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ABSTRACT
Mobile devices are increasingly equipped with multiple net-
work interfaces with complementary characteristics. In par-
ticular, the Wi-Fi interface has high throughput and trans-
fer power efficiency, but its idle power consumption is pro-
hibitive. In this paper we present, Blue-Fi, a sytem that
predicts the availability of the Wi-Fi connectivity by using
a combination of bluetooth contact-patterns and cell-tower
information. This allows the device to intelligently switch
the Wi-Fi interface on only when there is Wi-Fi connectiv-
ity available, thus avoiding the long periods in idle state and
significantly reducing the the number of scans for discovery.

Our prediction results on traces collected from real users
show an average coverage of 94% and an average accuracy
of 84%, a 47% accuracy improvement over pure cell-tower
based prediction, and a 57% coverage improvement over the
pure bluetooth based prediction. For our workload, Blue-Fi
is up to 62% more energy efficient, which results in increasing
our mobile device’s lifetime by more than a day.

Categories and Subject Descriptors
C.2.1 [COMPUTER-COMMUNICATION NETWOR
KS]: [Network Architecture and Design]

General Terms
Design, Algorithms, Measurement, Performance

Keywords
Bluetooth, Wi-Fi, location, context-awareness, energy-efficiency,
mobile device

1. INTRODUCTION
Today’s mobile devices, such as smartphones, are increas-

ingly equipped with multiple network interfaces, including
Wi-Fi, bluetooth, and, of course, cellular interfaces. These
interfaces have widely different, often complementary, char-
acteristics in terms of throughput, range, and power [12, 21,
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T’put Transfer Idle Scan Range
(J/MB) (W) (W) (m)

Cellular few 100
kbps

100 0* 0* 500

Wi-Fi 11-54
Mbps

5 0.77 1.29 100

Bluetooth 700 kbps 0.1 0.01 0.12 10
( * - The cellular interface is typically always on.)

Table 1: Various interface characteristics

22] (see Table 1). Ideally, one would like to intelligently
leverage the strengths of these interfaces to optimize the ap-
plication performance and minimize the power consumption.

Among the typical network interfaces found in today’s mo-
bile devices, Wi-Fi provides arguably the best combination
of throughout, range, and power efficiency for data trans-
fers. On the downside, Wi-Fi is the least power efficient in
idle state and incurs a high overhead when scanning for new
networks (e.g., anecdotes with iPhone [2, 4]). Thus, ideally,
one should use Wi-Fi whenever it is available, switch it off
when it is not, and avoid scanning whenever possible. This
is particularly useful for applications that use the network
periodically like Microsoft Pocket Outlook [5]. It is easy to
see that implementing such a strategy requires one to effi-
ciently detect the Wi-Fi availability without switching it on.

In this paper, we address this challenge by presenting
Blue-Fi, a simple scheme that predicts the availability of
Wi-Fi by using bluetooth contact-patterns and cell-tower in-
formation. The main observation behind our scheme is that
users tend to repeatedly encounter the same set of bluetooth
devices and cell-towers. Examples of such scenarios include
a bluetooth mouse or spouse’s mobile device while at home,
colleagues’ devices or printer at work, shop-owner’s mobile
device at his regular coffee place and even fellow commuters.

Most previous work on context-aware applications has fo-
cused on using GPS and cell-tower information. While GPS
is highly accurate, it is power hungry (e.g., [24] and [8]),
and thus not a good fit for our problem where the focus is
on reducing the power consumption. Furthermore, GPS can-
not be used indoors, where Wi-Fi connectivity is arguably
most likely to be available. Cell-tower information has been
successfully used for inferring contexts [12, 10] but as we
demonstrate in this paper, its inaccuracy reduces its appli-
cability to Wi-Fi prediction.

Despite bluetooth’s power efficiency, so far it has been
largely ignored by the context-aware applications. There
are several reasons behind this state of affairs. First, blue-

249



tooth has a much lower range compared to other ubiquitous
network technologies (see Table 1). Second, the discovery
process of bluetooth devices is time-consuming and could
take as long as 10 seconds [14]. Finally, unlike cell-towers
and access points that are stationary, bluetooth devices are
primarily carried by users and hence mobile.

Blue-Fi leverages bluetooth’s low range to its advantage
to achieve high prediction accuracy of Wi-Fi network avail-
ability. However, the high accuracy comes at a price: cov-
erage. The smaller the communication range is, the less
likely for Blue-Fi to find a nearby bluetooth device. To
increase the prediction coverage, Blue-Fi complements blue-
tooth with cell-tower information. To alleviate bluetooth’s
high discovery time, Blue-Fi implements periodic discovery
and uses the latest discovered list of bluetooth devices. Fi-
nally, despite the fact that many bluetooth devices are mo-
bile, our results indicate that there is enough repeatability in
contact-patterns of bluetooth devices that can be leveraged
to provide accurate context information, especially indoors.

In its basic form, Blue-Fi requires no distributed infras-
tructure, or running complex distributed protocols. Each
mobile device periodically logs locally the bluetooth devices,
cell-towers, and Wi-Fi access points in its proximity, and
later uses this information to predict Wi-Fi connectivity. To
speed up the learning process, we also propose variants of
Blue-Fi which employ peer-to-peer protocols or centralized
web services to share the logs.

We make the following contributions. First, we advocate
the use of bluetooth contact patterns for context inference,
effectively providing a low-powered location system. In do-
ing so, we address the limitations of the bluetooth devices
with respect to low range, high discovery time and mobil-
ity. Second, we leverage the complementary properties of
bluetooth and cell-tower to improve the prediction of Wi-Fi
availability. By combining bluetooth and cell tower based
predictions we obtain an average coverage of 94% and an
average accuracy of 84%, a 47% improvement in accuracy
over the pure cell-tower based prediction and a 57% improve-
ment in coverage over the pure bluetooth based prediction
scheme. This translates to an energy efficiency of up to 62%
and increase in our mobile device’s lifetime by more than a
day. Finally, we analyze the benefits of collaborative predic-
tion including security and privacy concerns.

The rest of the paper is organized as follows. Section 2
describes the system’s functioning including the prediction
schemes. Section 3 deals with the problem of bluetooth dis-
covery. Algorithms to infer special bluetooth devices - land-
mark devices and mobile accessories - are presented in Sec-
tion 4. Collaborative prediction, along with the security and
privacy implications, is addressed in Section 5. Evaluation
of the different aspects of the system is done in Section 6.
We present improvements to Blue-Fi - identifying browser-
authenticated Wi-Fi networks, and multihop bluetooth dis-
covery - in Section 7. We discuss an indoor monitoring sys-
tem, and enhanced prediction models in Section 8. Section 9
presents related work and contrasts it with Blue-Fi, and we
conclude in Section 10.

