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Blowup dynamics of coherently driven polariton condensates: Experiment
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We report an experimental verification of the recent prediction that sharp transitions between steady states

in multistable cavity-polariton systems are mediated by intermode parametric scattering that triggers the

accumulation of energy and, hence, lowers the threshold at the cost of extending the transition latency period

[S. S. Gavrilov, Phys. Rev. B 90, 205303 (2014)]. The time-resolved measurements are performed using a high-Q

GaAs microcavity pumped slightly above the lower polariton level at normal incidence.
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I. INTRODUCTION

Optical multistability in cavity-polariton systems attracts

much attention as it enables one to implement controllable

ultrafast all-optical switches of microcavities on the time scale

of several picoseconds [1–11]. Cavity polaritons are composite

bosons formed by strongly coupled excitons and cavity

photons [12]. Polaritons form a macroscopically coherent state

under resonant and coherent optical driving. Due to the exciton

component, they feature mutual repulsion that involves a con-

siderable blueshift of their resonance energy with increasing

density. As a result, the system of cavity polaritons can be

considered as a nonequilibrium Bose condensate and described

using the Gross-Pitaevskii equations, similar to condensates

of cold atoms and, generally speaking, to macroscopically

coherent states in superconductors, yet both the finite lifetime

of polaritons and external driving should be explicitly taken

into account [13].

Polariton multistability occurs when the pump frequency

ωp exceeds the polariton level ω [1,2,14–20]. Its physical

origin stems from the positive feedback loop between the

amplitude and effective resonance frequency, so that on

reaching the threshold, the field grows until pump detuning

D = ωp − ω > 0 gets virtually compensated due to the

resonance-shift effect. Such a system bears two steady-state

branches under a circularly polarized pump when only one of

the two polariton spin components is excited. This is the case

discussed in our current study; note, however, that in a general

case, polariton condensates can exhibit a richer multistable

behavior due to the spin anisotropy of the polariton-polariton

interaction [3,21].

The one-mode “bistable” dependence of the cavity-field

intensity |ψ |2 on pump intensity has the form of an S-shaped

curve. In general, the one-mode approximation can be inappro-

priate to describe system dynamics; in such cases, the many-

mode Gross-Pitaevskii equations were solved numerically in

a number of works. Nevertheless, it was usually accepted that

under plane-wave excitation at normal incidence, the threshold

for the transition to the upper state corresponds to the right

turning point of the S-shaped curve where its lower steady-state

branch terminates [1–8,15]. Provided the polariton decay rate

γ is much smaller than D, the critical cavity-field intensity

in the turning point amounts to |ψ |2 ≈ D/3V , where V

is the polariton-polariton interaction constant [2]. However,

recently it was theoretically found that the transition to the

upper one-mode state must start upon reaching the parametric

scattering threshold |ψ |2 ≈ γ /V , even at γ ≪ D [20]. Instead

of an immediate jump into the high-field state, under constant

pumping the field is gradually accumulated in scattered modes

and, only when it becomes sufficiently strong, it induces a

sharp jump in the driven mode. Thus, the transition has a

latency period between reaching the threshold intensity and

the sharp jump in the cavity field. Its duration can largely

exceed the polariton lifetime in a case when γ ≪ D and

the pump power is comparatively weak. This effect was not

previously considered in polariton physics, even in the context

of essentially many-mode Gross-Pitaevskii equations. Similar

scenarios that imply a hyperbolic growth, so that under fixed

external conditions an arbitrarily “slow” dynamics ends up

with an explosive amplification, are known as regimes “with

blowup” [22].

This study is devoted to an experimental verification

of the blowup dynamics in bistable polariton condensates

under coherent optical driving. The evolution is studied with

momentum-space and time resolutions under 200-ps-long

pump pulses acting at normal incidence. In our system,

Q � 104 and D/γ � 10. We have found that near the

threshold, the sharp jump in the cavity-field intensity is

delayed by about 50 ps with respect to the pulse maximum.

