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Introduction

Computing Euler singularities is an extremely challenging task.

It requires huge computational resource.

Careful resolution study. It is dangerous to interpret the blowup of
an under-resolved computation as the blowup of the Euler equations.

Validation check: Is the fitting ‖ω‖L∞ ≈ C
(T−t)α

asymptotically valid

as t → T to be used to check if
∫ T

0
‖ω‖L∞dt = ∞?

Consistency check with other non-blowup criteria. Is there any
depletion of vortex stretching? Guidance from the theory is essential.
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Numerical evidence of Euler singularity

In 1993 (and 2005), R. Kerr [Phys. Fluids] presented numerical evidence
of 3D Euler singularity for two anti-parallel vortex tubes:

Pseudo-spectral in x and y , Chebyshev in z direction;

Best resolution: 512 × 256 × 192;

Predicted singularity time T = 18.7, but his numerical solutions
became under-resolved after t = 17; Note that ∆ = 1.7 is not small.

‖ω‖L∞ ≈ (T − t)−1;

‖u‖L∞ ≈ (T − t)−1/2;

Anisotropic scaling: (T − t) ×
√

T − t ×
√

T − t;

Vortex lines: relatively straight, |∇ξ| ≈ (T − t)−1/2;
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Figure: Isosurface of peak vorrticity at t = 17, from R. Kerr, Euler singularities
and turbulence, 19th ICTAM Kyoto ’96, 1997, pp57-70.

T. Y. Hou, Applied Mathematics, Caltech Blowup or No Blowup?



Non-blowup criterion by Constantin-Fefferman-Majda

Kerr’s blowup scenario is consistent with the Beale-Kato-Majda
(1984) and the Constantin-Fefferman-Majda criteria (1996).

Constantin-Fefferman-Majda’s non-blowup criterion (1996).

Let ω = |ω|ξ, no blow-up if

(1) (Bounded velocity) ‖u‖∞ is bounded in a O(1) region of large
vorticity;

(2) (Regular orientedness)
∫ t

0
‖∇ξ‖2

∞
dτ is uniformly bounded;
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Local non-blowup criteria by Deng-Hou-Yu

But it falls into the critical case of Deng-Hou-Yu’s non-blowup criteria.

Theorem 1 (Deng-Hou-Yu, 2005 and 2006, CPDE)

Denote by L(t) the arclength of a vortex line segment Lt around the
maximum vorticity. If

1 maxLt (|u · ξ| + |u · n|) ≤ CU(T − t)−A with A < 1;

2 CL(T − t)B ≤ L(t) ≤ C0/ maxLt (|κ|, |∇ · ξ|) with B < 1 − A;

then the solution of the 3D Euler equations remains regular at T .

When B = 1 − A, we can exclude blowup if f (CU ,CL,C0) > 0. For
example, CL = 1, C0 = 0.1, CU ≤ 0.28 implies no blowup.
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Computation of Hou and Li, J. Nonlinear Science, 2006

We repeat Kerr’s computations using two pseudo-spectral methods.

Four step Runge-Kutta scheme for time integration with adaptive
time stepping;

Careful resolution study is performed: 768 × 512 × 1536,
1024 × 768 × 2048 and 1536 × 1024 × 3072.

We compute the solution up to t = 19, beyond the alleged
singularity time T = 18.7 of Kerr.

256 parallel processors with maximal memory comsumption 120Gb.

The laregest number of grid points is close to 5 billions.
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Two spectral methods are used in our computations.

We use both the 2/3 dealiasing and a 36-order Fourier smoothing to
remove aliasing error;

The Fourier smoother is shaped as along the xj direction

ρ(2kj/Nj) ≡ exp(−36(2kj/Nj)
36)

where kj is the wave number (|kj | 6 Nj/2).
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Inviscid Burgers equation: spectra comparison with
N = 4096,u0(x) = sin(x), Tshock = 1.
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spectra comparison on 4096 grids.

blue: Fourier smoothing
green: 2/3rd dealiasing
red: exact solution
t=0.9, 0.95, 0.975, 0.9875 
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Inviscid Burgers equation: the pointwise error comparison
with N = 2048, u0(x) = sin(x), Tshock = 1.
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pointwise error comparison on 2048 grids, t=0.9875: blue(Fourier smoothing), red(2/3rd dealiasing)
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Resolution study of 3D Euler Equations. Enstrophy
spectra: 768 × 512 × 1024 vs 1024 × 768 × 1536
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Figure: The enstrophy spectra versus wave numbers. The dashed lines and
dashed-dotted lines are solutions with 768 × 512 × 1024 using the 2/3
dealiasing rule and the Fourier smoothing, respectively. The times for the
spectra lines are at t = 15, 16, 17, 18, 19 respectively.
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Resolution study of 3D Euler Equations. Energy spectra:
1024 × 768 × 2048 vs 1536 × 1024 × 3072
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energy spectra comparison.

dashed:1024x768x2048, 2/3rd dealiasing
dash−dotted:1024x768x2048, FS
 solid:1536x1024x3072, FS
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Computation of Hou and Li, J. Nonlinear Science, 2006

