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Abstract

We present a fast, scalable algorithm to generate high-quality blue
noise point distributions of arbitrary density functions. At its core is
a novel formulation of the recently-introduced concept of capacity-
constrained Voronoi tessellation as an optimal transport problem.
This insight leads to a continuous formulation able to enforce the
capacity constraints exactly, unlike previous work. We exploit the
variational nature of this formulation to design an efficient optimiza-
tion technique of point distributions via constrained minimization in
the space of power diagrams. Our mathematical, algorithmic, and
practical contributions lead to high-quality blue noise point sets with
improved spectral and spatial properties.
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1 Introduction

Coined by Ulichney [1987], the term blue noise refers to an even,
isotropic, yet unstructured distribution of points. Blue noise was
first recognized as crucial in dithering of images since it captures
the intensity of an image through its local point density, without in-
troducing artificial structures of its own. It rapidly became prevalent
in various scientific fields, especially in computer graphics, where
its isotropic properties lead to high-quality sampling of multidimen-
sional signals, and its absence of structure prevents aliasing. It has
even been argued that its visual efficacy (used to some extent in
stippling and pointillism) is linked to the presence of a blue-noise
arrangement of photoreceptors in the retina [Yellott 1983].

1.1 Previous Work

Over the years, a variety of research efforts targeting both the charac-
teristics and the generation of blue noise distributions have been con-
ducted in graphics. Arguably the oldest approach to algorithmically
generate point distributions with a good balance between density
control and spatial irregularity is through error diffusion [Floyd and
Steinberg 1976; Ulichney 1987], which is particularly well adapted
to low-level hardware implementation in printers. Concurrently,
a keen interest in uniform, regularity-free distributions appeared
in computer rendering in the context of anti-aliasing [Crow 1977].
Cook [1986] proposed the first dart-throwing algorithm to create
Poisson disk distributions, for which no two points are closer to-
gether than a certain threshold. Considerable efforts followed to
modify and improve this original algorithm [Mitchell 1987; McCool
and Fiume 1992; Jones 2006; Bridson 2007; Gamito and Maddock
2009]. Today’s best Poisson disc algorithms are very efficient and
versatile [Dunbar and Humphreys 2006; Ebeida et al. 2011], even

Figure 1: Memorial. Our variational approach allows sampling of
arbitrary functions (e.g., a high-dynamic range image courtesy of P.
Debevec), producing high-quality, detail-capturing blue noise point
distributions without spurious regular patterns (100K points, 498 s).

running on GPUs [Wei 2008; Bowers et al. 2010; Xiang et al. 2011].
Fast generation of irregular low-discrepancy sequences have also
been proposed [Niederreiter 1992; Lemieux 2009]; however, these
methods based on the radical-inverse function rarely generate high-
quality blue noise.

In an effort to allow fast blue noise generation, the idea of using
patterns computed offline was raised in [Dippé and Wold 1985]. To
remove potential aliasing artifacts due to repeated patterns, Cohen et
al. [2003] recommended the use of non-periodic Wang tiles, which
subsequently led to improved hierarchical sampling [Kopf et al.
2006] and a series of other tile-based alternatives [Ostromoukhov
et al. 2004; Lagae and Dutré 2006; Ostromoukhov 2007]. However,
all precalculated structures used in this family of approaches rely on
the offline generation of high-quality blue noise.

Consequently, a number of researchers focused on developing meth-
ods to compute point sets with high-quality blue noise properties,
typically by evenly distributing points over a domain via Lloyd-based
iterations [McCool and Fiume 1992; Deussen et al. 2000; Secord
2002; Balzer et al. 2009; Xu et al. 2011; Chen et al. 2012], electro-
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static forces [Schmaltz et al. 2010], statistical-mechanics interacting
Gaussian particle models [Fattal 2011], or farthest-point optimiza-
tion [Schlömer et al. 2011]. These iterative methods consistently
generate much improved point distributions, albeit at sometimes
excessive computational complexity.

Finally, recent efforts have provided tools to analyze point sets us-
ing spatial/spectral [Lagae and Dutré 2008; Schlömer and Deussen
2011] and differential [Wei and Wang 2011] methods. Extensions
to anisotropic [Li et al. 2010b; Xu et al. 2012], non-uniform [Wei
and Wang 2011], multiclass [Wei 2010], and general spectrum sam-
pling [Zhou et al. 2012] have also been recently introduced.

