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Blue Light Rescues Mice from Potentially Fatal Pseudomonas
aeruginosa Burn Infection: Efficacy, Safety, and Mechanism of Action

Tianhong Dai,a,b Asheesh Gupta,a,b,c Ying-Ying Huang,a,b,d Rui Yin,a,b,e Clinton K. Murray,f Mark S. Vrahas,g Margaret E. Sherwood,a

George P. Tegos,a,b,h Michael R. Hamblina,b,i

Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USAa; Department of Dermatology, Harvard Medical School, Boston,

Massachusetts, USAb; Defence Institute of Physiology & Allied Sciences, Delhi, Indiac; Department of Pathology, Guangxi Medical University, Nanning, Guangxi, Chinad;

Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, Chinae; Infectious Disease Service, Brooke Army Medical Center, Fort Sam

Houston, Texas, USAf; Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USAg; Department of Pathology, School of Medicine,

University of New Mexico, Albuquerque, New Mexico, USAh; Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USAi

Blue light has attracted increasing attention due to its intrinsic antimicrobial effect without the addition of exogenous photosen-

sitizers. However, the use of blue light for wound infections has not been established yet. In this study, we demonstrated the effi-

cacy of blue light at 415 nm for the treatment of acute, potentially lethal Pseudomonas aeruginosa burn infections in mice. Our

in vitro studies demonstrated that the inactivation rate of P. aeruginosa cells by blue light was approximately 35-fold higher

than that of keratinocytes (P � 0.0014). Transmission electron microscopy revealed blue light-mediated intracellular damage to

P. aeruginosa cells. Fluorescence spectroscopy suggested that coproporphyrin III and/or uroporphyrin III are possibly the intra-

cellular photosensitive chromophores associated with the blue light inactivation of P. aeruginosa. In vivo studies using an in

vivo bioluminescence imaging technique and an area-under-the-bioluminescence-time-curve (AUBC) analysis showed that a

single exposure of blue light at 55.8 J/cm2, applied 30 min after bacterial inoculation to the infected mouse burns, reduced the

AUBC by approximately 100-fold in comparison with untreated and infected mouse burns (P < 0.0001). Histological analyses

and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assays indicated no significant

damage in the mouse skin exposed to blue light at the effective antimicrobial dose. Survival analyses revealed that blue light in-

creased the survival rate of the infected mice from 18.2% to 100% (P < 0.0001). In conclusion, blue light therapy might offer an

effective and safe alternative to conventional antimicrobial therapy for P. aeruginosa burn infections.

Burns are one of the most common and devastating forms of
trauma (1–4). Data from the National Center for Injury Pre-

vention and Control in the United States show that approximately
2 million fires are reported each year, resulting in 1.2 million peo-
ple with burn injuries. Significant thermal injuries induce a state
of immunosuppression that predisposes burn patients to infec-
tious complications (1). Burn infection is one of the most impor-
tant and potentially serious complications that occur in the acute
period following injury (2, 3, 5). Over the last several decades,
Gram-negative organisms have emerged as the most common eti-
ologic agents of invasive infection by virtue of their large reper-
toire of virulence factors and antimicrobial resistance traits (1, 6).
Among Gram-negative organisms, Pseudomonas aeruginosa is one
of the more feared bacterial pathogens because it is often resistant
to current therapeutic modalities (5). Emerging antimicrobial re-
sistance trends in burn wound bacterial pathogens represent a
serious therapeutic challenge for clinicians caring for burn pa-
tients (1). As a result, a major research effort has been led to find
alternative antimicrobial approaches to which, it is hypothesized,
bacteria will not be easily able to develop resistance. In a recent
paper published in Nature Reviews Microbiology, Karen Bush and
a group of 30 scientists from academia and industry pointed out
that, “The investigation of novel non-antibiotic approaches for
the prevention of and protection against infectious diseases
should be encouraged, and such approaches must be high-priority
research and development projects” (7).

As a nonantibiotic approach, the development of light-based
antimicrobial therapy, including photodynamic therapy (PDT)
(8–13) and UVC irradiation therapy (14–19), has been extensively

investigated as an alternative to conventional antibiotics. An ad-
vantage of light-based antimicrobial therapies includes their equal
killing effectiveness regardless of antibiotic resistance. However,
two major disadvantages of PDT as a two-part (photosensitizer
plus light) combination approach are the challenge of introducing
photosensitizers into certain bacteria (20) and into infected tissues
and the less-than-perfect selectivity of many photosensitizers for
microbial cells over host tissue. The use of UVC irradiation, on the
other hand, has different limitations due to its detrimental effects
on mammalian cells and possible damage to host tissue, including
carcinogenesis (17).