Figure: The 3D vortex tube and axial vorticity on the symmetry plane for initial
value.
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Figure: The 3D vortex tube and axial vorticity on the symmetry plane when
t = 6.
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Figure: The local 3D vortex structures and vortex lines around the maximum
vorticity at t = 17.
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Figure: From: Kerr, Phys. Fluids A 5(7), 1993, pp1725-1746. t = 15(left) and
t = 17(right).
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Figure: The contour of axial vorticity around the maximum vorticity on the
symmetry plane at t = 15, 17.
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Figure: The contour of axial vorticity around the maximum vorticity on the
symmetry plane (the xz-plane) at t = 17.5, 18, 18.5, 19.
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Maximum vorticity in time
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Figure: The maximum vorticity ‖ω‖∞ in time, 1024 × 768 × 2048, computed
by two spectral methods.
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Inverse of maximum vorticity in time
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Figure: The inverse of maximum vorticity ‖ω‖∞ in time using different
resolutions.

T. Y. Hou, Applied Mathematics, Caltech Blowup or No Blowup?



Dynamic depletion of vortex stretching
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Figure: Study of the vortex stretching term in time, resolution
1536 × 1024 × 3072. The fact |ξ · ∇u · ω| ≤ c1|ω|log |ω| plus
D
Dt
|ω| = ξ · ∇u · ω implies |ω| bounded by doubly exponential.

T. Y. Hou, Applied Mathematics, Caltech Blowup or No Blowup?



Log log plot of maximum vorticity in time
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Figure: The plot of log log ‖ω‖∞ vs time, resolution 1536 × 1024 × 3072.
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Log log plot of peak vorticity in time from Kerr’s 93 paper
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Double logarithm of peak vorticity in time from Kerr−93 paper
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Maximum velocity in time
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Figure: Maximum velocity ‖u‖∞ in time using different resolutions.
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The local geometric criteria applies

Recall the local geometric criteria by Deng-Hou-Yu:

1 maxLt
(|u · ξ| + |u · n|) ≤ CU(T − t)−A for some A < 1;

2 CL(T − t)B ≤ L(t) ≤ C0/ maxLt
(|κ|, |∇ · ξ|) for some B < 1 − A,

then the solution of the 3D Euler equations remains regular up to T .

Since ‖u‖L∞ is bounded, we have A = 0 so our local non-blowup
theory applies since B = 1/2 < 1 − A. This rules out a singularity
up to T = 19.
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Vorticity vector alignment

Recall that

∂

∂t
ω + (u · ∇)ω = S · ω, S =

1

2
(∇u + ∇Tu).

Let λ1 < λ2 < λ3 be the three eigenvalues of S , λ1 + λ2 + λ3 = 0.

time |ω| λ1 θ1 λ2 θ2 λ3 θ3

16.012 5.628 -1.508 89.992 0.206 0.007 1.302 89.998
16.515 7.016 -1.864 89.995 0.232 0.010 1.631 89.990
17.013 8.910 -2.322 89.998 0.254 0.006 2.066 89.993
17.515 11.430 -2.630 89.969 0.224 0.085 2.415 89.920
18.011 14.890 -3.625 89.969 0.257 0.036 3.378 89.979
18.516 19.130 -4.501 89.966 0.246 0.036 4.274 89.984
19.014 23.590 -5.477 89.966 0.247 0.034 5.258 89.994

Table: The alignment of the vorticity vector and the eigenvectors of S around
the point of maximum vorticity with resolution 1536 × 1024 × 3072. Here, θi is
the angle between the i-th eigenvector of S and the vorticity vector.
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Kida-Pelz’s high symmetry initial data

We have also repeated Pelz’s computations, and found no evidence
of a finite time singularity.

Pelz’s filament model indeed leads to a finite time blowup [PRE, 97].
But when we use the same high symmetry initial condition to solve
the full 3D Euler equations, the solution remains regular.

Boratav and Pelz’s Navier-Stokes computations [Phys Fluid,94]
suggested a potential singularity around t = 2.06 as Re → ∞.

Our resolution study shows that their computations are resolved only
up to t = 1.6 when the growth is only exponential in time. The
rapid growth around t = 2.06 seems due to under-resolution.

We have used two codes to compute the high symmetry solution,
one code built in the high symmetry explicitly, the other did not.
The symmetry is preserved by the second code to many digits.
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Maximum vorticity of the high symmetry data in time, one
code built in high symmetry explicitly, the other did not.
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Concluding Remarks

Our analysis and computations reveal a subtle dynamic depletion of
vortex stretching. Sufficient numerical resolution is essential in
capturing this dynamic depletion.

Our computations show that the velocity is bounded and that
‖ξ · ∇u · ω‖L∞ = O(‖ω‖L∞ log(‖ω‖L∞)), instead of ‖ω‖2

L∞ .

It is natural to ask what is the driving mechanism for this dynamic
depletion of vortex stretching? Is this scaling generic?

The geometric regularity of local vortex lines and the anisotropic
scaling of the support of maximum vorticity seem to play an
important role in the dynamic depletion of vortex stretching.

New analytic tools that exploit the local geometric structure of the
solution near a potential singularity are needed.
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