No such delay is observed in the linear regime in which

the time shape of the field transmitted through the cavity

merely reproduces external driving. Above the threshold,

scattered modes with different momenta are found to spring

up within the time interval between reaching the thresh-

old and the jump in the cavity field. The experimental

results are reproduced numerically using the Gross-Pitaevskii

equations. We deduce that our observations reveal an en-

ergy accumulation process and confirm the conclusions of

Ref. [20].

The paper is organized as follows. In Sec. II, we summarize

the theoretical predictions and demonstrate them numerically

with 200 ps pump pulses. In Sec. III A, the sample and

experimental setup are described, and in Sec. III B, we compare

the experimental and theoretical data. Section IV contains

concluding remarks.
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II. THEORETICAL AND NUMERICAL EXPECTATIONS

According to Ref. [20], transitions between steady states

in a bistable polariton system are mediated by intermode

parametric scattering. In high-Q cavities, the scattering

threshold V |ψ |2 = γ can be much smaller than that of a

“one-mode bistable transition.” The scattered states are fed

by the externally pumped mode that breaks up into various

signal/idler pairs on reaching the threshold. This, however,

does not prevent further growth of the pumped mode even

under constant excitation conditions. The positive feedback

loop between the pumped mode and scattered states leads to a

gradual accumulation of energy and then to a sharp jump into

the high-field state in which the polariton resonance is shifted

up to the pump frequency, so that eventually V |ψ |2 increases

from ∼γ to ∼D. Formally, the amplification factor D/γ can

be arbitrarily large, yet the jump is then markedly delayed

in time with respect to the moment of reaching the threshold

density. Such a delay is the cost paid for the drastic lowering

of the threshold pump power compared to the threshold for

the strictly one-mode condensate that is incapable of a “slow”

energy accumulation.

The above scenario is found [20] to be a general property of

dynamical systems governed by the Gross-Pitaevskii equation,

i
∂ψ

∂t
= [ω(−i∇) − iγ + V |ψ |2]ψ + f (t). (1)

Here both the condensate amplitude (ψ) and driving field (f )

are complex-valued functions of time and coordinates within

the two-dimensional active cavity layer. |f |2 has the meaning

of the pump intensity. Function ω = ω(−i∇) corresponds to

the dispersion law for the low-polariton branch, which in the

momentum space reads

ω(k) =
ωC(k) + ωX

2
−

1

2

√

[ωC(k) − ωX]2 − R2, (2)

where k is the in-plane wave number, ωX,C are the frequencies

of the exciton and the cavity photon, respectively, and R is the

Rabi splitting. In its turn,

ωC(k) = ωC(0) +
�k2

2mC

, mC =
ǫ�ωC(0)

c2
. (3)

Exciton effective mass mX is much larger than mC , so the

k-space dependence of ωX can be neglected at small k.

We also neglect the k dependences of γ and V on the

assumption that the pump acts far below the exciton level

and [ωp − ω(k = 0)] ≪ ωX − ωp.

The one-mode stationary response function (|ψ |2 vs space-

and time-independent |f |2) has the form of an S-shaped curve

[1,2] (Fig. 1). Under pumping at k = 0 and positive frequency

mismatch D = ωp − ω(k = 0) > γ , the parametric scattering

threshold reads

F 2
P =

γ

V
[(D − γ )2 + γ 2]. (4)

That is the value of pump intensity |f |2 at which the driven

polariton mode (k = 0) starts breaking up into “signals” (s) and

“idlers” (i) obeying phase-matching conditions ki = −ks and

ωs = ωi = ωp [20,23,24]. On the other hand, the one-mode
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FIG. 1. (Color online) One-mode solutions of Eq. (1) with

f (k,t) = Fδ(k)e−iωp t , depending on F 2. Circles indicate the scat-

tering threshold [F = FP , Eq. (4)] and bistability turning point

[F = FB , Eq. (5)]. The solutions are obtained at �γ = 0.028 meV

and �D = 0.9 meV.

bistability turning point is [2]

F 2
B =

2

27V
[D3 + 9Dγ 2 + (D2 − 3γ 2)3/2]. (5)

The bistability per se exists so long as D >
√

3γ ; the middle

branch with a negative slope is asymptotically unstable.