1.2 Motivation and Rationale

Despite typically being slower, optimization methods based on iter-
ative displacements of points have consistently been proven supe-
rior to other blue noise generation techniques. With the exception
of [Schmaltz et al. 2010; Fattal 2011], these iterative approaches
rely on Voronoi diagrams and Lloyd’s relaxations [Lloyd 1982]. To
our knowledge, the use of Lloyd’s algorithm for blue noise sampling
was first advocated in [McCool and Fiume 1992] to distribute points
by minimizing the root mean square (RMS) error of the quantiza-
tion of a probability distribution. However, the authors noticed that
a “somewhat suboptimal solution” was desirable to avoid periodic
distribution: Lloyd’s algorithm run to convergence tends to generate
regular regions with point or curve defects, creating visual artifacts.
Hence, a limited number of iterations was used in practice until
Balzer et al. [2009] proposed the use of a Capacity-Constrained
Voronoi Tessellation (CCVT), a rather drastic change in which a con-
straint of equi-area partitioning is added to algorithmically ensure
that each point conveys equal visual importance. However, this origi-
nal approach and its various improvements rely on a discretization of
the capacities, and thus suffer from a quadratic complexity, render-
ing even GPU implementations [Li et al. 2010a] unable to gracefully
scale up to large point sets. Two variants were recently proposed to
improve performance, both providing an approximation of CCVT
by penalizing the area variance of either Voronoi cells [Chen et al.
2012] or Delaunay triangles [Xu et al. 2011].

1.3 Contributions

In this paper, we show that CCVT can be formulated as a cons-
trained optimal transport problem. This insight leads to a continuous
formulation able to enforce the capacity constraints exactly, unlike
related work. The variational nature of our formulation is also
amenable to a fast, scalable, and reliable numerical treatment. Our
resulting algorithm will be shown, through spectral analysis and
comparisons, to generate high-grade blue noise distributions. Key
differences from previous methods include:

• a reformulation of CCVT as a continuous constrained minimiza-
tion based on optimal transport, as opposed to the discretized
approximation suggested in [Balzer and Heck 2008];

• an optimization procedure over the space of power diagrams that
satisfies the capacity constraints up to numerical precision, as op-
posed to an approximate capacity enforcement in the space of De-
launay triangulations [Xu et al. 2011] or Voronoi diagrams [Chen
et al. 2012];

• a regularity-breaking procedure to prevent local aliasing artifacts
that occur in previous approaches.

2 Redefining Blue Noise through Optimal Transport

Before presenting our algorithm for point set generation, we spell out
our definition of blue noise as a constrained transport problem. We
consider an arbitrary domain D over which a piecewise-continuous
positive field ρ (e.g., intensity of an image) is defined.

Figure 2: Fractal. Optimal transport based blue noise sampling of
a Julia set image (20K points). Colors of dots indicate (normalized)
weight values, ranging from -30% to 188% of the average squared
edge length in the regular triangulation. The histogram of the
weights is also shown on top of the color ramp.

2.1 Background

Two crucial geometric notions will be needed. We briefly review
them next for completeness.

Optimal Transport. The optimal transport problem, dating back to
Gaspard Monge [Villani 2009], amounts to determining the optimal
way to move a pile of sand to a hole of the same volume—where
“optimal” means that the integral of the distances by which the sand
is moved (one infinitesimal unit of volume at a time) is minimized.
The minimum “cost” of moving the piled-up sand to the hole, i.e., the
amount of sand that needs to be moved times the Lp distance it has
to be moved, is called the p-Wasserstein metric. The 2-Wasserstein
metric, using the L2 norm, is most common, and is often referred to
as the earth mover’s distance. Optimal transport has recently been
of interest in many scientific fields; see [Mullen et al. 2011; Bonneel
et al. 2011; de Goes et al. 2011] for graphics applications.

Power Diagrams. From a point set X = {xi}i=1...n a natural
partition of a domain D can be obtained by assigning every location
in D to its nearest point xi ∈ X. The region Vi assigned to point
xi is known as its Voronoi region, and the set of all these regions
forms a partition called the Voronoi diagram. While this geometric
structure (and its dual, the Delaunay triangulation of the point set)
has found countless applications, power diagrams offer an even more
general way to partition a domain based on a point set. They involve
the notion of a weighted point set, defined as a pair (X,W ) =
{(x1, w1), . . . , (xn, wn)}, where X is a set of points and W =
{wi}i∈1...n are real numbers called weights. The power distance
from a position x to a weighted point (xi, wi) is defined as ‖x−
xi ‖2 −wi, where ‖ . ‖ indicates the Euclidean distance. Using
this definition, with each xi we associate a power cell (also called
weighted Voronoi region)

Vw
i ={x∈D| ‖x− xi ‖2−wi ≤ ‖x− xj ‖2−wj , ∀j}.

The power diagram of (X,W ) is the cell complex formed by the
power cells Vw

i . Note that when the weights are all equal, the power
diagram coincides with the Voronoi diagram of X; power diagrams
and their associated dual (called regular triangulations) thus genera-
lize the usual Voronoi/Delaunay duality.

2.2 Blue Noise as a Constrained Transport Problem

Sampling a density function ρ(x) consists of picking a few rep-
resentative points xi that capture ρ well. This is, in essence, the
halftoning process that a black-and-white printer or a monochrome
pointillist painter uses to represent an image. In order to formally



Figure 3: Zebra. Since our approach accurately captures variations of density, we can blue-noise sample images containing both fuzzy and
sharp edges (160K-pixel original image (top right) courtesy of Frédo Durand). 40K points, generated in 159 seconds.

characterize a blue noise distribution of points, we see sampling as
the process of aggregating n disjoint regions Vi (forming a partition
V of the domain D) into n points xi: if ρ is seen as a density of ink
over D, sampling consists in coalescing this distribution of ink into
n Dirac functions (i.e., ink dots).