2. PREDICTING WI-FI AVAILABILITY
In a nutshell, Blue-Fi predicts the Wi-Fi network avail-

ability by leveraging existing cell-towers and bluetooth de-
vices. Each mobile device periodically logs all the network
signals in a log L, locally. The log entries are of the form

(Timestamp, {Bluetooth devices}, {Cell Towers}, {Wi-Fi
networks}). Bluetooth devices are identified by their MAC
addresses, cell-towers are identified by the tower identifier
and Wi-Fi access points by their SSID/BSSID. The mobile
device then uses its log to predict Wi-Fi connectivity.

The key question we need to address is: how accurately
can a bluetooth device or a cell-tower predict the Wi-Fi avail-
ability? We first discuss the reliability of bluetooth predic-
tion. If all bluetooth devices were fixed, predicting Wi-Fi
availability would be easy. Given a bluetooth device b, just
check whether there is a log entry containing b and a Wi-Fi
access point: if yes, then we predict the Wi-Fi availability.
Unfortunately, in practice many bluetooth devices are mo-
bile (e.g., phones, notebooks), so they cannot straightaway
be used to predict fixed Wi-Fi access points.

To account for the mobile bluetooth devices we consider
the correlation between the observations of the bluetooth
devices and Wi-Fi access points. Intuitively, we consider
a bluetooth device b to be a reliable predictor for Wi-Fi
connectivity, if most of the log entries in which b appears
contain at least a Wi-Fi access point.

L Log of all network signals over time
τ Threshold for a bluetooth device or

cell-tower to be a reliable predictor
predictcell Cell-towers that are reliable predictors
predictBT Bluetooth devices that are reliable predictors

SBT Set of all bluetooth devices in the log
Wc Connectable Wi-Fi networks

EDT Threshold of euclidean distance below
which a user is considered stationary

Table 2: List of notations.

More precisely, let SBT be the set of bluetooth devices in
log L and Wc be the set of Wi-Fi networks which provides
connectivity to the device (we describe mechanisms to ob-
tain Wc in Section 7.1). For each Bluetooth device, BTi ε
SBT , we compute the predictability of BTi as n(L, BTi, Wc)/
n(L, BTi), where n(L, BTi, Wc) is the number of entries in
L when BTi was present and at least one of the networks
in Wc was present, and n(L, BTi) is the number of entries
in L when BTi was present. Predictability is a confidence
measure of how much a device’s presence indicates Wi-Fi
connectivity. If predictability is greater than a threshold τ ,
we add BTi to predictBT . In Section 2.2, we present a simple
algorithm to set this threshold.

While a single bluetooth discovery or Wi-Fi scan can po-
tentially miss some bluetooth devices or access points respec-
tively, we believe the errors due such misses are minimized
or negligible when predictBT is calculated over a sufficiently
large set of log entries over time.

The algorithm to obtain predictcell is exactly the same
as the algorithm described above, with bluetooth devices
replaced by cell-towers. predictcell contains the list of cell-
towers at places where the device has Wi-Fi connectivity.

2.1 Prediction Schemes
In this section, we describe the Wi-Fi prediction schemes

based on bluetooth and cell-tower signals. The Wi-Fi pre-
diction schemes predict Wi-Fi availability using predictBT

and predictcell. We evaluate the prediction schemes on two
metrics:
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Figure 1: Hybrid Prediction Scheme

• Coverage: The fraction of existing Wi-Fi access points
that are predicted.

• Accuracy: The fraction of the Wi-Fi predictions that
are correct.

Bluetooth based Prediction: We predict that Wi-Fi
is available if any of the bluetooth devices in predictBT is
currently nearby. If none of the nearby devices are present
in predictBT , but there are some present in SBT , then we
predict that there is no Wi-Fi connectivity. If none of the
nearby bluetooth devices have been seen before, the predic-
tion scheme offers no prediction (we treat this as absence of
Wi-Fi connectivity). Bluetooth based prediction is expected
to exhibit high accuracy but low coverage as the range of
bluetooth devices is much smaller than Wi-Fi (see Table 1).
For example, a mobile device within Wi-Fi coverage may
fail to predict Wi-Fi availability, if the bluetooth devices in
predictBT are too far to be detected.

Cell-tower based Prediction: Cell-tower based predic-
tion is based on the presence of currently visible cell-towers
in predictcell. As discussed in Section 1, the ranges of cel-
lular signals is much higher than Wi-Fi networks resulting
in coarse-grained predictions. As a result, cell-tower based
prediction achieves high coverage but less accuracy.

Hybrid Prediction: This scheme uses a combination of
bluetooth and cell-tower based predictions. More precisely,
it uses bluetooth prediction first, and falls back to cell-tower
based prediction when the former fails to predict. This way,
hybrid prediction achieves both of best worlds by combining
the accuracy of bluetooth prediction with the coverage of
the cell-tower prediction. Figure 1 shows the flow diagram
of the hybrid prediction scheme. The scheme starts with dis-
covering the bluetooth devices that are currently nearby and
checks whether any of them is present in either predictBT

or SBT . If yes, it uses bluetooth prediction. Otherwise, it
resorts to cell-tower based prediction.

In the rest of the paper, we assume that if Blue-Fi does
not make any prediction, then there is no Wi-Fi connectivity,
i.e., “No Prediction” is equivalent to “No Wi-Fi Connectiv-
ity” (see Figure 1).

2.2 Prediction Reliability Threshold (τ)
In this section, we describe an algorithm to select the

appropriate prediction reliability threshold, τ , to populate

Figure 2: Predict-Signal Matrix

predictcell and predictBT . High values of τ increase accu-
racy in prediction but lower coverage. On the other hand,
low values of τ result in inaccurate prediction.

We determine the appropriate value of τ using a predict-
signal matrix (see Figure 2). The matrix models the cases
when our scheme predicts the availability or lack of Wi-Fi
connectivity versus reality. The variables s and s̄ indicate
the presence and absence of Wi-Fi availability respectively,
and p and p̄ indicate cases when Blue-Fi predicts the avail-
ability of Wi-Fi. Cases 2 and 3 correspond to failures sce-
narious. In case 2, Blue-Fi predicts the absence of Wi-Fi
connectivity even when it is present resulting in the device
using the power-inefficient cellular interface. In case 3, the
mobile device wastes power probing for Wi-Fi networks.

