H̃h,k+ϕ) =Qgj (∇2(H̃h,k+ϕ))−ε2ν, (51)

which we would like to solve in Nj,Rε . Here ϕ∈C4,α
δ (Nj) for some δ∈R which has to be

determined.
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Definition 6.2. Given 	R>2R0, k∈N, α∈(0, 1) and δ∈R, the weighted space
Ck,α

δ (Nj,	R) is defined to be the space of functions ϕ∈Ck,α(Nj,	R) endowed with the norm

‖ϕ‖Ck,α
δ (Nj,	R) := ‖ϕ‖Ck,α(Nj,2R0 )+ sup

2R06R6	R
R−δ‖ϕ|	Cj,R0\Cj,	R

(R · )‖Ck,α(
Bj,1\Bj,1/2)
.

For each 	R>2R0, it will be convenient to define an “extension” (linear) operator

Ẽ	R: C0,α
δ′ (Nj,	R)−! C0,α

δ′ (Nj)

as follows:
(i) in Nj,R0 , we set Ẽ	R(ψ)=ψ;
(ii) in Cj,	R\Cj,2	R, we set

Ẽ	R(ψ)(u) =
2	R−|u|
	R

ψ

(
	R
u

|u|

)
;

(iii) in Cj,2	R, we set Ẽ	R(ψ)=0.
It is easy to check that there exists a constant c=c(δ′)>0, independent of 	R>2R0,

such that
‖Ẽ	R(ψ)‖C0,α

δ′ (Nj)
6 c‖ψ‖C0,α

δ′ (Nj,	R). (52)

We fix δ∈(0, 1). The equation we would like to solve can be rewritten as

L̃δϕ= ẼRε
(Qgj

(∇2(H̃h,k+ϕ))−Lgj H̃h,k−ε2ν), (53)

where ϕ∈C4,α
δ (Nj) has to be determined. Observe that any solution of (53) is a solution

of (50). Again, we make use of the analysis of §6.2 in order to find a right inverse G̃δ for
the operator L̃δ and rephrase the solvability of (53) as a fixed point problem:

ϕ= Ñj(ε, h, k, ν;ϕ), (54)

where the nonlinear operator Ñ is defined by

Ñ (ε, h, k, ν;ϕ) := G̃δ(ẼRε(Qgj (∇2(H̃h,k+ϕ))−Lgj H̃h,k−ε2ν)).

To keep the notation short, it will be convenient to define

F̃ := C4,α
δ (Nj).

We first estimate the terms on the right-hand side of (54) when ϕ=0, and next
show that Ñ is a contraction from a suitable small ball in F̃ . This is the content of the
following lemma.
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Lemma 6.2. There exist c>0 (independent of �), c̃�=c̃(�)>0 and ε�=ε(�)>0
such that, for all ε∈(0, ε�),

‖Ñ (ε, h, k, ν; 0)‖F̃ 6 cR4−2m−δ
ε . (55)

Moreover, for all ϕ,ϕ′∈F̃ , satisfying

‖ϕ‖F̃ 6 2cR4−2m−δ and ‖ϕ′‖F̃ 6 2cR4−2m−δ
ε ,

we have
‖Ñ (ε, h, k, ν;ϕ)−Ñ (ε, h, k, ν;ϕ′)‖F̃ 6 c̃�R

4−2m−δ
ε ‖ϕ−ϕ′‖F̃ (56)

and

‖Ñ (ε, h, k, ν;ϕ)−Ñ (ε, h′, k′, ν′;ϕ)‖F̃
6 c̃�(R−1

ε ‖(h−h′, k−k′)‖C4,α×C2,α +R4−2m−δ
ε |ν′−ν|)

(57)

provided h, h′, k and k′ satisfy (49).

Proof. The proof is identical to the proof of Lemma 6.1. We give details about the
derivation of the first estimate and leave the two other estimates to the reader.

It follows from the analysis of §5.3, together with (49), that

‖∇2H̃h,k‖C2,α
0 (Nj,Rε ) 6 c(1)

�
R2−2m

ε (58)

and also that
‖∇2H̃h,k‖C2,α

0 (	Cj,2R0\Cj,R0 ) 6 c(1)
�
R3−2m

ε . (59)

We use the fact that, in Cj,2R0 \Cj,Rε
, we can write

LgjHh,k =
(
Lgj− 1

2∆2
0

)
H̃h,k.