We can now revisit the definition of blue noise sampling through the
following requirements:

A. Uniform Sampling: all point samples should equally contribute
to capturing the field ρ. Consequently, their associated regions
Vi must all represent the same amount m of ink:

mi =

∫

Vi

ρ(x) dx ≡ m.

B. Optimal Transport: the total cost of transporting ink from the
distribution ρ to the finite point set X should be minimized, thus
representing the most effective aggregation. This ink transport
cost for an arbitrary partition V is given as

E(X,V) =
∑

i

∫

Vi

ρ(x)‖x− xi‖2dx,

i.e., as the sum per region of the integral of all displacements of
the local ink distribution ρ to its associated ink dot.

C. Local Irregularity: the point set should be void of visual arti-
facts such as Moiré patterns and other aliasing effects; that is, it
should be free of local spatial regularity.

Note that the first requirement implies that the resulting local point
density will be proportional to ρ as often required in importance
sampling. The second requirement favors isotropic distribution
of points since such partitions minimize the transport cost. The
final requirement prevents regular or hexagonal grid patterns from
emerging. Together, these three requirements provide a density-
adapted, isotropic, yet unstructured distribution of points, capturing
the essence of a blue noise as a constrained transport problem.

2.3 Power Diagrams vs. Voronoi Diagrams

While the cost E may resemble the well-known CVT energy [Du
et al. 1999], the reader will notice that it is more general, as the
cells Vi are not restricted to be Voronoi. In fact, Aurenhammer et
al. [1998] proved that capacity constrained partitions (requirement
A) that minimize the cost E (requirement B) for a given point set are
power diagrams. So, instead of searching through the entire space
of possible partitions, we can rather restrict partitions V to be power
diagrams, that is, Vi ≡ Vw

i . Within this subspace of partitions, the
cost functional E coincides with the ⋆0-HOT2,2 energy of [Mullen

et al. 2011] (i.e., the power diagram version of the CVT energy).
This difference is crucial: while methods restricting their search to
Delaunay meshes [Xu et al. 2011] or Voronoi diagrams [Chen et al.
2012] can only approximate the constraints in requirement A, this
power diagram formulation has the additional variables (weights)
necessary to allow exact constraint enforcement, thus capturing
sharp feature much more clearly than previous methods (see Sec. 5).
In fact, all of our results exhibit uneven weights as demonstrated in
Fig. 2, reinforcing the importance of power vs. Voronoi diagrams.

3 Variational Formulation

Leveraging the fact that requirements A and B can only be enforced
for power diagrams, we describe next our variational characteri-
zation of blue noise distributions of weighted point sets (X,W ).
Requirement C will be enforced algorithmically, as discussed in
Sec. 4.6, by detecting regularity and locally jittering the point set to
guide our optimization towards non-regular distributions.

3.1 Functional Extremization

We can now properly formulate our constrained minimization to
enforce requirements A and B.

Lagrangian formulation. A common approach to deal with a cons-
trained minimization is to use Lagrange multipliers Λ={λi}i=1...n

to enforce the n constraints (one per point) induced by requirement
A. The resulting optimization procedure can be stated as:

Extremize E(X,W ) +
∑

i

λi

(

mi −m
)

with respect to xi, wi, and λi, where the functional E is now clearly
labeled with the point set and its weights as input (since we know
that only power diagrams can optimize the constrained transport
energy), and mi is the amount of ink in the region Vw

i :

E(X,W )=
∑

i

∫

Vw

i

ρ(x)‖x−xi‖2 dx, mi=

∫

Vw

i

ρ(x) dx. (1)

Simpler formulation. The Lagrangian multipliers add undue com-
plexity: they contribute an additional n variables to the optimization.
Instead, one can extremize a simpler function F depending only on
the weighted point set: we show in the appendix that the extremiza-
tion above is equivalent to finding a stationary point of the following
scalar functional:

F(X,W ) = E(X,W )−
∑

i

wi

(

mi −m
)

. (2)

With n fewer variables to deal with, we will show in Sec. 4 that blue
noise generation can be efficiently achieved.



Original [Fattal 2011] [Balzer et al. 2009] Our algorithm

Figure 4: Stippling. Test from [Secord 2002] (20K points). While [Fattal 2011] does not capture density gradients very cleanly (see close-ups),
our result is similar to CCVT [Balzer et al. 2009] on this example, at a fraction of the CPU time. Comparative data courtesy of the authors.

3.2 Functional Properties

The closed-form expression of our functional allows us not only
to justify the Lloyd-based algorithmic approaches previously used
in [Balzer and Heck 2008; Balzer et al. 2009; Li et al. 2010a], but
also to derive better numerical methods to find blue noise point sets
by exploiting a few key properties.