Renormalization of the polariton dispersion law with

increasing |ψ | is illustrated in Fig. 2. The signal and idler

eigenfrequencies read [1,13–15,20]

ω̃(k) = ωp − iγ ±
√

[ωp − ω(k) − 2V |ψ2|]2 − (V |ψ2|)2.

(6)

They tend to the bare dispersion law ω(k) (2) and its idler

counterpart 2ωp − ω(−k) at ψ → 0 [Fig. 2(a)]. The scattering

signal positions ks are given by their intersections at ω =
ωp. Decay rates Im ω̃(ks) turn to zero for a certain ks in the

threshold point V |ψ |2 = γ and, accordingly, the k dependence

of Re ω̃ acquires a flat region near ks . With further increasing

FIG. 2. (Color online) (a) Unperturbed polariton dispersion ω(k)

(solid line) and its “idler” counterpart 2ωp − ω(−k) (dotted line).

Frequencies are reckoned from the pump mode. (b)–(d) Renormalized

“signal” and “idler” dispersion branches at V |ψ2|/D = 0.2, 0.4, and

1.0, respectively. Stars indicate the pump position. Intersections of

signal and idler branches within flat regions in (b) and (c) comprise

unstable modes. The parameters agree with those in Fig. 1.
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|ψ |, the instability region extends in the k space towards k = 0

[Fig. 2(b)]. The range of |ψ | in which the k = 0 mode falls

within the instability region [as in Fig. 2(c)] corresponds to

the solutions with a negative slope in Fig. 1. Finally, Fig. 2(d)

makes it clear that the intermode scattering can no longer

occur on the upper branch of the S curve. Thus, bistability and

parametric scattering stem from the common physical origin

and are closely related to each other.

To compare the solutions of Eq. (1) with the experiment,

we chose a pump source taking the form

f (k,t) = F
e−k2/2σ 2

K

cosh(−t/τ )
e−iωp t + aξ (k,t), (7)

where τ and σ−1
K determine the pulse duration and the size

of the pump spot, respectively. The second term, ξ (k,t),

represents a stochastic Langevin force that is a white noise,

i. e., 〈ξ (k,t)〉 = 0 and 〈ξ (k,t)ξ (k′,t ′)〉 = δ(k − k′)δ(t − t ′).
Equation (1) is solved on a 81 × 81 grid in the k space with

−2.5 � kx,y � 2.5 μm−1. The noise phases arg ξ (k,t) change

randomly each 50 fs at each grid node k. The noise amplitude

a is such that the noise term alone would provide a weak

steady-state population V |ψ |2 � 10−5γ for each k.

The chosen parameters are dielectric constant ǫ = 12.5

(corresponds to GaAs), photon-exciton frequency mismatch

�[ωC(0) − ωX] = −5 meV, Rabi splitting �R = 10.5 meV,

low-polariton decay rate �γ = 0.028 meV, and pump fre-

quency detuning �D ≡ �[ωp − ω(k = 0)] = 0.9 meV. The

units for ψ and f are fixed by condition V = 1, so that |ψ |2
has the dimension of frequency and the meaning of resonance

blueshift.

Consider the evolution of the polariton condensate under

pulsed excitation with finite τ and only one macro-occupied

spatial harmonic (σK = 0). Such a system exhibits fast jumps

in |ψ | when F 2 exceeds turning point (5). Decreasing F

involves extension of the latency period that becomes infinitely

long at F → FP . Thus, the shorter is pulse duration τ , the

larger is the effective threshold pump intensity Wthr ≡ F 2
thr

at which a jump in |ψ | gets observable within the pulse.

Our calculations show that at τ = 100 ps and σK = 0 and

the chosen noise parameters, the threshold amounts to F 2
thr ≈

2.5F 2
P , which is approximately twice smaller than F 2

B ≈ 5F 2
P .

Figure 3 shows the dynamics of the driven mode (k =
0) and scattered modes at τ = 100 ps and different peak

pump intensities W ≡ F 2. The driven mode intensity I0(t) =
|ψ(k = 0,t)|2 is divided by W , so its time dependences repeat

each other in the linear regime (at t � 50 ps) [Fig. 3(a)].