Then, (13)–(14) together with (58) yields

‖Lgj H̃h,k‖C0,α
δ−4(Nj,Rε ) 6 cR3−2m

ε .

Next, we use the structure of Qgj , together with (58), to estimate

‖ẼRε(Qgj (∇2(H̃h,k)+ϕ))‖C0,α
δ−4(Nj)

6 c(2)
�
R6−4m

ε .

Finally, we estimate
‖ẼRε(ε

2ν)‖C0,α
δ−4(Nj)

6 c̃R4−2m−δ
ε ,

for some constant c̃>0 which does not depend on ε, since |ν|61+|s(ω)|. This completes
the proof of the estimate.
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Reducing ε�>0 if necessary, we may assume that

c̃�R
4−2m−δ
ε 6 1

2 (60)

for all ε∈(0, ε�). Then, the estimates (55) and (56) in the above lemma are enough to
show that

ϕ 7−! Ñ (ε, h, k, ν;ϕ)

is a contraction from
{ϕ∈ F̃ : ‖ϕ‖F̃ 6 2cR4−2m−δ

ε }

into itself and hence has a unique fixed point ϕ̃ε,h,k,ν in this set. This fixed point is a
solution of (51) in Nj,Rε , and hence provides a constant scalar curvature Kähler form
on Nj,Rε .

We have obtained the following result.

Proposition 6.2. There exist c>0 (independent of �) and ε�=ε(�)>0 such that,
for all ε∈(0, ε�), for all h∈C4,α(∂BΓj ), k∈C2,α(∂BΓj ) and ν∈R satisfying (49), the
Kähler form

ηh,k,ν := ηj +i∂∂̄ϕ̃ε,h,k,ν ,

defined on Nj,Rε
, has constant scalar curvature equal to ε2ν. Moreover,

‖ϕ̃ε,h,k,ν |	Cj,Rε/2\Cj,Rε
(Rε · )−Hi

h,k‖C4,α(
Bj,1\Bj,1/2)
6 cR4−2m

ε ,

for some constant c>0 independent of � and ν.

The important fact is that the last estimate involves a constant times R4−2m
ε , where

the constant does not depend on � provided ε∈(0, ε�).
Using (56) and (57), and increasing c̃� if necessary, one checks that

‖(ϕ̃ε,h,k,ν−ϕ̃ε,h′,k′,ν′)|	Cj,Rε/2\Cj,Rε
(Rε · )−Hi

h−h′,k−k′‖C4,α(
Bj,1\Bj,1/2)

6 c̃�(Rδ−1
ε ‖(h−h′, k−k′)‖C4,α×C2,α +R4−2m

ε |ν−ν′|).
(61)

6.3. Cauchy data matching: the proof of Theorem 1.3

Building on the analysis of the previous subsections we complete the proof of Theorem 1.3.
Granted the results of Propositions 6.1 and 6.2, it remains to explain how to choose

h := (h1, ..., hn) and k := (k0, ..., kn)

satisfying (33), and
h̃ := (h̃1, ..., h̃n) and k̃ := (k̃1, ..., k̃n)
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satisfying (49) in such a way that, for each j=1, ..., n, the function

ψo
j := (ϕj +ϕ̂ε,h,k)(rε · ),

defined in 
Bj,2\Bj,1 (see Proposition 6.1 and Remark 6.1 for the definition of ϕ̂ε,h,k) on
the one hand, and for

ν := s(ωε,h,k)

the function
ψi

j := ε2(ϕ̃j +ϕ̃ε,h̃j ,k̃j ,ν)(Rε · ),

defined in 
Bj,1\Bj,1/2 (see Proposition 6.1) on the other hand, have their partial deriva-
tives up to order 3 which coincide on ∂Bj,1.

Remark 6.2. In dimension 2, a slight modification is necessary since the functions
involve some log terms. In view of (14), we consider the function ψi

j defined by

ψi
j := ε2(ϕ̃j +ϕ̃ε,h̃j ,k̃j ,ν)(Rε · )−ε2aj logRε.

There is no loss of generality in doing so, since changing locally the potential by some
constant function does not alter the corresponding Kähler forms.