For a data transfer of size F , the expected wastage in
energy is Ewaste = p3 ∗ Ep + p2 ∗ (F ∗ ec −
(Ep + F ∗ ew)) where p2 and p3 are the probabilities
of cases 2 and 3, Ep is the energy consumed in probing for
Wi-Fi networks, and ec and ew are the energy consumed
per data unit for transferring data using the cellular and
Wi-Fi interfaces respectively. Ep, ec and ew are constants.
Automatically measuring and calibrating the values of Ep,
ec and ew is orthogonal to Blue-Fi’s objectives and has been
addressed in prior work [17].

For a given transfer size F , the energy wastage Ewaste is
a function of p2 and p3 only. Next, we show that p2 and p3

can be expressed as functions of τ alone. Note that with the
notations in the predict-signal matrix, Accuracy is P (s | p)
and Coverage is P (p | s).

p2 = Pr(s | p̄)
= Pr(p̄ | s) (Pr(s)/Pr(p̄))
= (1 − Pr(p | s)) (Pr(s)/(1 − Pr(p)))
= (1 − Pr(s | p) ∗ Pr(p)/Pr(s)) (Pr(s)/(1 − Pr(p)))
= (1 − Accuracy ∗ Pr(p)/Pr(s)) (Pr(s)/(1 − Pr(p)))
= (Pr(s) − Accuracy ∗ Pr(p))/(1 − Pr(p))

p3 = Pr(s̄ | p)
= 1 − Pr(s | p)
= 1 − Accuracy

Pr(s) is the percentage of times when Wi-Fi networks
from Wc was present in the log L and is a constant (not
dependent on τ ). Accuracy and Pr(p) - the percentage of
times when we found at least one bluetooth device from the
set predictBT or one cell-tower from the set predictcell - are
dependent only on τ . Therefore p2 and p3 are essentially
functions of only τ . Note that p2 and p3 can also be ex-
pressed as functions of coverage instead of accuracy.

Hence, for a given transfer size, Blue-Fi finds the value of
τ that minimizes Ewaste.
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Figure 3: Variation in Euclidean Distance when a
device is stationary, walking (5 km/hr) and driving
(30 km/hr).

3. BLUETOOTH DISCOVERY
Bluetooth discovery takes considerable time (over 10 sec-

onds [14]) causing high latency in prediction and subsequent
application data transfers. We note that when the user is
not moving at high speeds, Wi-Fi connectivities are likely
to be relatively stable. Based on this observation, Blue-Fi
scans for nearby bluetooth devices periodically, and stores
and uses the latest discovered list for prediction. Periodic
discovery reduces the latency of prediction using Blue-Fi.
The period of discovery is appropriately set depending on
the Wi-Fi scanning frequency and the ratio of power con-
sumption of Wi-Fi scanning to Bluetooth discovery.

However, periodic discovery could be wasteful in times
when device’s Wi-Fi scanning frequency is low or the user
is stationary. In such cases, Wi-Fi characteristics are not
expected to change. For example, a user sitting in his office
with his office’s Wi-Fi connectivity is unlikely to see a change
in his Wi-Fi prediction. In cases when the user is stationary,
the last predicted Wi-Fi connectivity can be used without
wasting power on updating the visible bluetooth devices.

Observations from prior work [25, 23] and our own exper-
iments indicate that cell tower signal strength values have
low variance when the device is stationary. A cell-tower fin-
gerprint is a set of tuples containing the cell-tower identifier
(CT ) and signal strength (SS). Given two cell-tower fin-
gerprints, Fi = {(CTi1, SSi1), ..., (CTin, SSin)} and Fj =
{(CTj1, SSj1), ..., (CTjn, SSjn)}, the euclidean distance is

defined as
√

(SSi1 − SSj1)2 + ... + (SSin − SSjn)2). Cell-
towers that are present in only one of the fingerprints are
not used in the calculation. High values of euclidean dis-
tance indicate low similarity between the fingerprints.

Figure 3 plots the average euclidean distance between con-
secutive readings in our experiments when a user is station-
ary, walking (5 km/hr) and driving slowly (30 km/hr). Con-
secutive measurements were taken a minute apart. As shown
in Figure 3, the euclidean distance is a good indicator of
whether a user is stationary or mobile.

Blue-Fi calculates the average euclidean distance since the
last Wi-Fi prediction and if it is below a threshold, EDT ,
periodic bluetooth discovery is not performed and the last
made prediction of Wi-Fi availability is used. While we note
that there are alternatives to the average euclidean distance
like Spearman rank correlation coefficient [6] and common
number of cell-towers, our metric is suited for our purpose
and produces good results (see Section 6.4). Figure 4 illus-
trates the steps in Blue-Fi’s periodic bluetooth discovery.

Figure 4: Periodic Bluetooth Discovery combined
with Euclidean Distance Estimation

3.1 Euclidean Distance Threshold (EDT )
The threshold of euclidean distance for inferring station-

ary periods, EDT , depends on the fluctuation of cellular
signal in a user’s surroundings and hence fixing a static and
uniform value across all users is problematic. We present
a simple heuristic by which devices can calibrate this value
themselves.

The heuristic is based on estimating the times when the
device was stationary and calculating the average euclidean
distance between the cell-tower fingerprints in those periods.
We consider being in the proximity of a stationary bluetooth
device (we discuss them in Section 4.2) or being connected
to the same Wi-Fi access point (BSSID) as an indication
of being stationary. Note that we are only interested in
inferring times when a user’s Wi-Fi connectivity is relatively
stable as opposed to a user being completely stationary in
the traditional sense. From the log, L, devices can calculate
the average euclidean distance during stationary periods and
fix the value of EDT appropriately.

4. SPECIAL BLUETOOTH DEVICES
There are two classes of bluetooth devices that are espe-

cially interesting - landmark devices and mobile accesories.
Landmark devices are devices that are stationary like a blue-
tooth mouse, keyboard or printer, and mobile accessories
correspond to devices like bluetooth headsets. This section
describes ways to identify these two categories of devices
from the log, L. Landmark devices can be shared among
users as they are not dependent on any single user’s move-
ments. Mobile accessories are not reliable indicators of Wi-
Fi availability and should be removed from the logs.