Another novel light-based approach, blue light therapy, is at-
tracting increasing attention due to its intrinsic antimicrobial ef-
fect without the addition of exogenous photosensitizers (21–25).
In addition, it is accepted that blue light is much less detrimental
to mammalian cells than UV irradiation (26, 27). Blue light has
already been used clinically for the treatment of inflammatory
acne (28–31). However, the efficacy of blue light for wound infec-
tions has not been established. The majority of the publications on
the antimicrobial effect of blue light have been confined to in vitro
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studies (22–24, 32, 33). There have been (rather surprisingly) no
published preclinical or clinical reports to demonstrate blue light
therapy for wound infections.

In this study, we investigated the use of blue light for mouse
burns infected with Pseudomonas aeruginosa. To the best of our
knowledge, this study is the first in vivo study on the use of blue
light for wound infections.

MATERIALS AND METHODS

Light source. The light source we used was an Omnilux Clear-U light-
emitting diode (LED) array (Photo Therapeutics, Inc., Carlsbad, CA)
that emitted blue light at a center wavelength of 415 nm with a full
width at half-maximum (FWHM) of 20 nm (Fig. 1). The irradiance of
blue light on the target surface was adjusted by manipulating the dis-
tance between the LED array aperture and the target (cell culture or
mouse burns), and it was measured using a PM100D power/energy
meter (Thorlabs, Inc., Newton, NJ).

Pseudomonas aeruginosa strain and culture conditions. The P.
aeruginosa strain that we used was ATCC 19660 (strain 180), which causes
septicemia after intraperitoneal injection (34) and has been shown to be
invasive in mice with skin burns (35). The stable bioluminescent variant
(strain Xen 05) carried the entire bacterial lux operon integrated into its
chromosomes for stable luciferase expression, which allowed it to be used
for bioluminescent imaging (strain Xen 05 was a kind donation from
Xenogen Inc., Alameda, CA) (36).

The bacteria were grown in brain heart infusion (BHI) medium sup-
plemented with 50 �g/ml kanamycin in an orbital incubator (37°C, 100
rpm) to an optical density of 0.6 to 0.8 at 600 nm, which corresponds to
approximately 108 cells/ml. The suspension was centrifuged, washed with
phosphate-buffered saline (PBS), and resuspended in PBS at the same
density for experimental use.

Keratinocytes and culture conditions. Human keratinocytes
(HaCaT) (37) were cultured in 75-cm3 tissue culture flasks in 20 ml Dul-
becco’s modified Eagle’s medium supplemented with 10% heat-inacti-
vated fetal bovine serum, penicillin (100 units/ml), and streptomycin (100
�g/ml) (Sigma, St. Louis, MO). Cells were incubated at 37°C in 95%
air-5% CO2 in a humidified incubator for 2 to 3 days until the cell mono-
layer became confluent. The growth medium was replaced every 3 days.
Upon reaching at least 70% confluence, the cells were washed with PBS
and trypsinized for 10 min at 37°C with 0.25% trypsin-0.02% EDTA
(Sigma). The cell suspension was centrifuged, washed with PBS, and re-
suspended in HEPES buffer (catalog no. A14291 DJ; Life Technologies
Corp., Grand Island, NY) to a defined cell density (measured by hemocy-
tometer) for experimental use.

Blue light inactivation of P. aeruginosa in vitro. Three milliliters P.
aeruginosa suspension at 108 CFU/ml in PBS was placed into 35-mm petri
dishes. The suspension was irradiated with a blue light LED array at an
irradiance of 19.5 mW/cm2 with the lid of the petri dish removed. During

the irradiation, the P. aeruginosa suspension was stirred by a mini-mag-
netic bar (Fisher Scientific Co., Norcross, GA). Aliquots of 40 �l of the
suspension were withdrawn at 0, 12, 24, 48, 72, and 96 min, respectively,
when 0, 14.0, 28.0, 56.1, 84.2, and 109.9 J/cm2 blue light had been deliv-
ered. The numbers of CFU were then determined by serial dilutions on
BHI agar plates according to the method of Jett et al. (38). Colonies were
allowed to grow for 18 to 24 h at 37°C. The experiments were performed
in triplicate.