In fact, we shall solve the following system of equations

ψo
j =ψi

j , ∂rψ
o
j = ∂rψ

i
j , ∆0ψ

o
j =∆0ψ

i
j and ∂r∆0ψ

o
j = ∂r∆0ψ

i
j (62)

on ∂Bj,1, where r=|v| and v=(v1, ..., vm) are coordinates in Bj,2.
Let us assume that we have already solved this problem. The first identity in (62)

implies that ψo
j and ψi

j as well as all their kth order partial derivatives with respect any
vector field tangent to ∂Bj,1, with k64, agree on ∂Bj,1. The second identity in (62) then
shows that ∂rψ

o
j and ∂rψ

i
j as well as all their kth order partial derivatives with respect

to any vector field tangent to ∂Bj,1, with k63, agree on ∂Bj,1. Using the decomposition
of the Laplacian in polar coordinates, it is easy to check that the third identity implies
that ∂2

rψ
o
j and ∂2

rψ
i
j as well as all their kth order partial derivatives with respect to any

vector field tangent to ∂Bj,1, with k62, agree on ∂Bj,1. And finally, the last identity in
(62) implies that ∂3

rψ
o
j and ∂3

rψ
i
j as well as all their first order partial derivatives with

respect to any vector field tangent to ∂Bj,1, agree on ∂Bj,1.
Moreover, the Kähler form

i∂∂̄
(

1
2 |v|

2+ψo
j

)
,

defined in Bj,2\Bj,1, and the Kähler form

i∂∂̄
(

1
2 |v|

2+ψi
j

)
,
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defined in Bj,1\Bj,1/2, both have the same constant scalar curvature equal to s(ωε,h,k).
This then implies that any kth order partial derivatives of the functions ψo

j and ψi
j , with

k64, coincide on ∂Bj,1.
Therefore, we conclude that the function ψ defined by ψ :=ψo

j in Bj,2\Bj,1 and
ψ :=ψi

j in Bj,1\Bj,1/2 is C4 in Bj,2\Bj,1/2, and is a solution of the nonlinear elliptic
partial differential equation

s
(
i∂∂̄
(

1
2 |v|

2+ψ
))

= s(ωε,h,k) = constant.

It then follows from elliptic regularity theory, together with a bootstrap argument, that
the function ψ is in fact smooth. Hence, by gluing the Kähler metrics ωh,k and ωh̃j ,k̃j

on
the different pieces constituting Mrε , we have produced a Kähler metric on Mrε which
has constant scalar curvature. This will end the proof of Theorem 1.3.

It remains to explain how to find the boundary data

h=(h1, ..., hn), k=(k1, ..., kn), h̃=(h̃1, ..., h̃n) and k̃=(k̃1, ..., k̃n)

which satisfy (62). We will make use of the following result.

Lemma 6.3. Assume that Γ is a discrete subgroup of U(m) acting freely on Cm\{0}.
Then, the mapping

P: C4,α(∂BΓ)×C2,α(∂BΓ)−! C3,α(∂BΓ)×C1,α(∂BΓ),
(h, k) 7−! (∂r(Hi

h,k−Ho
h,k), ∂r∆0(Hi

h,k−Ho
h,k)),

is an isomorphism.

Proof. There are many different ways to prove this result (see [18] for example). Let
us concentrate on the case where m>3, since the case m=2 is essentially the same. We
use the formulas (24) and (25) to compute

∂r(Hi
h,k−Ho

h,k) =
∞∑

γ=0

2(γ+m−1)
(
h(γ)+

k(γ)

2(γ+m)(γ+m−2)

)
eγ

and

∂r∆0(Hi
h,k−Ho

h,k) =
∞∑

γ=0

2(γ+m−1)k(γ)eγ .

It is then easy to see that

P:W 4,2(∂BΓ)×W 2,2(∂BΓ)−!W 3,2(∂BΓ)×W 1,2(∂BΓ),
(h, k) 7−! (∂r(Hi

h,k−Ho
h,k), ∂r∆0(Hi

h,k−Ho
h,k)),
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is well defined and invertible. Recall that the norm in W l,2(∂BΓ) can be taken to be

‖f‖W l,2 =

( ∞∑
γ=0

(1+γ)2l|f (γ)|2
)1/2

if the function f is decomposed as

f =
∞∑

γ=0

f (γ)eγ .

Elliptic regularity theory then implies that the same result is true when the operator is
defined between Hölder spaces.

It will be convenient to observe that ψo
j satisfies

‖ψo
j−Hhj ,kj‖C4,α(
Bj,2\Bj,1) 6 cr4ε , (63)

and also that
‖ψi

j−ε2H̃h̃j ,k̃j
‖C4,α(
Bj,1\Bj,1/2)

6 cε2R4−2m
ε = cr4ε , (64)

for some constant c>0 which does not depend on �, provided ε is chosen small enough,
say ε∈(0, ε�). These two estimates follow at once from the estimates in Propositions 6.1
and 6.2, and also from the choice of rε.