Figure 3(b) shows the ratio between IS(t) =
∑

k |ψ(k,t)|2 at

0.4 < |k| < 1.7 μm−1 and I0(t). This ratio reflects the effect of

the intermode parametric scattering. Note that at |f | = FP , the

scattering signals are located at |k| ≈ 1 μm−1, in accordance

with the dispersion law.

At W = 0.3Wthr, the system is in the linear regime, so that

I0(t) merely reproduces the pump shape. Immediately above

parametric scattering threshold FP , the signals still cannot

get strong enough to provide a visible feedback to the driven

mode within the pulse. By contrast, at W = Wthr ≈ 2.5F 2
P ≈

0.5F 2
B , the integral signal intensity reaches a “macroscopic”

level by t = 0 and, at the same time, the driven mode shows

a superlinear growth with increasing |f (t)|. Thus, there is a
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FIG. 3. (Color online) Solutions of Eq. (1) under pumping (7)

with τ = 100 ps, σK = 0, and different peak intensities W ≡ F 2.

(a) Intensities of the driven mode I0(t) = |ψ(k = 0,t)|2 divided by

W . The pump shape is shown by the thick line. (b) Ratios between

total intensity IS of scattered modes at 0.4 < |k| < 1.7 μm−1 and

I0(t).

positive feedback loop between the driven mode and the set

of scattered modes. Immediately after t = 0, they grow much

more rapidly compared to the decrease of the pump intensity.

By t ≈ 90 ps, the system reaches the “blowup point” [20] in

which the upper steady state becomes the only attractor, and

I0 grows explosively. The polariton resonance is blueshifted

up to the pump frequency, so scattering becomes no longer

possible in accordance with the phase-matching conditions.

Thereafter, the signals at k �= 0 reduce down to the noise level

and the system resides in the upper one-mode state until the

pump falls below the backward turning point of the S curve,

|f |2 ≈ 2γ 2D/27V , where the system experiences backward

transition (t ≈ 300 ps).

Both the blowup time and ratio IS/I0 decrease with

increasing W . Eventually, at F 2 > F 2
B , no scattered states are

needed for the transition to happen.

In the following section, we compare the theoretical

estimates with the experiment. To this end, we have to take

into consideration a finite size of the pump spot (σK > 0).

III. EXPERIMENT

A. Sample and setup

The microcavity sample is grown by molecular-beam

epitaxy on top of a GaAs substrate. The cavity top and

bottom mirrors consist of 32 and 36 Al0.2Ga0.8As/AlAs

Bragg reflectors, respectively. The Q factor exceeds 104.

Four 7-nm-thick GaAs quantum wells separated by 4 nm

AlAs barriers are within the λ/2 active layer, and eight

other quantum wells are in the neighboring AlAs layers. The

resulting Rabi splitting is 10.5 meV. The detuning between
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the cavity and exciton modes �[ωC(0) − ωX] varies along

the cavity plane from −8 meV to 0; at the studied location,

it equals −5 meV. A 700 × 300 μm window is etched out

of the GaAs substrate using citric acid/hydrogen peroxide

selective etch in order to perform transmission measurements.

The decay rate of the low-polariton states obtained from the

time-resolved transmission measurements is γ ∼ 0.02 meV,

while the inhomogeneously broadened spectra measured under

1 ps pulses reveal the full width at half maximum (FWHM) of

about 0.12 meV near k = 0.

The sample is placed into an optical cryostat at T ∼
10 K. The cavity is excited slightly above the low-polariton

resonance (D ≈ 1 meV) by circularly polarized optical pulses

generated by a mode-locked Ti:sapphire laser with a repetition

rate of 80 MHz and pulse duration of 200 ps. The laser

beam is directed along the normal to the cavity plane and

focused into a 45 μm (FWHM) spot on the sample. The

optical pulses transmitted through the cavity are detected by a

Synchro Scan streak camera with a time resolution of 3 ps and

angle resolution of 1◦ in the x direction (�kx ∼ 0.1 μm−1). In

the y direction, the signal is integrated over 3◦ (−0.2 � ky �
0.2 μm−1).

The modeling parameters chosen in Sec. II match the

considered system parameters.