F(X,W ) :F(X,W ) :F(X,W ) : For a fixed set of points X, the Hessian of our functional
w.r.t. weights is the negated weighted Laplacian operator as shown
in the appendix. Consequently, extremizing F is actually a maxi-
mization with respect to all wi’s. This is an important insight that
will lead us to an efficient numerical approach comparable in speed
to recent approximate CCVT methods [Xu et al. 2011; Chen et al.
2012], but much faster than the quadratic scheme used in [Balzer
and Heck 2008; Balzer et al. 2009; Li et al. 2010a].

F(X,W ) :F(X,W ) :F(X,W ) : Now for a fixed set of weights W , our functional is the
⋆0-HOT2,2 energy of [Mullen et al. 2011] (i.e., the power diagram
version E of the CVT energy), with one extra term due to the cons-
traints. Several numerical methods can be used to minimize this
functional. Note that, surprisingly, the functional gradient w.r.t.
positions turns out to be simply

∇xi
F=2mi

(

xi − bi

)

, with bi=
1

mi

∫

Vw

i

xρ(x)dx, (3)

because the boundary term of the Reynolds’ transport theorem can-
cels out the gradients of the constraint terms (see appendix). Extremi-
zing F thus implies that we are looking for a “centroidal power
diagram”, as xi and its associated weighted barycenter bi have to
match to ensure a zero gradient.

3.3 Discussion

We now discuss the key differences between our transport-based
formulation and previous CCVT methods.

Discrete vs. Continuous Formulation. The initial CCVT method
and its improvements [Balzer and Heck 2008; Balzer et al. 2009;
Li et al. 2010a] adopted a discrete formulation in which the density
function ρ is represented by a finite set of samples, with the number
of samples being “orders of magnitude” larger than the number n of
points. Blue noise point sets are then generated via repeated energy-
decreasing swaps between adjacent clusters, without an explicit use
of weights. This discrete setup has several numerical drawbacks.
First, while samples can be thought of as quadrature points for capa-
city evaluation, their use causes accuracy issues: in essence, using
samples amounts to quantizing capacities; consequently, the trans-
port part of the CCVT formulation is not strictly minimized. Second,
the computational cost induced by the amount of swaps required to
reach convergence is quadratic in the number of samples—and thus
impractical beyond a few thousand points. Instead, we provided a
continuous functional whose extremization formally encodes the
concept behind the original CCVT method [Balzer and Heck 2008].

The functional F in Eq. 2 was previously introduced in [Auren-
hammer et al. 1998] purely as a way to enforce capacity constraints
for a fixed point set; here we extend F as a function of weights
wi and positions xi, and the closed-form gradient and Hessian we
explicitly derived will permit, in the next section, the development
of a fast numerical treatment to generate high-quality blue noise
distributions in a scalable fashion, independently of the sampling
size of the density function.

Approximate vs. Exact Constraints. Attempts at dealing with
CCVT through continuous optimization have also been investigated
by sacrificing exact enforcement of capacity constraints. In [Balzer
et al. 2005; Balzer 2009], for instance, a point-by-point iterative
approach is used to minimize the capacity variance of Voronoi cells
to best fit the capacity constraints; Chen et al. [2012] recommend
adding the capacity variance as a penalty term to the CVT energy
instead; Xu et al. [2011] take a dual approach by minimizing capac-
ity variance on Delaunay triangles instead of Voronoi cells. These
different variants all mix the requirements of good spatial distribu-
tion and capacity constraints into a single minimization, leading
to an over-constrained formulation. Minima of their functionals
thus always represent a tradeoff between capacity enforcement and
isotropic spatial distribution. Instead, our formulation allows ex-
act capacity constraints by controlling the power diagram through
the addition of a weight per vertex: we can now optimize distribu-
tion quality while constraining capacity, resulting in high quality
blue noise sampling of arbitrary density field (see quadratic ramp in
Fig. 10 for a comparison with recent methods).

4 Numerical Optimization

We now delve into the numerical methods and algorithmic details
we use to efficiently generate blue noise point distribution based on
our variational formulation.

4.1 Overall Strategy

We proceed with point set generation by computing a critical point of
the functional F defined in Eq. 2: we extremize the functional F by
repeatedly performing a minimization step over positions followed
by a projection step over weights to enforce constraints. The power
diagram of the weighted point set is updated at each step via the
CGAL library [2010]. While this alternating procedure is typical
for non-linear multivariable problems, we will benefit from several
properties of the functional as already alluded to in Sec. 3:

• enforcing the capacity constraints for a fixed set of point positions
is a concave maximization;

• minimizing F for a fixed set of weights is akin to the minimiza-
tion of the CVT energy, for which fast methods exist;

• staying clear of regular patterns is enforced algorithmically
through a simple local regularity detection and removal.

These three factors conspire to result in a fast and scalable generation
of high-quality blue noise point sets as we discuss next.



4.2 Constraint Enforcement

For a given set of points X, we noted in Sec. 3.1 that finding the set
of weights Wopt to enforce that all capacities are equal is a concave
maximization. Fast iterative methods can thus be applied to keep
computational complexity to a minimum.