We use the following notation for the rescaled boundary data

(h′, h̃
′
,k′, k̃

′
) := (h, ε2h̃,k, ε2̃k).

Using Lemma 6.3, the solvability of (62) reduces to a fixed point problem which can be
written as

(h′, h̃
′
,k′, k̃

′
) =Sε(h′, h̃

′
,k′, k̃),

and we know from (63) and (64) that the nonlinear operator Sε satisfies

‖Sε(h′, h̃
′
,k′, k̃

′
)‖(C4,α)2n×(C2,α)2n 6 c0r

4
ε ,

for some constant c0>0 which does not depend on �, provided ε∈(0, ε�). We finally
choose �=2c0 and ε∈(0, ε�). We have therefore proved that Sε is a map from

Aε := {(h′, h̃
′
,k′, k̃

′
)∈ (C4,α)2n×(C2,α)2n : ‖(h′, h̃

′
,k′, k̃

′
)‖(C4,α)2n×(C2,α)2n 6�r4ε}

into itself. It follows from (44), (45) and (61) that, reducing ε� if necessary, Sε is a
contraction mapping from Aε into itself for all ε∈(0, ε�). Therefore, Sε has a fixed point
in this set. This completes the proof of the existence of a solution of (62).

The proof of the existence on Mrε of a Kähler form ωε which has constant scalar
curvature is therefore complete. Observe that the scalar curvature of ω and ωε are close,
since the estimate

|s(ωε)−s(ω)|6 cr2m
ε

follows directly from the construction.
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7. Refined asymptotics for ALE spaces

Let us now describe in detail (N, η), the blow-up at the origin of Cm endowed with the
Burns–Calabi–Simanca metric. Away from the exceptional divisor, the Kähler form η is
given by

η= i∂∂̄Am(|v|2),

where v=(v1, ..., vn) are complex coordinates in Cm\{0} and the function s 7!Am(s) is
a solution of the ordinary differential equation

s2(s∂sAm)m−1∂2
sAm+(m−1)s∂sAm−(m−2) =0,

which satisfies Am∼log s near 0. We refer to [53] for a derivation of this equation. It
turns out that, when m=2, the function A2 is explicitly given by

A2(s) = log s+λs,

where λ>0, while in dimension m>3, even though there is no explicit formula for Am,
we have the following simple result.

Lemma 7.1. Assume that m>3. Then the function Am can be expanded as

Am(s) =λs−λ2−m s2−m

m−2
+O(s1−m)

for s>1, where λ>0.

Proof. Define the function ζ by sζ :=s∂sAm−1. A direct computation shows that ζ
solves

(1+sζ)m−1s2∂sζ =(1+sζ)m−1−1−(m−1)sζ.

If in addition we take ζ(0)=1, then ∂sζ remains positive and one can check that ζ is
well defined for all time and converges to some positive constant λ, as s tends to ∞.
This immediately implies that s∂sAm=λs+O(1) at infinity. The expansion then follows
easily.

Changing variables u:=v
√

2λ, we see from the previous lemma that the Kähler form
η can be expanded near infinity as

η= i∂∂̄
(

1
2 |u|

2+log |u|2
)

(65)

in dimension m=2, and as

η= i∂∂̄

(
1
2
|u|2−2m−2 |u|4−2m

m−2
+O(|u|2−2m)

)
(66)

in dimension m>3.
We now recall the following results of Joyce [26] (which is a corollary of his Theo-

rem 8.2.3 in our notation).
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Theorem 7.1. Let Γ be a finite subgroup of SU(m) acting freely on Cm\{0} and
π:X!Cm/Γ a Kähler crepant resolution of Cm/Γ. Then, there exists a Ricci-flat Kähler
metric η such that

η= i∂∂̄
(

1
2 |u|

2+ϕ̃(u)
)

outside a compact neighborhood of π−1(0).
Moreover

ϕ̃(u) = |u|2−2m+O(|u|γ)

for some γ∈(1−2m, 2−2m).

We end this section with a proof of Remark 3.1.