Blue light irradiation of keratinocytes in vitro. Three milliliters ke-
ratinocyte suspension at 106 cell/ml in HEPES buffer was placed into
35-mm petri dishes at room temperature (21°C). The suspension was
irradiated with the blue light LED array at an irradiance of 19.5 mW/cm2

with the lid of the petri dish removed. During the irradiation, the kerati-
nocyte suspension was stirred by a mini-magnetic bar. Aliquots of 40 �l of
the suspension were withdrawn at 0, 12, 24, 48, 72, and 96 min, respec-
tively, when 0, 14.0, 28.0, 56.1, 84.2, and 109.9 J/cm2 blue light had been
delivered. Viable counts were determined immediately by mixing each
sample with an equal volume of 0.4% (wt/vol) trypan blue and transfer-
ring the mixture to a hemocytometer. The cell survival percentage was
calculated as the ratio of the number of viable cells (unstained cells) to the
total number of cells. The experiments were performed in triplicate.

Transmission electron microscopy. Untreated and blue light-treated
P. aeruginosa cells were fixed in 2.5% glutaraldehyde plus 2% paraformal-
dehyde immediately after blue light illumination and stored overnight at
4°C. After spinning down (1,200 rpm, 10 min) and decanting the fixative,
0.1 M sodium cacodylate buffer (pH 7.2) was added to the pellets. After
fixation, hot agar (2% in distilled water, heated to boiling) was immedi-
ately added to each pellet. As soon as the agar had solidified, the cell pellets
were then processed routinely, as any other tissue, for transmission elec-
tron microscopy (TEM). The cell pellets were postfixed in 2% OsO4 in
sodium cacodylate buffer, dehydrated in a graded alcohol series, and em-
bedded in Epon t812 (Tousimis, Rockville, MD). Ultrathin sections were
cut on a Reichert-Jung Ultracut E microtome (Vienna, Austria), collected
on uncoated 200-mesh copper grids, stained with uranyl acetate and lead
citrate, and examined on a Philips CM-10 transmission electron micro-
scope (Eindhoven, The Netherlands).

Fluorescence spectroscopy. To identify the porphyrins within P.

aeruginosa cells, an overnight P. aeruginosa culture was centrifuged,
washed with PBS, and centrifuged again, and then the supernatant was
removed. The P. aeruginosa pellets were added to 1 ml of a mixture of 0.1
M NaOH-1% sodium dodecyl sulfate (SDS) and allowed to stand in the
dark for 1 day. Fluorescence of the dissolved P. aeruginosa pellets in
NaOH-SDS (in a cuvette 1 cm thick) was measured on a fluorimeter
(FluoroMax 3; SPEX Industries, Edison, NJ), with excitation set at 405 nm
and emission scanned from 580 to 700 nm.

P. aeruginosa burn infection in mice. Adult 7- to 8-week-old female
BALB/c mice weighing 17 to 21 g were obtained from Charles River Lab-
oratories (Wilmington, MA). The animals were housed one per cage with
access to food and water ad libitum and were maintained on a 12-hour
light-dark cycle at a room temperature of around 21°C and a relative
humidity range of 30 to 70%. All animal procedures were approved by the
Subcommittee on Research Animal Care (IACUC) of the Massachusetts
General Hospital and were in accordance with the guidelines of the Na-
tional Institutes of Health (NIH).

Before the creation of burns, the mice were anesthetized by intraper-
itoneal (i.p.) injection of a ketamine-xylazine cocktail and shaved on the
dorsal surfaces. Burns were incurred by applying a preheated (�95°C)
brass block to the dorsal surface of each mouse for 3 s, resulting in non-
lethal full-thickness third-degree burns measuring approximately 1.2 cm
by 1.2 cm. Five min after incurrence of the burn, a 60-�l bacterial suspen-
sion containing 3 � 106 CFU was topically applied to the eschar of each
burn.