B. Comparison to the theory

Figure 4(a) shows the time dependences of the transmission

signal intensity I0 at |kx | < 0.1 μm−1, |ky | < 0.2 μm−1,
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FIG. 4. (Color online) (a), (c) Measured and (b), (d) calculated

dynamics of the polariton system under pumping with τ = 100 ps,

σK = 0.037 μm−1, and different peak intensities W . (a), (b) Intensi-

ties I0(t) of the driven mode (k = 0) divided by W . (c), (d) Ratios

between the intensity of scattered modes at 0.4 < |k| < 1.7 μm−1

and I0(t). In the experiment, the signal was collected from a narrow

strip in the ky direction, |ky | < 0.2 μm−1.
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FIG. 5. (Color online) Streak camera images of the signal in-

tensity distributions I (kx,t) summed up over ky in the interval

−0.2 < ky < 0.2 μm−1 at different W . Each image is normalized

to 1 and covers four orders of magnitude in a logarithmic scale. Lines

represent the time dependences of I0 = |ψ(k = 0)|2 in an arbitrary

linear scale.

and different peak pump intensities W . The pulse shape is

shown for reference in arbitrary units. The experimentally

estimated threshold intensity is 4 kW/cm2. The measured

signal intensities I0(t) are divided by W , which makes them

coincide in the linear regime and simplifies their comparison.

The intensity ratios between the scattered modes (summed up

over 0.4 < |kx | < 1.7 μm−1, |ky | < 0.2 μm−1) and I0(t) are

shown in Fig. 4(c). For completeness, we also show raw streak

camera images of the signal intensity distributions I (kx,t) at

−0.2 < ky < 0.2 μm−1 (Fig. 5).

The modeled counterparts of Figs. 4(a) and 4(c) are

presented in Figs. 4(b) and 4(d). Unlike Fig. 3, they are (i)

calculated with a finite pump spot size (σK = 0.037 μm−1,

the FWHM of |f |2 being 45 μm) and (ii) averaged over a

large series with partially random peak intensities that obey

a Gaussian distribution with a standard deviation of 0.05 W

for each W . Under such conditions, the effective threshold is

Wthr ≈ 3F 2
P .

From Fig. 4(a), it is seen that below the threshold (W =
0.3Wthr), the signal nearly repeats the pulse shape. Thus, the

system has no intrinsic “inertness” with respect to external

driving. This is fairly natural as the substrate layer was

removed and the thickness of the pumped area does not

exceed ∼100 μm. At the same time, the pump acts far

below the free exciton level [�(ωp − ωX) ≈ −8.3 meV],

which ensures excitation of only the short-lived polariton

states rather than the long-lived excitons that in other cir-

cumstances could accumulate and thus yield a reservoir

effect [7,25,26]. The corresponding k-space distribution at

W = 0.3Wthr [Fig. 5(a)] reveals a Rayleigh scattering signal
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at ω ≈ ωp, |kx | ≈ 1.3 μm−1. The signal is a bit asymmetric

due to an inevitable potential disorder.

At the threshold (W = Wthr), the transmission signal

springs up with a marked delay with respect to the peak

of the excitation. [Fig. 4(a)]. The jump is preceded by the

rise of scattered modes [Fig. 4(c)]. The sharp increase in

IS/I0 evidences the thresholdlike polariton-polariton scat-

tering as opposed to thresholdless Rayleigh scattering or

ballistic expansion. The k-space distribution [Fig. 5(b)] gets

flattened in the vicinity of k = 0 immediately before the jump

in the k = 0 mode intensity. This can be associated with

the many-mode instability: The signal and idler dispersion

surfaces stick together at ωs = ωi = ωp within a flat area

centered at k = 0, so that various scattering processes of the

type (0,0) → (k,−k) become simultaneously allowed by the

phase-matching conditions. Such a state is strongly unstable

and, according to Ref. [20], it must result in a catastrophic

amplification (rather than decay) of the k = 0 mode, which

indeed occurs in the experiment.

With further increasing W , the blowup time decreases and

the system is able to actually reach a high-field state in which

D is nearly compensated due to the blueshift, at least in the

spot center. This is evidenced by a plateau seen in the time

dependence of I0 in Fig. 4(a) and by a marked decrease in

IS/I0 [Fig. 4(b)].