Our identification technique is based on correlating the
Wi-Fi access points and cell-towers, both of which are es-
sentially stationary, with the bluetooth devices. In other
words, we intend to capture the variation in the difference
locations at which a bluetooth device was sighted. To this
end, we first introduce the notion of diversity for a device
and then use that to identify landmark devices and mobile
accessories.
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4.1 Diversity
Diversity captures the variance among the list of loca-

tions a device is sighted. For every bluetooth device in SBT ,
we extract the list of Wi-Fi and cell-tower signatures that
were co-sighted along with it. A Wi-Fi signature is a list of
BSSIDs, and a cell signature is a list of cell-tower identifiers.
Note that the list of signatures can contain repetitions. We
use the list of signatures as an indicator of the locations the
bluetooth device was present.

We define similarity between two signatures A and B as
|(A ∩ B)| / |(A ∪ B)|. Clearly, the higher the number of
intersecting wireless access points or cell-towers, the greater
the value of similarity.

We use similarity to now calculate diversity for a list of
signatures. Let W = {Ws} be the list of Wi-Fi signatures
for a bluetooth device. We identify the median of W us-
ing K-Medians clustering [18]. K-Medians is suited for our
purpose as it can perform clustering even when the “points”
to be clustered are not in Euclidean space, as in our case
where we have to cluster signatures. K-Medians clustering
exhaustively evaluates the suitability of each Ws in W to
be the median and picks the best. Table 3 describes the
algorithm to pick the median and calculate the �diversity of
a given list of signatures. The presence of repetitions in the
signature list, W , ensures that the signatures are automati-
cally weighted during the calculation of diversity. Diversity
is calculated for every device and varies between 0 and 1.
Diversity for a list of cell-tower signatures is exactly similar
with Wi-Fi BSSIDs replaced by cell-tower identifiers.

Input: List of signatures, W = {Ws}
Output: Median, Wm and Diversity, D

Variables:
Aggregate Similarity, agg sim
Highest Similarity, best sim ← 0
Current Median, Wmc

Algorithm:
for each Wsi in W

Wmc ←Wsi

agg sim ← 0
for each Wsj in W

agg sim += Similarity(Wsi, Wsj)
end for
if(agg sim > best sim)

best sim← agg sim
Wm ←Wmc

end for

for each Ws in W
D += Similarity(Ws, Wm)

end for

D ← D/|W |

return (D and Wm)

float Similarity (Signature W1, Signature W2)
float similarity = |(W1 ∩W2)| / |(W1 ∪W2)|
return similarity

Table 3: Diversity of a signature list

4.2 Landmark Devices
Intuitively, a landmark device is one that a user discovers

only at one location (e.g., home) and always discovers that
device when he is at that location. Precisely, a device BT
is classified as landmark if it satisfies two properties: (1) Its
diversity is sufficiently low, and (2) Whenever a signature
that is similar to its median, Wm, occurs in the log, BT
should also be present. Property (1) ensures that BT is seen
only at one location. Property (2) ensures that whenever the
user is at that location, BT is seen.

4.3 Mobile Accessories
Mobile accessories are not reliable indicators of Wi-Fi

availability and should be removed from the logs. We treat
devices that occur in a high fraction of the log entries to
be mobile personal accessories and unreliable indicators of
a user’s location.

5. COLLABORATIVE PREDICTION
This section explores the scenarios, benefits and issues

if devices were to collaborate and share information about
Wi-Fi availability. An example scenario when such sharing
is beneficial is when a user goes to a new place with no prior
context (improve coverage). Sharing essentially speeds-up
the learning process. We present two sharing approaches −
peer-to-peer and global − and also discuss their security and
privacy implications.

5.1 Peer-to-peer Sharing
Devices query each other over bluetooth for the availabil-

ity for Wi-Fi networks. Any device that is currently using
the Wi-Fi network can respond with details including the
bandwidth and authentication mechanisms. In fact, users
can exchange more useful information like “I performed a 1
MB download 30 seconds back and got a 10 Mbps through-
put”. Such sharing can be used for collaborative selection of
access points. Hence, presence of at least one bluetooth de-
vice can potentially result in a device knowing about Wi-Fi
connectivity.

We can extend the hybrid prediction scheme to include
peer-to-peer querying wherein the device queries its neigh-
bors when bluetooth prediction is inconclusive and before
resorting to cell-tower based prediction.

5.2 Global Sharing
The alternative to peer-to-peer sharing is global sharing

facilitated through a central service. Devices, when using
the Wi-Fi network, periodically upload entries − (Times-
tamp, {Bluetooth devices}, {Cell Towers}, {Wi-Fi network,
{Characteristics}}) − to a centralized server. Characteris-
tics specify if a network requires authentication along with
performance parameters like throughput and latency. While
information about security of a network (e.g., WEP encryp-
tion) is specified for all Wi-Fi beacons, performance param-
eters are provided only for the associated network. Servers
index these entries by bluetooth devices and cell-tower iden-
tifiers for efficient retrieval.

Any device that wants to know about its current Wi-Fi
availability can query the central server by supplying the list
of currently visible bluetooth devices and cell-towers. The
server responds by matching the bluetooth devices and cell-
towers in its database and returns the Wi-Fi networks along
with their characteristics. Communication with the server
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happens over the cellular interface (data channel or simpler
options like SMS). The details of matching application needs
with the best suited Wi-Fi network are beyond the scope of
this paper.

Matching cell-towers need not involve the timestamp field
in the entries in the server because they are stationary. Blue-
tooth devices are mostly dynamic and should be matched
only if the time of uploading of the log entry and time of
querying is within a bounded interval. Note that the server
can process the logs and obtain the set of landmark devices
as described in Section 4. Matches with landmark devices
need not consider the timestamp.

The ability to leverage landmark devices makes the global
sharing option potentially more useful than peer-to-peer shar-
ing; landmark devices are not expected to do peer-to-peer
communication. But on the other hand, peer-to-peer shar-
ing does not need any infrastructure support and hence is
more readily deployable.

5.3 Privacy and Security
In this section, we discuss the security and privacy con-

cerns related to global and peer-to-peer sharing. A trusted
service model, like the emerging location-based services [1],
alleviates these concerns for the case of global sharing. Next,
we discuss the security and privacy issues in peer-to-peer
sharing, and compare it with the global sharing model.

1. Intrusion: Peer-to-peer collaboration requires devices
talking to other devices around them, and users might
be wary of such communication as it might potentially
lead to intrusions. Without any prior knowledge, there
is no feasible filter that users can apply. Global sharing
requires the device to just talk to a trusted server.