Since the Hessian of F(X,W ) is equal to the negated weighted
Laplacian ∆w,ρ (see appendix), Newton iterations are particularly
appropriate to find the optimal set of weights Wopt. At each iteration,
we thus solve the sparse, (Poisson) linear system:

∆w,ρ δ =
(

m−m1 m−m2 . . . m−mn

)t
, (4)

where the righthand side of the equation is equal to the current
gradient of F w.r.t. weights. A standard line search with Armijo
condition [Nocedal and Wright 1999] is then performed to adapt
the step size along the vector δ before updating the vector W of
current weights. Given that the Hessian is sparse and symmetric,
many linear solvers can be used to efficiently solve the linear system
used in each Newton iteration; in our implementation, we use the
sparse QR factorization method in [Davis 2011]. Typically, it only
takes 3 to 5 such iterations to bring the residual of our constraints to
within an accuracy of 10−12.

4.3 Transport Minimization

For a fixed set of weights W , we can move the locations of the
n points in order to improve the cost of ink transport F(X,W ).
Previous CCVT-based methods [Balzer et al. 2009; Li et al. 2010a]
used Lloyd’s algorithm as the method of choice for their discrete
optimization. In our continuous optimization context, we have
more options. A Lloyd update where positions xi are moved to
the barycenter bi of their associated weighted cell Vw

i can also be
used to reliably decrease the transport cost: indeed, we prove in the
appendix that the gradient of F(X,W ) is a natural extension of the
gradient of the regular CVT energy. However, Lloyd’s algorithm is a
special case of a gradient descent that is known to suffer from linear
convergence [Du et al. 1999]. We improve the convergence rate
through line search, again using adaptive timestep gradient descent
with Armijo conditions as proposed in [Mullen et al. 2011]. Note
that quasi-Newton iterations as proposed in [Liu et al. 2009] for the
CVT energy are not well suited in our context: alternating weight
and position optimizations renders the approximation of the Hessian
matrix from previous gradients inaccurate, ruining the expected
quadratic convergence.

4.4 Density Integration

Integrations required by our formulation can be easily handled
through quadrature. However, poor quadrature choices may im-
pair the convergence rate of our constraint enforcement. Given that
blue noise sampling is most often performed on a rectangular grey-
scale image, we design a simple and exact procedure to compute
integrals of the density field ρ inside each cell, as it is relatively in-
expensive. Assuming that ρ is given as a strictly-positive piecewise
constant field, we first compute the value m used in our capacity
constraints by simply summing the density values times the area
of each constant regions (pixels, typically), divided by n. We then
perform integration within each Vw

i in order to obtain the mass
mi, the barycenter bi, and the individual transport cost for each
Vw
i . We proceed in three steps. First, we rasterize the edges of the

power diagram and find intersections between the image pixels and
each edge. Next we perform a scan-line traversal of the image and
construct pixel-cell intersections. Integrated densities, barycenters,
and transport costs per cell are then accumulated through simple
integration within each pixel-cell intersection where the density is
constant. Note that our integration differs from previous similar
treatments (e.g., [Secord 2002; Lecot and Lévy 2006]) as we provide
robust and exact computation not only for cell capacities, but also
for their barycenters and transport costs—thus avoiding the need for
parameter tweaking required in quadrature approximations.

Figure 5: Breaking Regularity. Optimization of F with a strict
convergence threshold (‖∇XF‖ ≤ 10−5) can produce regularity
(left), as revealed by a valence-colored visualization (top) and the
distribution of local transport costs Ei (bottom). After jittering
and relocating aliased regions (middle, colored cells), further op-
timization brings the point set to a shallower (i.e., less regular)
configuration (right) as confirmed by valences and transport costs.

4.5 Boundary Treatment

While some of the results we present use a periodic domain (see
Sec. 5), most sampling applications involve a bounded domain D,
often given as a convex polygon (as in the case of a simple image).
Dealing with boundaries in our approach is straightforward. First,
boundary power cells are clipped by D before computing their cell
barycenters bi and capacities mi. Second, the coefficients of the
weighted Laplacian ∆w,ρ are computed through the ratio of (possibly
clipped) dual edge lengths and primal edge lengths, as proposed
in [Mullen et al. 2011]. Thence, the presence of boundaries adds
only limited code and computational complexity and it does not
affect the convergence rates of any of the steps described above.
Note that other boundary treatments could be designed as well,
using mirroring or other typical boundary conditions if needed.

4.6 Detecting & Breaking Regularities

The numerical procedure described so far solely targets require-
ments A and B, and as such, nothing preempts regularity. In fact,

less regular

more regular

Ehexagonal lattices are solutions to our extrem-
ization problem in the specific case of constant
density and a toroidal domain—and these solu-
tions correspond to “deep” extrema of our func-
tional, as the cost of ink transport E reaches
a global minimum on such regular packings
of points. Instead, we algorithmically seek “shallow” extrema to
prevent regularity (see inset).