Lemma 7.2. Let ϕ be a potential defined on CΓ such that ϕ∈C4,α
2−γ(
CΓ) for some

γ>0. Further assume that
η := i∂∂̄

(
1
2 |u|

2+ϕ
)

(67)

is a zero scalar curvature Kähler form. Then, the function ϕ can be expanded as

ϕ= a·u+b+c|u|4−2m+O(|u|3−2m) (68)

when m>3, and as
ϕ= a·u+b+c log |u|+O(|u|−1) (69)

when m=2. Here a∈C and b∈R. In particular, the potential ϕ̃:=ϕ−a·u−b satisfies

η := i∂∂̄
(

1
2 |u|

2+ϕ̃
)
.

Proof. The key point is that, since η has zero scalar curvature, the potential ϕ is
a solution of some nonlinear fourth order elliptic differential equation and satisfies some
a priori bound. It is then possible to get “refined asymptotics” for the potential ϕ in the
spirit of what has been done in [31] for constant scalar curvature metrics. These refined
asymptotics are obtained by using a bootstrap argument in Hölder weighted spaces.

Using (15), we see that the scalar curvature of η can be expanded in powers of ϕ as

s(η) = 1
2∆2

0ϕ+QgEucl(∇2ϕ),

where the nonlinear operatorQgEucl collects all the nonlinear terms. We shall now be more
specific about the structure of QgEucl . Indeed, it follows from the explicit computation
of the Ricci curvature that the nonlinear operator QgEucl can be decomposed as

QgEucl(∇2ϕ) =
∑

q

Bq,4,2(∇4ϕ,∇2ϕ)Cq,4,2(∇2ϕ)+
∑

q

Bq,3,3(∇3ϕ,∇3ϕ)Cq,3,3(∇2ϕ),

(70)
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where the sum over q is finite, the operators (U, V ) 7!Bq,a,b(U, V ) are bilinear in the
entries and have coefficients which are bounded functions in C0,α(
CΓ). The nonlinear
operators W 7!Cq,a,b(W ) have Taylor expansion (with respect to W ) whose coefficients
are bounded functions on C0,α(
CΓ).

If we assume that ϕ∈C4,α
2−γ(
CΓ), then we see that

QgEucl(∇2ϕ)∈C0,α
−2−2γ(
CΓ).

Therefore, ∆2
0ϕ∈C

0,α
−2−2γ(
CΓ).

Now, if ∆2
0ϕ∈C

0,α
γ′−4(
CΓ) and ϕ∈C4,α

2−γ(
CΓ) for some γ>0 then, depending on the
value of γ′, the following alternatives hold [43]:

(i) If γ′∈(1, 2), then ϕ∈C4,α
γ′ (
CΓ).

(ii) If γ′∈(0, 1), then

ϕ∈C4,α
γ′ (
CΓ)⊕{u 7! a·u : a∈C}.

(iii) If m>3 and γ′∈(4−2m, 0), then

ϕ∈C4,α
γ′ (
CΓ)⊕{u 7! a·u : a∈C}⊕R.

(iv) If m>3 and γ′∈(3−2m, 4−2m), then

ϕ∈C4,α
γ′ (
CΓ)⊕{u 7! a·u : a∈C}⊕R⊕Span{u 7! |u|4−2m}.

(v) If m=2 and γ′∈(−1, 0), then

ϕ∈C4,α
γ′ (
CΓ)⊕{u 7! a·u : a∈C}⊕R⊕Span{u 7! log |u|}.

Using these alternatives together with a bootstrap argument, we conclude that (68)
and (69) hold. The result then follows by taking ϕ̃:=ϕ−a·u−b.

8. Applications, examples and comments

8.1. Blow-up of smooth manifolds

Theorem 1.1 follows at once from Theorem 1.3 and the analysis of Lemma 7.1 by taking
(Nj , ηj)=(N, ajη), where (N, η) is the blow-up at the origin of Cm endowed with the
Burns–Calabi–Simanca metric, and aj>0. Observe that the points of blow-up p1, ..., pn

and the coefficients a1, ..., an are parameters of our construction.
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A first natural question is to which base smooth manifolds Theorem 1.1 can be
applied! Here, we do not make a comprehensive list but we highlight some large classes
of manifolds:

(i) All the Kähler–Einstein manifolds with discrete automorphism group. This
means any manifold with negative first Chern class and many families of examples of posi-
tive first Chern class [2], [45], [55]. We should note that there are no Futaki-nondegenerate
Kähler–Einstein manifolds except the ones with discrete automorphisms, as observed by
LeBrun–Simanca [36].