2. Usage Pattern: If devices were to exchange details
about their network activity (size of download, time of
download), a malicious person can continually query
a device in the guise of knowing the Wi-Fi connec-
tivity characteristics, and end up obtaining the exact
access patterns of the device. This can be correlated to
make decisions about a user’s activity like streaming,
browsing etc. potentially leading to annoying and tar-
geted advertisements. With global sharing, the central
server is expected to hide the identity of the users who
uploaded the data.

3. Industrial Espionage: Assume a scenario where cof-
fee shop A has Wi-Fi connectivity for its customers. A
competitor, B, is looking to set up its store near A’s
and expects the same customers to visit B too. Now
B can have a person with a device sitting in A’s shop,
querying all the users visiting A continuously and ag-
gregating information about their Wi-Fi usages. B can
use this information to appropriately provision its net-
work, thereby obtaining information that A would not
have provided otherwise. The central server in global
sharing will provide only representative information in
response to queries.

While it is true that Wi-Fi frames themselves can be
passively scanned to get the required information, peer-
to-peer sharing provides yet another way for this in-
formation to be leaked.

6. EVALUATION
We collected logs from twelve volunteers for a period of

two weeks each. In this section, we use the logs to evaluate
our prediction schemes for accuracy and coverage, appro-
priate threshold selection, effects of periodic discovery and
energy efficiency for our workload. We also evaluate our
algorithms for identifying landmark devices and mobile ac-
cesories. Finally we quantify the benefits of collaborative
prediction. We briefly summarize our results here.

1. Hybrid prediction scheme produces high coverage (93.5
%) and accuracy (84.2%), a 47% improvement in ac-
curacy over the pure cell-tower based prediction and
a 57% improvement in coverage over pure bluetooth
based prediction scheme.

2. Periodic discovery results in negligible reduction in ac-
curacy and coverage.

3. Energy consumption reduces by up to 62% for our
workload using Blue-Fi’s prediction techniques.

4. Collaborative prediction through sharing improves the
coverage by up to 36.2%.

6.1 Log Collection
Twelve volunteers were given i-mate PDAs programmed

to log the Wi-Fi, bluetooth and cell-tower signals as men-
tioned in Section 2, every minute. The i-mate runs Win-
dows Mobile 5.0 and is equipped with a Class-2 bluetooth
interface. We performed Wi-Fi scanning using a library
that was built using the Windows Driver Development Kit.
Bluetooth scanning happened using the open-source library,
InTheHand [3]. GSM tower information was obtained by
reading a well-known memory location that has been ob-
tained by the community via reverse-engineering [19]. The
volunteers were a mix of graduate students in Berkeley as
well as working professionals in San Francisco Bay Area.
Volunteers carried the PDA along for two weeks in their nor-
mal routine. No instance of the PDA’s battery discharging
or any such incident that stopped the logging was reported.

Table 4 lists the details about the log. There are two
noteworthy features from the logs:

1. The fraction of times when there was Wi-Fi connectiv-
ity from the preferred networks varies from 32.1% to
68%, indicating it is not ubiquitous and hence the need
for a mechanism for predicting Wi-Fi availability.

2. The number of bluetooth devices and the fraction of
times they are visible (49.6% to 77.2%) are encourag-
ing to base a prediction scheme on them.

One half of the data was used for training and the other
half for testing.

6.2 Coverage and Accuracy
We measure the accuracy and coverage of using blue-

tooth and cell-tower data individually for prediction, high-
light their complementary properties and demonstrate the
benefits of using them in conjunction in the hybrid scheme.

Bluetooth based Prediction: Figures 5 and 6 show the
accuracy and coverage (in %) for bluetooth-based prediction
for the different users, for varying values of the prediction
reliability threshold, τ . We observe that accuracy is directly
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User Duration (weeks) Cell-Towers* Wi-Fi SSIDs* Bluetooth Devices*
Preferred All

U1 2 121 (99%) 48.1% 490 (76.1%) 159 (50.1%)
U2 2 337 (99%) 56% 1156 (84.5%) 194 (71%)
U3 2 191 (98%) 32.1% 731 (68.1%) 181 (51.2%)
U4 2 287 (99%) 36% 846 (54.3%) 133 (66.4%)
U5 2 101 (99%) 68% 744 (81.2%) 99 (77.2%)
U6 2 202 (98%) 44.3% 553 (65.2%) 152 (49.6%)
U7 2 221 (99%) 55.8% 701 (77.4%) 201 (55.1%)
U8 2 188 (99%) 67.3% 553 (86.1%) 199 (51.8%)
U9 2 241 (98%) 58% 552 (71.1%) 288 (59.3%)
U10 2 302 (100%) 60.3% 774 (80.8%) 222 (63.7%)
U11 2 254 (99%) 53.2% 691 (63.7%) 241 (66.4%)
U12 2 198 (98%) 54.1% 801 (70.2%) 201 (62.2%)
( * − Fraction of times when at least one signal was observed on that interface)

Table 4: Details of logs collected by users

Figure 5: Accuracy of Bluetooth-based Prediction

proportional to τ while coverage is inversely proportional
with τ . Due to the limited range of bluetooth, the average
accuracy of the prediction is high (87.25%), but the aver-
age coverage is low (61%). High accuracy but low coverage
leads to erroneous conclusions of lack of Wi-Fi availability
even in their presence. U4 and U5 have coverage of near
80% indicating that if a user visits very few places routinely,
bluetooth-based prediction can provide good coverage.

Cell-Tower based Prediction: Cell-tower based pre-
diction has complementary properties to bluetooth based
prediction. We see high average coverage of 93.5% but an
average accuracy of only 59.66% (Figures 7 and 8). Note
that U5 has a high accuracy of close to 80%. If a user’s
movements in a given area (when in range of a cell-tower)
is limited, then cell-tower based prediction can be sufficient.
Again, accuracy is directly proportional to τ while coverage
is inversely proportional with τ . High coverage and low ac-
curacy lead to wastage of energy in unnecessary scanning
for Wi-Fi networks when there are none.