The numerical simulations presented in Figs. 4(b) and

4(d) reproduce all of the main features of the discussed

process. Note, however, the differences between the cases of

plane-wave (σK = 0, Fig. 3) and spatially limited excitation.

First, it is seen that at σK = 0, all of the high-field states share

nearly the same intensity I0 determined by D. By contrast,

under a Gaussian-shaped pumping, the area of the high-field

states widens in the real space [4] with increasing W and,

consequently, the peak amplitude of the k = 0 mode also

increases. In fact, both the forward and backward transitions

are spread in space and time due to the inhomogeneity of

the excitation. For instance, the high-field area narrows down

after t ∼ 100 ps; therefore, I0 decreases smoothly instead of

a sharp drop as that seen in Fig. 3(a). On the other side,

when the jump finishes in the spot center, there still exist the

outer and thus weakly pumped areas that experience intermode

scattering. Therefore, at σK > 0, the scattering into k �= 0 does

not terminate above threshold and the high-field state of a

system as a whole is not truly one mode [Figs. 5(b)–5(d)].

Thus, we observe a good agreement between the theory

and the experiment in which the transitions between steady

states are studied with time resolution. All of the essential

“control parameters” of Fig. 4(a)—amplification magnitudes

and durations, latency periods, and dynamics as a whole for

several pump powers—are reproduced and explained self-

consistently. The polariton potential disorder was not taken

into account in the simulations and, as a result, no “back-

ground” filling (IS/I0 ≈ 0.4) related to Rayleigh scattering

was reproduced numerically. Note, however, that potential

fluctuations and/or spatially dependent states do not play any

distinctive role in the studied phenomenon. Inhomogeneities

only hamper the discussed evolution scenario. They can

make the transition spread in time [11], but cannot make

the transition starting point be delayed with respect to the

pulse maximum. Such a delay, together with the sharp rise of

scattered modes before the jump in the k = 0 mode intensity,

constitute clear evidence of the energy accumulation process

considered in Ref. [20].

IV. CONCLUSION

In this work, we have found that the intermode parametric

scattering in a bistable polariton condensate facilitates the

transition to the upper steady-state branch and thus lowers

the threshold at the cost of transition-delay time.

Together with the theoretical work [20], our current

study reveals the interrelation between the multistability and

parametric scattering in resonantly driven cavity-polariton sys-

tems. Under slightly above-resonance pumping near normal

incidence, the rise of the scattering cannot be considered as

a second-order phase transition in spite of the “soft” type of

the instability at the threshold point. Although the increase

of scattered modes can be slow immediately on reaching

the threshold, it successively involves (i) a positive feedback

loop between the driven mode and scattered signals; (ii) a

many-mode catastrophe when a multitude of scattered states

is amplified concurrently, resulting in (iii) a sharp jump in the

driven mode.

Under sufficiently long-term excitation, the threshold value

of V |ψ2| is expected to reduce down to γ , while in the upper

steady state, V |ψ2| exceeds pump detuning D [20]. Thus,

formally, the cavity-field amplification factor D/γ becomes

arbitrarily large with either increasing D or decreasing γ .

It is not surprising that decreasing the decay rate makes a

conventional (even linear) oscillator accumulate larger energy,

provided the pump is not detuned from resonance. On the other

hand, the fact that the pump frequency detuning is converted

into the increased field (�|ψ2| ∼ D/V ) is a unique property of

polariton condensates and other systems governed by Eq. (1).

It may find use in the new-generation fast optical switches and

logic elements.
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S. Höfling, M. Kamp, A. Forchel, and V. D. Kulakovskii, Appl.

Phys. Lett. 102, 011104 (2013).

[10] S. S. Gavrilov, A. V. Sekretenko, N. A. Gippius, C. Schneider,

S. Höfling, M. Kamp, A. Forchel, and V. D. Kulakovskii, Phys.

Rev. B 87, 201303 (2013).

[11] A. V. Sekretenko, S. S. Gavrilov, S. I. Novikov, V. D.
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