(ii) Most of the zero scalar curvature Kähler surfaces which have been proved by
Kim, LeBrun, Pontecorvo, Rollin and Singer [27], [28], [35], [38] to admit such constant
scalar curvature metric. In particular any blow-up of a non Ricci-flat Kähler surface
whose integral of the scalar curvature is non-negative has blow-ups which admit zero
scalar curvature Kähler metrics. Of course, if the number of blow-ups is sufficiently large,
then no continuous families of automorphisms survive and we can apply Theorem 1.3.

(iii) Note that also flat tori of any dimension can be used as base manifolds, since,
despite the presence of continuous automorphisms, there are no nonzero holomorphic
vector fields vanishing somewhere. The Cheeger–Gromoll splitting theorem and the above
remark imply that, on any Kähler Ricci-flat manifold, no nonzero holomorphic vector field
vanishing somewhere exists (see [8, Corollary 6.67]). Therefore to any Kähler Ricci-flat
manifold one can apply Theorem 1.1 (but not Corollary 1.2).

(iv) Some important classes of manifolds on which there are constant scalar curva-
ture Kähler metrics have been provided by Fine [19]. Indeed, he has proved the existence
of Kähler constant scalar curvature metrics on complex surfaces with a holomorphic sub-
mersion onto a Riemann surface Σ with smooth fibres of genus at least 2. If the genus
of Σ is larger than or equal to 2, the automorphism group is indeed discrete.

(v) Another family of examples of constant scalar curvature Kähler manifolds with
discrete automorphism group has been given by Hong [24], [25]. These are ruled manifolds
given by the projectivization of some vector bundles over constant scalar curvature Kähler
manifolds.

(vi) In [36], LeBrun and Simanca gave examples of (and strategies to construct new)
Futaki-nondegenerate manifolds with constant scalar curvature Kähler metrics.

(vii) Recall that the space of holomorphic vector fields on a blown manifold is iso-
morphic to the space of those holomorphic vector fields on the base manifold vanishing
at the blown-up points. Hence our procedure applied to any of the nondegenerate man-
ifolds above gives new nondegenerate manifolds (with constant scalar curvature), so our
procedure can be iterated.

(viii) Riemannian products of nondegenerate Kähler manifolds of constant scalar
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curvature are again nondegenerate Kähler manifolds of constant scalar curvature. By
taking factors with scalar curvature of different signs and scaling, one can then produce
Kähler metrics of any nonzero scalar curvature also on the blow-ups.

In addition to the above examples, one can apply LeBrun–Simanca’s implicit func-
tion argument [36] to get an open subset of the Kähler cone of a fixed complex manifold
and also an open subset of the moduli of complex structures for which constant scalar
curvature Kähler metrics exist, providing a wealth of new examples.

8.2. Zero scalar curvature examples. Proof of Corollary 1.1

Let us now focus on the effect of our construction on the size of the scalar curvature
when we blow up smooth points. Let us denote by π the standard projection from the
blow-up manifold M̃ to the base manifold M . To this end, let us recall that the average
of the scalar curvature of a Kähler metric is a cohomological number given by

s(ω) =
mc1(M)∪[ω]m−1([M ])

[ω]m([M ])
.

Our gluing procedure constructs on M̃ metrics in the Kähler classes

[ωε] =π∗[ω]−ε2(a1PD[E1]+...+anPD[En]),

while the first Chern class behaves like

c1(M̃) =π∗(c1(M))−(m−1)(PD[E1]+...+PD[En]).

Recalling (see [23, p. 475]) that for any j=1, ..., n,

(PD[Ej ])m[M̃ ] = (−1)m−1,

we get

(c1(M̃)∪[ωε]m−1)([M̃ ])= (c1(M)∪[ω]m−1)([M ])−ε2m−2(m−1)
( n∑

j=1

aj

)
and

[ωε]m([M̃ ])= [ω]m([M ])+(−1)m−1ε2m

( n∑
j=1

aj

)
.

The scalar curvature of this metric is hence given by

s(ωε) =m
(c1(M)∪[ω]m−1)([M ])−ε2m−2(m−1)

(∑n
j=1 aj

)
[ω]m([M ])+(−1)m−1ε2m

(∑n
j=1 aj

) .
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It is easily seen that, since aj>0, this gives a decreasing function of ε, for ε close to 0
(and of course it gives the old scalar curvature for ε=0).