Hybrid Prediction: The Hybrid Scheme combines the
advantage of both the earlier schemes and shows coverage
of 93.5% and an accuracy of 84.2% for τ = 0.8. Figure 9
plots the accuracy and coverage of the hybrid prediction
scheme. This is a 47% improvement in accuracy over the
pure cell-tower based prediction and a 57% improvement in
coverage over pure bluetooth based prediction scheme. We
believe this to be an encouraging validation for the usage

Figure 6: Coverage of Bluetooth-based Prediction

Figure 7: Accuracy of Cell-Tower based Prediction

of bluetooth contact-patterns and cell-tower information in
tandem for inferring contexts.

6.3 Prediction Reliability Threshold (τ)
Picking the right threshold for a given file transfer influ-

ences the expected energy loss due to erroneous predictions.
We measured how the energy loss, Ewaste, varies with the
prediction reliability threshold, τ , for different transfer sizes.
We used the values of ec = 100 J/MB, ew = 5 J/MB and Ep

= 5 J [12]. Figure 10 plots the results for U3. The optimal
threshold for the 100 KB transfer is 0.6 while it is 0.7 for
higher file transfers. Smaller transfer sizes are more sensi-
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Figure 8: Coverage of Cell-Tower based Prediction

Figure 9: Hybrid Scheme combines the Accuracy
and Coverage of Bluetooth and Cellular Contexts

tive to τ . Note the sharp variation in the value of Ewaste on
either side of τ = 0.6 for the 100 KB download. We see a
plateau after the value of τ exceeds 0.7 for transfer sizes of
1 MB and 10 MB.

Across other users, we note that the optimal value of τ
varies between 0.5 and 0.7 for the 100 KB download, and
between 0.7 and 0.8 for the 1 Mb and 10 MB transfer. In-
terestingly, for users U2 and U8, the optimal value of τ is
0.7 for all download sizes.

6.4 Periodic Discovery
Recall that Blue-Fi deals with bluetooth’s high discov-

ery time by periodic discovery and using the latest discov-
ered list. It uses euclidean distance between cell tower fin-
gerprints to avoid bluetooth scans if a device is stationary.
Threshold for variation in euclidean distance, EDT , was cal-
culated from the readings in L when the user was continu-
ously in the presence of the same Wi-Fi BSSID provided
by one of his preferred networks, and landmark devices (we
fixed a minimum of five readings). Table 5 lists the EDT

values calibrated by the different devices using Wp BSSIDs
and landmark devices. True to intuition, we observe that
EDT values obtained using landmark bluetooth devices is
smaller than those obtained using Wi-Fi BSSIDs as refer-
ence, as the range of bluetooth signals is significantly lower
than Wi-Fi networks. Also, the diversity in values of EDT

across different users indicates that individual devices cali-
brating themselves is better than fixing a uniform value.

We evaluate change in accuracy and coverage of bluetooth
based prediction when periodic discovery is performed for
periods of 10 minutes, 15 minutes and 30 minutes. We see
negligible reduction in accuracy and coverage because of us-
ing the last discovered list compared to on-demand discov-
ery.(see Figures 11 and 12).

Figure 10: Expected Energy Wastage per KB for
different file transfers

User Preferred Networks Landmark Devices
U1 4.1 1.2
U2 5.6 1.6
U3 2.5 2.2
U4 6.7 1.1
U5 6.6 1.9
U6 3.2 0.9
U7 2.1 2.2
U8 4.4 1.8
U9 3.1 2.7
U10 4.9 1.2
U11 4.1 2.2
U12 2.2 2.4

Table 5: Calibrated value of threshold for Euclidean
Distance, EDT , using BSSIDs of preferred Wi-Fi
networks (Wp) and landmark bluetooth devices

6.5 Energy Consumption
We evaluated the energy consumption of our schemes and

compared it to other schemes using a workload that models
commonly used background applications like email synchro-
nizers and RSS feed readers. Background applications use a
“pull” model by periodically polling the server for new data
and synchronizing the copy on the mobile device with the
server. Our workload consists of periodic synchronization
activities of 100 to 200 KB. Using the full battery capacity
of the phone, we measure the number of such synchroniza-
tions performed before the phone runs out of power (total
capacity of 16200 J).

We compare our hybrid prediction scheme with two com-
monly used modes of network usage in practice: (a) use the
cellular interface always (Ecellular), and (b) scan and check
for Wi-Fi availability always − use Wi-Fi if available, cellu-
lar connectivity otherwise (EWi−F i).

For our twelve users, we report encouraging improvements
of 19-62% compared to Ecellular and 20-40% compared to
EWi−F i. In addition, we make the following observations:

• Preferred Networks: The overall fraction of times
when a user has Wi-Fi connectivity also affects the
gains compared to Ecellular and EWi−F i. The overall
coverage of Wi-Fi networks vary from 32.1% to 68% of
the time for our twelve users. Figure 14 plots the gains
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Figure 11: Reduction in Accuracy because of peri-
odic Bluetooth discovery

Figure 12: Reduction in Coverage because of peri-
odic Bluetooth discovery

compared to Ecellular and EWi−F i. When the fraction
of Wi-Fi coverage is low, the device ends up using the
cellular interface most times and hence the gains com-
pared to Ecellular are limited. Low fraction of Wi-Fi
coverage potentially leads to many wasteful scans and
hence the utility of prediction is high (compared to
EWi−F i). For a high fraction of Wi-Fi coverage, the
probability of a scan finding Wi-Fi connectivity is high
and hence the value of prediction is limited.

• Download Size: The performance of Wi-Fi predic-
tion schemes vary depending on the amount of data
downloaded in every round. Figure 13 plots the gain
for varying data sizes. The gains compared to Ecellular

reduces for small downloads. For small downloads,
the energy difference between using the cellular inter-
face and Wi-Fi (when available) is limited. The gains
compared to EWi−F i on the other hand, decreases for
large downloads. Large downloads amortize the energy
wastage due to incorrect Wi-Fi scanning (i.e., scanning
when there is no Wi-Fi connectivity) and the advan-
tage of using prediction schemes is limited.

• Lifetime: The percentage increase in the device’s bat-
tery lifetime is the same as the percentage increase in
the number of synchronizations; the actual increase in
lifetime is a function of the synchronization frequency.
For downloads of 100 KB, and synchronization fre-
quencies of 1 minute and 5 minutes, we see that the
lifetime of the device compared to Ecellular increases
by 1.05 to 5.23 hours, and 5.25 to 26.15 hours respec-
tively for our users. The corresponding numbers com-
pared to EWi−F i are 5.51 to 7.78 hours, and 27.5 to
38.9 hours. We make the assumption that the mobile
device is not expending power on any other activity.