Bioluminescence imaging. The setup consisted of an intensified
charge-coupled-device (ICCD) camera (model C2400-30H; Hamamatsu
Photonics, Bridgewater, NJ), a camera controller, an imaging box, an

FIG 1 Emission spectrum of Omnilux blue LED.
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image processor (C5510-50; Hamamatsu), and a color monitor (PVM
1454Q; Hamamatsu). Light-emitting diodes are mounted inside the im-
aging box and supply the light required for obtaining dimensional imag-
ing of the sample. Under the photo-counting mode, a clear image can be
obtained even at extremely low-light levels by detecting and integrating
individual photons one by one.

Prior to imaging, the mice were anesthetized by i.p. injections of a
ketamine-xylazine cocktail. The mice were then placed on an adjustable
stage in the specimen chamber, and the infected burns were positioned
directly under the camera. A grayscale background image of each wound
was made, and this was followed by a photon count of the same region.
This entire burn photon count was quantified as relative luminescence
units (RLUs) and was displayed in a false-color scale ranging from pink
(most intense) to blue (least intense).

Blue light therapy of mouse burns infected with P. aeruginosa. Blue
light was initiated at 30 min after bacterial inoculation with the irradiance
of 14.6 mW/cm2. The mice were given a total light exposure of up to 55.8
J/cm2 in aliquots with bioluminescence imaging taking place after each
aliquot of light. To record the time course of the extent of bacterial infec-
tion, the bacterial luminescence from mouse burns was measured daily
after blue light therapy until the infections were cured (characterized by
the disappearance of bacterial luminescence) or the burns were healed.

TUNEL assays. Mouse skin was exposed to blue light at an antimicro-
bial dose of 55.8 J/cm2. Skin biopsy specimens were taken before and at 0,
24, and 48 h after blue light exposure. The biopsy samples were preserved
in 10% phosphate-buffered formalin (Fisher Scientific Co.) for 18 to 24 h,
processed, and then embedded in paraffin. Serial 4-�m-thick tissue sec-
tions were subjected to a terminal deoxynucleotidyltransferase-mediated
dUTP-biotin nick end labeling (TUNEL) assay using the FragEL DNA
fragmentation detection kit (EMD Millipore, MA) according to the man-
ufacturer’s instructions. Briefly, following deparaffinization and rehydra-
tion, sections were permeabilized with proteinase K for 20 min, incubated
with a reaction mixture containing terminal deoxynucleotidyl transferase
(TdT) and fluorescein-labeled and unlabeled deoxynucleotides for 2 h at
room temperature, washed with Tris-buffered saline (TBS), and cover-
slipped with mounting medium including 4=,6-diamidino-2-phenylin-
dole (DAPI) (SlowFade Gold anti-fade reagent; Invitrogen, CA). Negative
controls were treated by substituting distilled water (dH2O) for the TdT
enzyme in the reaction mixture. Stained samples were observed by con-
focal microscopy (FluoView FV1000-MPE; Olympus Corporation, To-
kyo, Japan) by using fluorescein isothiocyanate (FITC) as the fluor and
DAPI as the nuclear counterstain. Images were acquired using Olympus
FluoView FV10-ASW software (version 3.0a, Olympus Corporation).

Since penetration depth is less than 1 mm for blue light and is therefore
confined to the epidermis (37), we only examined the epidermal cell DNA
fragmentation by TUNEL staining.

Statistical analyses. The cell inactivation rates (slopes of the survival
curves) were compared for statistical significance using a Student t test. In
a two-dimensional coordinate system, the area-under-the-biolumines-
cence-curve (AUBC) data, which represent the time courses of bacterial
luminescence of the mouse burns and also a common approach for the
analysis of antimicrobial effects of drugs (39), were calculated using nu-
merical integration (40). The difference in the AUBC between the un-
treated control and the blue light-treated groups was also compared for
statistical significance using a Student t test. Kaplan-Meier survival curves
were compared by the use of a log rank test. P values of �0.05 were
considered significant for all statistical analyses.

RESULTS

Blue light selectively inactivated P. aeruginosa in vitro over
keratinocytes. The results for the blue light inactivation of P.
aeruginosa and keratinocytes in vitro are shown in Fig. 2. The
inactivation curves approximately followed first-order kinetics
(41), a linear relation between the log-transformed cell survival
fraction log10(N/N0) and blue light exposure H, i.e., log10(N/

N0) � �kHH, where N is the CFU count at the blue light expo-
sure H, N0 is the initial CFU count, and kH is the cell inactiva-
tion rate coefficient (or the slope of the inactivation curve)
(42).