The direct application of Theorem 1.1 would then give small negative scalar curva-
ture if (M,ω) had zero scalar curvature. Nonetheless, changing the Kähler class we can
bypass this problem provided the first Chern class of the base orbifold is nonzero, forcing
the scalar curvature to vanish in the gluing procedure.

Corollary 8.1. Any blow-up (at a finite set of smooth points) of a compact smooth
Kähler manifold (or orbifold) of zero scalar curvature of discrete type with nonzero first
Chern class, has a Kähler metric of zero constant scalar curvature.

Proof. Let us denote by ω(0) the zero scalar curvature Kähler metric on the base
manifold M , and by % the harmonic representative of the first Chern class c1(M) (and
hence nonzero by our assumption). LeBrun–Simanca have proved ([37, Corollary 1])
that, if the first Chern class is nonzero, then the automorphism group is discrete and
for |t| sufficiently small (say t∈[−t0, t0]) each Kähler class [ω(0)−t%] contains a metric
ω(t) of constant scalar curvature; this constant is positive for t>0 and negative for t<0.
Moreover, ω(t) depends continuously on t.

We can apply Theorem 1.3 to the continuous family of Kähler forms ω(t). Given
t∈[−t0, t0], this yields the existence of ε0(t)>0 and a family of Kähler metrics ω(t, ε)
of constant scalar curvature for all ε∈(0, ε0(t)). It turns out that the constant ε0(t) is
uniformly bounded from below by some positive constant ε0>0, since ε0(t) only depends
on the C2,α norm of the coefficients of the Kähler form ω(t), and these are uniformly
bounded as t∈[−t0, t0]. We claim that, reducing ε0 if necessary, ω(t, ε) depends contin-
uously on t. This easily follows from the fact that the Kähler forms on the blown-up
manifold are obtained by solving nonlinear problems using a fixed point theorem for a
contraction mapping. Therefore, they depend continuously on any of the parameters of
our construction such as the Kähler class, the parameter ε, the points which are blown
up, the coefficients aj>0, etc.

Let us then look at the family of constant scalar curvature metrics ω(t, ε). We
know that, reducing ε0 if necessary, ω(−t0, ε) has constant negative scalar curvature
while ω(t0, ε) has positive scalar curvature, for all ε∈(0, ε0). Moreover s(ω(t, ε)) de-
pends continuously on t. Therefore, for each ε∈(0, ε0), there exists tε∈[−t0, t0] such that
s(ω(tε, ε))=0 as claimed.

Note that the above corollary can be applied to most of the examples described in
(ii) and (viii) in §8.1.
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8.3. Desingularization of orbifolds

More delicate is the situation for singular orbifolds, since few examples even of Kähler–
Einstein orbifolds are known. As mentioned in the introduction, the clearest picture is
in complex dimension 2 and 3, where, thanks to the work of Kronheimer [33] and Joyce
[26], we know how to handle SU(m) singular points. We summarize this in the following
result.

Corollary 8.2. Let (M,ω) be a nondegenerate compact m-dimensional constant
scalar curvature Kähler orbifold with m=2 or m=3 and isolated singularities. Let
p1, ..., pn∈M be any set of points with a neighborhood biholomorphic to a neighborhood
of the origin in Cm/Γj, where Γj is a finite subgroup of SU(m). Let further Nj be a
Kähler crepant resolution of Cm/Γj (which always exists; see [7] for m=2 and [50] for
m=3), and ηj given by Theorem 7.1.

Then, there exists ε0>0 such that, for all ε∈(0, ε0), there exists a constant scalar
curvature Kähler form ωε on Mtp1,εN1tp2,ε ...tpn,εNn.

Moreover,
(i) if ω has positive (resp. negative) scalar curvature, then ωε has positive (resp.

negative) scalar curvature;
(ii) if c1(M) 6=0 and ωM has zero scalar curvature, then ωε can be chosen to have

zero scalar curvature too.

The range of applicability of Corollary 8.2 is very large, even if we look just at
Kähler–Einstein orbifolds of nonpositive scalar curvature, thanks to Aubin–Yau’s solution
of the Calabi conjecture (which holds in the orbifold category). In fact, we can use it to
prove the following general result mentioned in the introduction.

Corollary 8.3. Any compact complex surface of general type admits constant
scalar curvature Kähler metrics.

The proof of the above result requires some notions from algebraic geometry which
can be found for example in [7] and which we quickly recall for the reader’s convenience.