For capacity-constrained configurations, local regularities are easily
detected by evaluating the individual terms Ei measuring the trans-
port cost within each region Vw

i : we assign a regularity score ri per
point as the local absolute deviation of Ei, i.e.,

ri =
1

|Ωi|
∑

j∈Ωi

|Ei − Ej |,

where Ωi is the one-ring of xi in the regular triangulation of (X,W ).
We then refer to the region around a point xi as aliased if ri<τ ,
where the threshold τ =0.25m2 in all our experiments. When
aliased, a point and its immediate neighbors are jittered by a Gaus-
sian noise with a spatial variance of 1.0/ρ(xi) and maximum mag-
nitude

√
m to break symmetries as recommended in [Lucarini 2009].

To prevent a potential return to the same crystalline configuration
during subsequent optimization steps, we further relocate 1% of the



aliased points to introduce defects. Since our numerical approach
relies on a line search with Armijo rule (seeking local extrema), start-
ing the optimization from this stochastically scrambled configuration
will fall back to a nearby, shallower extremum—hence removing
regularity as demonstrated in Fig. 5.

It is worth pointing out that all CVT-based methods (including
the existing CCVT schemes) may result in point distributions with
local regular patterns. While a few approaches avoided regularity
by stopping optimization before convergence, we instead prevent
regularity by making sure we stop at shallow minima. This τ -based
shallowness criterion can be seen as an alternative to the temperature
parameter proposed in [Fattal 2011], where the level of excitation of
a statistical particle model controls the randomness on the formation
of point distributions. Our simple approach is numerically robust
and efficient: in practice, we observed that the proposed regularity
breaking routine takes place at most once in each example test,
independently of the value of τ .

4.7 Optimization Schedule

We follow a simple optimization schedule to make the generation
process automatic and efficient for arbitrary inputs. We start with a
random distribution of points conforming to ρ (better initialization
strategies could be used, of course). We then proceed by system-
atically alternating optimization of weights (to enforce constraints,
Sec. 4.2) and positions (to minimize transport cost, Sec. 4.3). Weight
optimization is initialized with zero weights, and iterated until
‖∇wF‖ ≤ 0.1m (the capacity m is used to properly adapt the con-
vergence threshold to the number of points n and the density ρ). For

positions, we optimize our functional until ‖∇XF‖ ≤ 0.1
√
nm3

(again, scaling is chosen here to account for density and number of
points). We found that performing Lloyd steps until the gradient

norm is below 0.2
√
nm3 saves computation (it typically requires 5

iterations); only then do we revert to a full-blown adaptive timestep
gradient descent until convergence (taking typically 10 iterations).
Once an extremum of F is found, we apply the regularity detecting-
and-breaking procedure presented in Sec. 4.6, and, if an aliased point
was found and jittered, we start our optimization again. This simple
schedule (see pseudocode in Fig. 6) was used as is on all our results.

5 Results

We ran our algorithm on a variety of inputs: from constant density
(Fig. 8) to photos (Fig. 1, 3, and 4) and computer-generated images
(Fig. 2 and 10), without any need for parameter tuning. Various
illustrations based on zoneplates, regularity, and spectral analysis
are used throughout the paper to allow easy evaluation of our results
and to demonstrate how they compare to previous work.

Spectral Properties. The special case of blue noise point distri-
bution for a constant density in a periodic domain has been the
subject of countless studies. It is generally accepted that such a
point distribution must have a characteristic blue-noise profile for
the radial component of its Fourier spectra, as well as low angu-
lar anisotropy [Ulichney 1987]. This profile should exhibit no low
frequencies (since the density is constant), a high peak around the
average distance between adjacent points, along with a flat curve
end to guarantee white noise (i.e., no distinguishable features) in the
high frequency range. Fig. 8 demonstrates that we improve upon the
results of all previous CCVT-related methods, and fare arguably bet-
ter than alternative methods such as [Fattal 2011]; in particular, we
systematically (i.e., not just on average over several distributions, but
for every single run) get flat spectrum in low and high frequencies,
while keeping high peaks at the characteristic frequency. Note also
that the method of Balzer et al. [2009] appears to slowly converge to
our results when the ratio m/n (using their notation) goes to infinity
with, evidently, much larger timings (Fig. 7).

1: // BLUE NOISE THROUGH OPTIMAL TRANSPORT

2: Input: domain D, density ρ, and number of points n
3: Initialize X with n random points insideD conforming to ρ

4: repeat
5: // Newton method for W
6: Enforce-Capacity-Constraints() (lines 26-33)

7: // Lloyd step for X

8: X←
(

b1 b2 . . . bn

)t
(Eq. 3)

9: Update power diagram

10: until ‖∇XF‖ ≤ 0.2
√
nm3

11: repeat
12: // Newton method for W
13: Enforce-Capacity-Constraints() (lines 26-33)

14: // Gradient descent for X
15: d = ∇XF .
16: Find β satisfying Armijo condition.
17: X← X− βd.
18: Update power diagram.