When 109.9 J/cm2 blue light had been delivered (96 min of
illumination at an irradiance of 19.5 mW/cm2), an approximately
7.64-log10-cycle CFU inactivation of P. aeruginosa was achieved.
In contrast, the inactivation rate for HaCaT was much lower than
that for P. aeruginosa under the same blue light irradiation condi-
tion. When 109.9 J/cm2 blue light had been delivered, only a 0.16-
log10-cycle loss of viability of HaCaT was observed (Fig. 1), result-
ing in a 7.48-log10 inactivation selectivity of P. aeruginosa cells
over HaCaT. The mean inactivation rate coefficients (kH) of P.
aeruginosa and HaCaT were 0.067 and 0.002 cm2/J, respectively,
indicating an approximately 34-fold higher inactivation rate of P.
aeruginosa by blue light than HaCaT (P � 0.0014).

Transmission electron microscopy (Fig. 3) revealed apparent
steps in blue light-mediated inactivation of P. aeruginosa, begin-
ning with the development of vacuoles within the cytoplasm (Fig.
3B), the release of cytoplasmic material to the surrounding envi-
ronment (Fig. 3C), and, finally, significant cytoplasmic disruption
(Fig. 3D).

Intracellular coproporphyrin III and/or uroporphyrin III
was associated with the blue light inactivation of P. aeruginosa.
The fluorescence spectrum (excitation at 405 nm) of the P. aerugi-
nosa cells dissolved in NaOH-SDS is shown in Fig. 4. The spectra
peaked at 613 and 667 nm, which are very close to the typical
fluorescence emissions of coproporphyrin III and uroporphyrin
III at the same excitation of 405 nm (43), suggesting that copro-
porphyrin III and/or uroporphyrin III within the P. aeruginosa
cells was the photosensitizing chromophore associated with the
antimicrobial effect of blue light.

Blue light rescued mice from otherwise lethal P. aeruginosa
burn infection. Figure 5A and B show the successive biolumines-
cence images of representative full-thickness mouse burns (1.2 cm
by 1.2 cm) infected with 3 � 106 CFU of luminescent P. aerugi-
nosa, with and without blue light therapy, respectively. Blue light
(415 nm) was delivered at 30 min after bacterial inoculation. Bac-
terial luminescence was completely eliminated after 55.8 J/cm2

blue light had been delivered (62 min of illumination at an irradi-
ance of 14.6 mW/cm2) (Fig. 5A), while in the untreated mouse
burn, infection steadily developed with time (Fig. 5B), and the
mouse died at 72 h (day 3) after bacterial inoculation. Lumines-
cent P. aeruginosa was detected in the blood culture of the dead
mouse, indicating that the mouse died of sepsis.

FIG 2 Dose response of blue light inactivation of P. aeruginosa (�) and kera-
tinocytes (Œ) in vitro.
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Figure 5C shows the average reduction in bacterial lumines-
cence from 11 mice, each of which was exposed to blue light. The
in vivo inactivation curve also approximately followed first-order
kinetics. After 55.8 J/cm2 blue light had been delivered, an average
3.5-log10-cycle reduction of bacterial luminescence was achieved
in a light dose-dependent manner, with the bacterial inactivation
rate coefficient kH at approximately 0.064 J/cm2.

Figure 5D shows the time courses of the mean bacterial lumi-
nescence (in RLUs) from day 1 to day 3 of the blue light-treated
mice (n � 11) and untreated mice (n � 11). The RLU values of the
blue light-treated group were significantly lower than those of the
untreated group from day 1 to day 3 (P � 0.0008 on day 1; P �

6.11 � 10�5 on day 2; P � 0.049 on day 3). The AUBC of the biolu-
minescence time course (from day 1 to day 2, i.e., the time period
before most of the mortalities occurred) were (1.19 � 2.57) � 105

and (8.91 � 4.53) � 106 for blue light-treated mice and untreated
mice, respectively (P � 0.0001) (Fig. 5E), indicating an approxi-

mately 100-fold reduction of the AUBC resulting from acute blue
light treatment.