First of all, a complex surface M is called minimal if it does not contain a smooth
rational curve of self-intersection −1. A fundamental result in complex surface theory
(the Enriques–Castelnuovo criterion; see [23, p. 476]) says that any such curve is in fact
the exceptional divisor of a blow-up at a smooth point of a smooth surface. Moreover,
one can apply the above procedure (“blowing down”) a finite number of times to be left
with a minimal surface called a minimal model of M .

From a different perspective, one can study an algebraic surface by looking at its
images into projective spaces, via maps given by evaluating holomorphic sections of line
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bundles as in the celebrated Kodaira’s embedding theorem. In particular, if KM is the
canonical line bundle of M , one has (rational) maps φK⊗k

M
from M into P(H0(M,K⊗k

M )).
These in general may not be defined at points which annihilate all holomorphic sec-
tions of K⊗k

M , but for minimal surfaces of general type they are indeed globally defined
holomorphic maps for k>5 (see [7, p. 220]).

A complex surface M is said to be of general type if dim(φK⊗k
M

(M))=2 for k large
enough. It is not hard to see that all minimal models of a fixed surface of general type are
isomorphic (see [7, Proposition 4.6]). If M is a minimal surface of general type, Kodaira
[30] has proved that φK⊗k

M
is an embedding away from smooth rational curves of self-

intersection −2, and Brieskorn [9] has proved that the image of these curves are isolated
singular points of the image surface with local structure groups Γj , with Γj⊂SU(2). We
are now in position to give the proof of the above corollary.

Proof of Corollary 8.3. Let us first assume that M is a minimal complex surface of
general type, and suppose k is chosen big enough to guarantee that the image of the
pluricanonical rational map φK⊗k

M
is an embedding away from the set of (−2)-curves of

M , which get collapsed to points, giving the singularities of φK⊗k
M

.

Kobayashi [29] has proved that φK⊗k
M

(M) has a Kähler–Einstein orbifold metric of
negative scalar curvature, extending Aubin’s proof of the Calabi conjecture. Moreover
c1(M)<0 implies, as in the smooth case, the existence of only a discrete group of auto-
morphisms.

As already observed, being the structure groups of the singularities in SU(2), we
have an ALE local model with the required decay at infinity. We can then apply Theo-
rem 1.3. The complex manifold produced by our gluing construction is easily seen to be
minimal, hence getting a constant negative scalar curvature Kähler metric on the mini-
mal resolution Y of M . But M is already a minimal model of M , therefore the minimal
model of M , and so M is in fact Y proving our result.

If M is not minimal, we apply the previous discussion to its minimal model Y ,
which is a complex surface with discrete automorphism group, to get a Kähler constant
negative scalar curvature metric. Recalling that M is obtained from Y applying a finite
number of blow-ups, Theorem 1.1 (possibly applied more than once in case one needs
to blow up at a point on the exceptional divisor of the previous blow-up, and of course
blowing up preserves the property of having only discrete automorphism groups) gives
the conclusion.

Going back to the problem of resolving singularities in the Kähler constant scalar
curvature setting, in dimension greater than 3 only a few examples can be dealt with at
the moment.
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Other types of singularities which can be dealt with are, for example, those locally
modeled on Cm/Zm, where Zm acts diagonally on Cm, by multiplication by a fixed mth
root of unity ζ=e2πi/m. Putting r=(|z1|2+...+|zm|2)1/2, Calabi [11] defined a Kähler
potential on X\{exceptional divisor} by

ϕ=(r2m+1)1/m+
1
m

m−1∑
j=0

ζj log[(r2m+1)1/m−ζj ].

We can then observe that η= 1
2 i∂∂̄ϕ is indeed a Kähler form which extends through the

exceptional divisor, and is ALE, Ricci-flat and asymptotic to Cm/Zm. We can then glue
(X, η) to any smooth Kähler orbifold (M,ω) of constant scalar curvature, provided the
Futaki obstructions vanish as described in §4.

The above example has been recently generalized by Rollin–Singer [52]. They have
shown that ifG={1, λ, ..., λk−1}, λ=e2πi/k, then Cm/G has an ALE scalar-flat (in general
not Ricci-flat) Kähler resolution whose metric decays at infinity of order 2−2m.

These last examples can be used to produce compact orbifolds by taking global
quotients of some of the smooth manifolds described in the first section (for example tori
or Kähler–Einstein manifolds with negative first Chern class or with positive first Chern
class and discrete automorphism group containing a group as above).
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