19: until ‖∇XF‖ ≤ 0.1
√
nm3

20: // Detect and break regularities (Sec. 4.6)
21: if Aliased points detected then
22: Jitter aliased points and immediate neighbors.
23: Relocate 1% of aliased points.
24: Restart optimization (line 4).

25: Output: n points with blue noise reqs. A, B, and C

26: Subroutine ENFORCE-CAPACITY-CONSTRAINTS()
27: Set W = 0
28: repeat
29: Solve for δ in Eq. 4
30: Find α satisfying Armijo condition.
31: W ←W + αδ.
32: Update power diagram
33: until ‖∇wF‖ ≤ 0.1m

Figure 6: Pseudocode of the blue noise algorithm.

Spatial Properties. We also provide evaluations of the spatial prop-
erties of our results. Fig. 8 shows two insightful visualizations of the
typical spatial arrangement of our point distributions, side by side
with results of previous state-of-the-art methods. The second row
shows the gaps between white discs centered on sampling points
with a diameter equal to the mean distance between two points;
notice the uniformity of gap distribution in our result. The third row
compares the number of neighbors for the Voronoi region of each
site; as pointed out in [Balzer 2009], the enforcement of the capac-
ity constraints favors heterogenous valences, with fewer noticeable
regular regions. Finally, the minimum distance among all points
normalized by the radius of a disc in a hexagonal tiling is a measure
of distribution quality, known as the normalized Poisson disk radius,
and recommended to be in the range [0.65, 0.85] by [Lagae and
Dutré 2008]. In all our constant density blue noise examples, the
normalized radius is in the range [0.71, 0.76].

Quadratic Ramp. Another common evaluation of blue noise sam-
pling is to generate a point set for an intensity ramp, and count
the number of points for each quarter of the ramp. Fig. 10 com-
pares the point sets generated by our technique vs. state-of-the-art
methods [Balzer 2009; Fattal 2011; Chen et al. 2012]. While all
the methods recover approximately the right counting of points per
quarter, our result presents a noticeably less noisy, yet unstructured
distribution of points.

Zoneplates. We also provide zoneplates in Fig. 8 for the function
sin(x2+ y2). Each zoneplate image was created via 32x32 copies of



CVT [Du et al. 1999]
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Figure 8: Comparisons. Different blue noise algorithms are analyzed for the case of constant density over a periodic domain; Top row:
distributions of 1024 points; Second row: gaps between white discs centered on sampling points, over black background. Notice the uniformity
of gap distribution in two rightmost point sets. Third row: coloring based on number of neighbors for the Voronoi region of each site; Fourth
row: 1024x1024 zoneplates for the function sin(x2+ y2) (see Sec. 5 or [Lagae and Dutré 2006] for details). Fifth row: mean periodograms
for 10 independent point sets (except for [Fattal 2011] for which only 5 pointsets were available). Sixth row: radial power spectra—note the
pronounced peak in our result, without any increase of regularity. Last row: anisotropy in dB ([Ulichney 1987], p. 56). Data/code for [Fattal
2011] and [Balzer et al. 2009] courtesy of the authors.



Figure 7: Discrete vs. Continuous CCVT. Our timings as a func-
tion of the number of points exhibit a typical n log n behavior, sys-
tematically better than [Balzer et al. 2009]’s n2; yet, our radial
spectra (inset, showing averages over 10 runs with 1024 points)
even outperforms the fine 1024-sample CCVT results. (Here, CCVT-
X stands for X “points-per-site” as in [Balzer et al. 2009].)

a 1024-point blue noise patch, followed by a Mitchell reconstruction
filter to generate a 1024x1024 image with an average of one point
per pixel as suggested in [Lagae and Dutré 2006]. Observe the
presence of a second noise ring in previous methods, as opposed to
the anti-aliased reconstruction achieved by our method.

Complexity. Previous CCVT methods analyzed the (worst-case)
time complexity of a single iteration of their optimization approach.
One iteration of our algorithm involves the construction of a 2D
power diagram, costingO(n log n). It also involves the enforcement
of the capacity constraints via a concave maximization w.r.t. the
weights via a step-adaptive Newton method; the time complexity of
this maximization is of the order of a single Newton step since the
convergence rate is quadratic (see [Nocedal and Wright 1999] for a
more detailed proof), and therefore incurs the linear cost of solving
a sparse (Poisson) linear system. For N -pixel images and n points,
the total complexity of our algorithm thus becomes O(n log n+
N), with the extra term corresponding to the cost of locating the
pixels within each power cell through scan-line traversal. This is
significantly better than the discrete versions of CCVT which were
eitherO(n2+nN logN/n) [Balzer 2009] orO(n2+nN) [Li et al.
2010a] and of the same order as the CCVT approximations in [Xu
et al. 2011; Chen et al. 2012]. However, we can not match the
efficiency of the multi-scale statistical particle model introduced
in [Fattal 2011], which scales linearly with the number of points and
produces results arguably comparable with the best current methods
of blue noise generation.