All the treated mice (n � 11) survived after acute blue light
treatment, while only 18.2% (2 out of 11) of the mice survived
without acute blue light treatment (P � 0.0001) (Fig. 5F). Most of
the mortalities (6 out of 9) occurred on day 3 (72 h) after bacterial
inoculation.

No significant or irreversible damage was observed in the
mouse skin exposed to blue light at the effective antimicrobial
dose. Figure 6A shows hematoxylin and eosin-stained histological
sections of a representative mouse skin exposed to blue light at a
dose of 55.8 J/cm2. Immediately after the blue light exposure,
swelling of the nuclei of basal cells and slight edema in the upper
dermis were observed. However, at 48 h after blue light exposure,
the epithelium returned to its normal composition, and the col-
lagenous fibers were lined up in order in the dermis.

Figure 6B shows the representative results of TUNEL assays
of mouse skin exposed to blue light. A blue light exposure of
55.8 J/cm2 led to almost no apoptotic cells in the epidermis
immediately after blue light exposure (only one TUNEL-posi-
tive cell was observed in the confocal image). Similarly, a lack
of TUNEL-positive epidermal cells after 24 or 48 h was ob-
served (only one TUNEL-positive cell was observed in each
confocal image). These results demonstrate that blue light ir-
radiation at the therapeutic antimicrobial dose is safe, and no
adverse effects in terms of DNA damage were observed up to 48
h after blue light treatment.

DISCUSSION

We report here for the first time an in vivo study demonstrating
the efficacy of blue light for P. aeruginosa burn infection in mice.

FIG 3 Transmission electron microscopy of P. aeruginosa cells. (A) Untreated P. aeruginosa cells. Bar � 100 nm. (B to D) P. aeruginosa cells after being exposed
to 109.9 J/cm2 blue light: development of vacuoles within the cytoplasm (B) (bar � 100 nm), release of cytoplasmic material to the surrounding environment (C)
(bar � 500 nm), and complete disappearance of cytoplasm (D) (bar � 100 nm).

FIG 4 Fluorescence spectra of P. aeruginosa cell pellets from overnight culture
dissolved in NaOH-SDS. Excitation wavelength, 405 nm.
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The study might serve as an initial effort in the pursuit of a
novel therapeutic option, blue light therapy, for wound infec-
tions, especially those caused by multidrug-resistant bacteria.
Thus, the first and most important impact is through opening a
new area of study on a different therapeutic regimen for wound
infections.

It was found in our in vitro study that P. aeruginosa was much
more susceptible to blue light inactivation than were HaCaT. As a
result, there exists a therapeutic window where P. aeruginosa can
be selectively inactivated by blue light while the host tissue cells
can be preserved.

We found from the in vivo study that blue light at a 415-nm
wavelength, when applied at 30 min after bacterial inoculation,
effectively reduced the P. aeruginosa burden in mouse burns and

prevented otherwise lethal bacteremia in mice. The P. aeruginosa
strain we used is lethal to mice. Without treatment, the bacteria
can invade deep into the mouse tissue and, subsequently, the
bloodstream within hours and cause bacteremia and mortality of
the animals. Therefore, we initiated blue light therapy very soon
(at 30 min) after bacterial inoculation. Histological analyses and
TUNEL assays revealed no significant or reversible damage in the
mouse skin exposed to blue light at the effective antimicrobial
dose.

An interesting finding of the present study is the equal sus-
ceptibilities of P. aeruginosa cells to blue light inactivation in
vitro and in vivo. The in vitro and in vivo bacterial inactivation
rate coefficients were 0.067 and 0.064 J/cm2, respectively. In
our previous studies on antimicrobial PDT for wound infec-

FIG 5 (A and B) Successive bacterial luminescence images of representative mouse burns infected with 3 � 106 CFU of luminescent P. aeruginosa with
and without blue light (415 nm) exposure, respectively. Blue light was delivered at 30 min after bacterial inoculation. (C) Dose response of mean bacterial
luminescence of mouse burns infected with 3 � 106 CFU of P. aeruginosa and exposed to blue light (415 nm) at 30 min after bacterial inoculation (n �

11). Bars, standard deviations. (D) Time courses of mean bacterial luminescence of the infected skin abrasions with (n � 11) and without (n � 11 at days
1 and 2, n � 4 at day 3) blue light exposure, respectively. Bars, standard deviations. RLU values in the blue light group versus RLU values in the untreated
groups: day 1, P � 0.0008; day 2, P � 6.11 � 10�5; day 3, P � 0.049. (E) Mean areas under the bioluminescence versus time curves (from day 1 to day 2
in the two-dimensional coordinate system in panel D), representing the overall bacterial burden of mouse wounds. Bars, standard deviations. (F)
Kaplan-Meier survival curves of blue light-treated (n � 11) and untreated (n � 11) mouse burns (P � 0.0001).
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tions (8, 11, 44), we observed that, to achieve equivalent
amounts of inactivation of microorganisms, orders-of-magni-
tude-higher light exposures (and higher doses of photosensi-
tizers) were required for in vivo than for in vitro treatment. One
possible major factor responsible for this phenomenon is that
the host tissue and cells compete with the microorganisms for
binding to the exogenous photosensitizer, resulting in a re-
duced efficacy of in vivo microorganism inactivation when the
microorganisms are embedded in the tissue. In contrast, it is
suggested that the inactivation of bacteria by blue light treat-
ment is caused by the photoexcitation of naturally occurring
porphyrins within the bacterial cells, which act as endogenous
photosensitizers. Therefore, competition from surrounding
host tissue and cells for binding photosensitizers does not exist.
One more advantage of antimicrobial blue light therapy is the
highly selective inactivation of bacterial cells over mammalian
cells, because blue light targets the photosensitizing porphyrins
only within the bacterial cells, while mammalian cells (in the
absence of porphyria or added 5-aminolevulanic acid) do not
contain free porphyrins.

We also investigated the mechanism of blue light inactiva-
tion of P. aeruginosa. TEM images showed that blue light-me-
diated damage to P. aeruginosa cells started from the develop-
ment of vacuoles within the cytoplasm, implying that the
damage was associated with the intracellular chromophores
excited by the blue light. By using fluorescence spectroscopy,
we observed that the emission maxima of the P. aeruginosa
pellets dissolved in NaOH-SDS were 613 nm and 667 nm at an
excitation of 405 nm. These emission spectra are very close to
those of uroporphyrin III (emission maxima, 618 nm and 670
nm) and coproporphyrin III (emission maxima, 615 nm and
674 nm) (43). Therefore, it is likely that the photosensitizing
porphyrin within P. aeruginosa cells is uroporphyrin III or co-
proporphyrin III or that both uroporphyrin III and copropor-
phyrin III exist within P. aeruginosa cells. To further identify
and quantify the intracellular porphyrins, future studies using
techniques such as high-performance liquid chromatography
(HPLC) or capillary electrophoresis together with authentic
porphyrin standards are warranted (45).

As we have already stated, we understand that there remain
many unanswered questions. One question that will have to be
addressed in future studies is, “Can bacterial cells develop resis-
tance to blue light inactivation?” To our knowledge, this question
has not yet been experimentally addressed. The possible develop-
ment of bacterial resistance to PDT has been studied. After re-
peated cycles of partial inactivation followed by regrowth, differ-
ent bacterial species failed to develop resistance to PDT after 10
(46) or even 20 (47) cycles. It is commonly accepted that PDT acts
at multiple sites within bacterial cells (structural proteins, en-
zymes, nucleic acids, unsaturated lipids, etc.) (48) and there-
fore would offer less potential for the development of bacterial
resistance than conventional antibiotics, which are usually spe-
cific for a single target. As the mechanism for the antimicrobial
effect of blue light is suggested to be similar to that of PDT, one
can expect that the potential of bacterial resistance develop-
ment to blue light is also less than that of conventional antibi-
otics. However, at the very least, it will be necessary to repeat-
edly deliver suberadication doses of blue light to susceptible
cultures with regrowth between cycles to investigate whether
resistant clones can be selected or whether mutants with lower
accumulation of porphyrins or increased blue light damage-
repairing enzymes can be produced.

In addition, more studies are warranted to deepen our under-
standing of the blue light therapy approach. Examples of such
studies include comparison of the susceptibilities to blue light
inactivation in vitro between pathogenic bacteria and host cells,
including not only keratinocytes but also fibroblasts, endothelial
cells, macrophages, and muscle cells; evaluation of the effects of
blue light on the phagocytosis and reactive oxygen species produc-
tion of macrophages in vitro; and identification of the maximum
safe exposure of mice to blue light in this model.
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