Figure 13: Gains compared to Ecellular and EWi−F i

vary with download size for U3

Figure 14: Savings compared to Ecellular and EWi−F i

vary with overall Wi-Fi coverage

6.6 Landmark and Personal Devices
Now we evaluate the clustering techniques for identifying

landmark and personal devices.
Landmark Devices: Users were given a bluetooth mouse

to be kept at their house during the log collection process.
This is the landmark device we aim to identify. Figure 15
plots the diversity of the devices in our log for user U2. Even
if a device is sighted only at the same location, the require-
ment that it has to be sighted every time the user is at that
location ensures that we correctly identify the landmark de-
vices without false positives or false negatives.

Note that the majority of the devices have a very low value
of diversity. This implies that users have a spatial corelation
with the bluetooth devices they encounter − users see most
bluetooth devices only at select locations. We consider this
as a validation of our technique for using bluetooth contact-
patterns for providing context.

Personal Devices: Along with our i-mate PDA, users
carried a bluetooth headset with them most of the time and
also their personal phones with bluetooth on always. Fig-
ure 16 plots the fraction of entries in which a device occurs
in the log for user U2. The two devices at the top correspond
to the user’s phone and bluetooth headset.

6.7 Collaborative Prediction
Sharing of Wi-Fi information among devices helps im-

prove the coverage of Blue-Fi. In our logs, we calculated
the fraction of times when at least one bluetooth device
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Figure 15: Distribution of diversity of bluetooth de-
vices

Figure 16: Distribution of the fraction of occurrence
of bluetooth devices in the log

(not a landmark device) was present in the log and a Wi-Fi
network from Wc was available. This represents the upper-
bound on the coverage achievable by peer-to-peer sharing.
The accuracy with peer-to-peer sharing can be 100% if cor-
rect information is provided by the nearby devices. Table 6
lists these numbers and contrasts it with the coverage of
the bluetooth based prediction scheme. We compare it with
bluetooth based prediction because it has the highest ac-
curacy. Global sharing takes advantage of landmark devices
too and hence achieves a higher coverage. Overall, we see an
encouraging result that coverage can reach up to 90% pre-
senting an overall improvement of up to 36.2%. Note that
the accuracy of the prediction depends on the correctness of
the information provided by the devices.

7. ENHANCEMENTS TO BLUE-FI
We now present useful additions to Blue-Fi − detect-

ing open access points that are browser-authenticated, and
multi-hop bluetooth discovery.

7.1 Connectable Access Points
Recall that Blue-Fi needs to know the list of Wi-Fi net-

works it is allowed to connect, Wc. Most devices store the set
of Wi-Fi networks to which it has connected in the past [13].
Commonly used operating systems like Windows XP, Linux
or Mac OS, this list is stored under“preferred networks”. Wc

is initialized with this list.
In addition to predicting Wi-Fi availability, Blue-Fi also

User τ = 0.8 p2p Global
U1 59.6% 68.3% 79.4%
U2 57.8% 72.2% 84.5%
U3 51.1% 78.4% 86.3%
U4 73.4% 78.8% 89.1%
U5 74.2% 81.8% 90.1%
U6 50.2% 66.5% 88.1%
U7 58.8% 71.1% 90.1%
U8 61.2% 69.4% 83.3%
U9 44.6% 65.1% 80.8%
U10 60.2% 70.8% 76.4%
U11 60.1% 72.2% 77.3%
U12 64.5% 70.9% 73.2%

Table 6: Improvement in Coverage because of peer-
to-peer and global sharing

aims to learn new access points that provide connectivity,
i.e., open or unsecured wireless networks. However, the
presence of an open network does not automatically imply
connectivity. Often times, web requests are redirected to
authentication pages and this section aims to detect such
access points and discard them from prediction operations.
We choose not to employ an exclusive and dedicated server
for testing redirection as we believe it is more advantageous
in terms of deployability and scalability to use popular web-
servers already available on the Internet. Since majority of
the traffic on the Internet is HTTP based, we test redirec-
tion only for port 80. Note that the problem of picking the
best available access point is orthogonal to our work.

Redirection happens after the device has connected and
obtained a DHCP assigned address. Web requests are ini-
tially redirected to an authentication webpage. But note
that redirections (HTTP response code 301) in themselves
do not represent browser-authentication as they are rou-
tinely used in many web servers. We present two techniques
that detect browser-authentication by essentially making a
request for a URL with known characteristics and comparing
if the response is as expected.

1. Response Size: Typically authentication webpages
are a few 10’s to 100’s of kilobytes. Blue-Fi makes a
request for a large file (say, a few megabytes) whose
size is known, and check the size of the response.

2. Secure HTTP: Authentication webpages use the se-
cure version of HTTP (https://). A secure response
(https://) for a request for an unsecured webpage (http:
//) indicates browser-level authentication.

The techniques presented above are used to identify open
networks that require browser-authentication and are dis-
carded. The rest can be passed to a Wi-Fi profiling system
like Virgil [9] for further connectivity tests (like throughput
and latency), the results of which would be stored in Wc.

We evaluate the accuracy of the identification of browser-
authenticated Wi-Fi networks. We collected 19 redirected
webpages from open access points in coffee shops, airports
and universities. We used webpages from popular web-
servers for our testing. Requests for large files were made
to podcast media files on popular news webservers (e.g., on
cnn.com and nytimes.com). The popular webservers have
archiving facilities allowing access to old files. We also made
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requests to popular webservers that did not require commu-
nication over secure HTTP (google.com and live.com).

Checking using the size of the response is most accurate
identifying all the pages in our redirected pages dataset.
The dataset had an average size of 62 KB and a mini-
mum and maximum of 13 KB and 132 KB respectively.
Secure HTTP identifies only 68.4% of the authentication
pages. This is because splash screens and end-user-license-
agreement (EULA) notices are also served over unsecure
HTTP. Differentiating between authentication webpages, and
EULA and splash screens is part of future work.

7.2 Multi-hop Bluetooth Discovery
The discrepancy between the Wi-Fi and the bluetooth

ranges (i.e., 100m vs 10m) is the main reason behind the
high accuracy of bluetooth prediction. On the downside,
this discrepancy leads to low coverage, as a bluetooth de-
vice may not be able to discover other nearby devices, even
though all devices are in the same Wi-Fi coverage.

One possible solution to reduce the discrepancy between
the Wi-Fi and bluetooth ranges is to use multi-hop bluetooth
discovery. A device establishes a connection with each device
present in its immediate range, and queries for devices that
are in its range, recursively, for a preset number of hops.
This way, a mobile device will discover bluetooth devices
beyond its bluetooth range. This technique allows one to
trade accuracy for coverage: the higher the number of hops
the higher the coverage and the lower the accuracy. The
overhead of multi-hop bluetooth discovery can be reduced
using the technique described in Section 3.

We performed an initial evaluation of the multi-hop dis-
covery protocol by placing bluetooth monitoring devices in
a large lab area where the bluetooth devices tend to be clus-
tered in two groups. We were able to see an increase of up
to 234% in the number of discovered bluetooth devices by
using multi-hop discovery.

8. DISCUSSION
In this section, we discuss extensions to Blue-Fi along with

fugure work: deploy “reference” devices to increase predic-
tion coverage, and use correlated observation of bluetooth
devices to improve accuracy.

8.1 Reference Bluetooth Devices
Blue-Fi depends fundamentally of the existence of land-

mark bluetooth devices. However, as the coverage results
suggest, in a non-trivial number of cases, the mobile device
is not able to identify such bluetooth devices. To address
this issue, we propose BlueDust, a pervasive deployment of
reference bluetooth devices spatially distributed in a given
area. These devices are stationary and serve as means of
providing contexts to the user. We envisage reference de-
vices to be simple and inexpensive, for example bluetooth
USB dongles or bluetooth mice. In contrast to Wi-Fi based
indoor monitoring systems [20, 16], BlueDust’s advantage is
power efficiency. Also, a clear benefit of such a system would
be increase in coverage for Blue-Fi.

A simple and practical deployment mechanism, especially
for enterprise environments, is to plug in bluetooth dongles
into desktops [20]. Reference devices can also be placed us-
ing systematic techniques. A database contains the locations
of the reference devices.

BlueDust can be used for monitoring the spatial variation

of resouces like cooling (e.g., conference room A is uncom-
fortably cold) and Wi-Fi performance (e.g., Connectivity in
office B is spotty). Users log their sensed data (like Wi-
Fi performance) along with the visible reference bluetooth
devices. The database of the locations of the reference blue-
tooth devices can be used to find the location of the point
at which the data was collected and appropriate analysis
can be conducted. We plan an extensive deployment and
evaluation of BlueDust.

8.2 Prediction Models
Blue-Fi assumes that the sensing of each bluetooth device

is an independent event. But clearly, there is a rich opportu-
nity to incorporate mobility patterns and correlation across
multiple bluetooth devices in our prediction models. Mo-
bility patterns can be used for predicting Wi-Fi availability
— e.g., “Wi-Fi connectivity will be available ten minutes af-
ter you spot the bluetooth device b”. Such predictions are
useful for delay-tolerant applications to appropriately plan
their network activities in future.

Also, predictBT can be augmented to include sets of blue-
tooth devices. This is useful in scenarios when, say, blue-
tooth devices b1 and b2 are not sufficiently reliable on their
own, but whenever sensed together turn out to be reliable
indicators of Wi-Fi availability. Understanding the benefits
of such a correlated predictions on Blue-Fi’s coverage and
accuracy is part of future work.

9. RELATED WORK
Improving energy efficiency of Wi-Fi networks is a long-

standing problem in wireless networks and has been ap-
proached from different directions. Techniques range from
protocol optimizations in the various layers of the network-
ing stack for a single Wi-Fi radio to techniques that leverage
multiple radios on the same device that often involve spe-
cialized infrastructure elements.

The key idea of using a separate low-powered radio to
wake up a high-powered radio was proposed in Wake-on-
Wireless [15]. Wake-on-Wireless proposes the use of a sec-
ond special-purpose radio that serves as a wake-up chan-
nel for a Wi-Fi radio. However the short range custom ra-
dio necessitates multiple intermediate proxies and presence
servers. Also, it requires significant modifications to exist-
ing mobile devices. While On-Demand-Paging [27] builds on
this idea to use the widely available Bluetooth radio as the
low-powered channel, it still needs substantial infrastructure
support in the form of specialized access points that have
both Wi-Fi and bluetooth interfaces. Cell2Notify [28] uses
the cellular interface to wake up the Wi-Fi interfaces on an
incoming VOIP call using specialized servers. In contrast,
Blue-Fi does not require any modification to the existing in-
frastructure and can be deployed readily on mobile devices.

War-driving has been performed in prior work that col-
lects and maps the Wi-Fi access points [7, 10, 24]. War-
driving is an expensive operation requiring investment of
time and money. While a few major cities have good war-
driving data, the majority of them have scarce or no map-
ping. In contrast, Blue-Fi adopts the approach of users auto-
matically learning their own sorroundings and Wi-Fi avail-
ability. Also, war-driving data tend to become unreliable
and out-dated over time.

Context-for-Wireless [12] aims to provide energy-efficient
ubiquitous wireless connectivity, and their ideas of using

259



cell-tower information for predicting Wi-Fi availability are
closely related to our work. But as we demonstrate cell-
tower information is coarse-grained and can be beneficially
combined with bluetooth contact-patterns for fine-grained
context localization. Intel Place Lab [19, 10] collected ex-
tensive network data on GSM cellular networks for the sake
of positioning Wi-Fi hotspots. To the best of our knowl-
edge, ours is the first work that demonstrates the benefits
of using bluetooth contact-patterns (including mobile blue-
tooth devices) for context localization. We are not aware of
prior work that demonstrates a beneficial convergence of the
bluetooth, cellular and Wi-Fi interfaces.

Our work has been supported by recent studies that show
the existence of bluetooth contact-patterns in devices [11,
26]. CoolSpots [22] proposes the installation of “bluetooth
access-points”, which if deployed widely, strengthens our
idea of using bluetooth contact-patterns for providing con-
text information to mobile devices.

10. CONCLUSIONS
Blue-Fi proposed using bluetooth contact-patterns as con-

text identifiers for predicting Wi-Fi availability. The low
range of bluetooth devices make them accurate predictors
of Wi-Fi availability; we compensated for their lack of cov-
erage by using cell-tower identifiers. Our evaluation with
data collected from real users’ contact-patterns shows en-
couraging results in providing coverage as well as accuracy.

In addition, we also presented techniques to overcome
bluetooth’s high discovery time essentially using periodic
scanning. To speed up the learning process, Blue-Fi uses
collaborative prediction through sharing of logs and Wi-Fi
connectivity details.
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