Timings. All of our timings in this paper were clocked on an Intel
Core i7 2.2 GHz laptop with 4GB RAM. Depending on the input im-
age resolution and the desired number of points, our approach takes
from a few seconds (Figs. 8(right) and 10) to 2.1 minutes for Fig. 4
(20K points, 445x419 image), 2.6 minutes for Fig. 3 (40K points,
600x267 image), 5.8 minutes for Fig. 2 (20K points, 600x450 im-
age), and 8.3 minutes for Fig. 1 (100K points, 512x768 image). The
efficiency of the numerics allows us to generate, in 2.8 hours, 1M+
points of the luminance of a high dynamic range 512x768 image (see
supplemental material), an order of magnitude more complex than
the largest results demonstrated by CCVT-based methods. Note that
we purposely developed a code robust to any input and any points-
to-pixels ratio. However, code profiling revealed that about 40% of
computation time was spent on the exact integration described in
Sec. 4.4; depending on the targeted application, performance could
thus be easily improved through quadrature [Lecot and Lévy 2006]
and/or input image resampling if needed.

Stopping Criteria. As discussed in Sec. 4.7, we terminate optimiza-
tion when ‖∇F‖<ε, i.e., the first order condition for identifying
a locally optimal solution to a critical point search [Nocedal and

Figure 9: Performance. Our method (in grey) performs well despite

a stringent convergence criteria (‖∇F‖<0.1
√
nm3). The method

of [Chen et al. 2012] (in green) behaves similarly when using a loose
stopping criteria based on the functional decrease per iteration;
but becomes twice slower (in blue) if the termination is based on
the norm of the functional gradient to guarantee local optimality.
The code released by [Xu et al. 2011] (in orange) also exhibits
comparable performance by terminating the optimization not based
on convergence, but after a fixed number of iterations.

Wright 1999]. Recent optimization-based blue noise methods [Xu
et al. 2011; Chen et al. 2012], on the other hand, have used the
decrease of the objective function per iteration as their stopping
criteria. However, a small decrease in the functional does not imply
convergence, since a change of functional value depends both on
the functional landscape and the step size chosen in each iteration.
Favoring guaranteed high quality vs. improved timing, we prefer
adopting the first order optimality condition as our termination cri-
teria for robust generation of blue noise distributions. Despite this
purposely stringent convergence criteria, the performance of our
method is similar to [Chen et al. 2012] with their recommended
termination based on functional decrease—but twice faster if the
method of [Chen et al. 2012] is modified to use a stricter termina-
tion criterion based on the norm of the functional gradient. Xu et
al. [2011] advocate a fixed number of iterations, which, again, does
not imply either convergence or high-quality results. Our timings
and theirs are, however, similar for the type of examples the authors
used in their paper. See Fig. 9 for a summary of the timings of our
algorithm compared to the CCVT-based methods of [Xu et al. 2011;
Chen et al. 2012] for the generation of blue noise sampling of a
constant density field.

6 Future Work

We note that our numerical treatment is ripe for GPU implemen-
tations as each element (from power diagram construction to line
search) is known to be parallelizable. The scalability of our approach
should also make blue noise generation over non-flat surfaces and
3D volumes practical since our formulation and numerical approach
generalizes to these cases without modification. Blue noise meshing
is thus an obvious avenue to explore and evaluate for numerical ben-
efits. On the theoretical side it would be interesting to seek a fully
variational definition of blue noise that incorporates requirements A,
B and C altogether. Generating anisotropic and multiclass sampling
would also be desirable, as well as extending our regularity-breaking
procedure to other CVT-based methods. Finally, the intriguing con-
nection between HOT meshes [Mullen et al. 2011] and our definition
of blue noise (which makes the Hodge-star for 0-forms not just diag-
onal, but constant) may deserve further exploration.
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Figure 10: Ramp. Blue noise sampling of a quadratic density func-
tion with 1000 points. The percentages in each quarter indicate ink
density in the image, and point density in the examples. Observe
that our method returns the best matching of the reference percent-
ages, while still presenting an even and unstructured distribution.
Comparative data courtesy of the authors.
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Appendix: Functional Properties and Derivatives

In this appendix, we provide closed-form expressions for the first
and second derivatives of the functional F defined in Eq. 2.

Notation: We denote by eij the regular edge between two adjacent
points xi and xj , and by e

∗
ij the dual edge separating the partition

regions Vw
i and Vw

j . (Remember that x ∈ e
∗
ij iff ‖x−xi‖2−wi =

‖x− xj‖2 − wj .) We also refer to the average value of the field ρ
over e∗

ij as ρ̄ij , and to the one-ring of xi in the regular triangulation
of (X,W ) as Ωi.

Reynolds transport theorem: The derivatives of F are most di-
rectly found by Reynolds theorem, which states that the rate of
change of the integral of a scalar function f within a volume V is
equal to the volume integral of the change of f , plus the boundary
integral of the rate at which f flows through the boundary ∂V of
outward unit normal n; i.e., in terse notation:

∇
(
∫

V

f(x) dV

)

=

∫

V

∇f(x) dV +

∫

∂V

f(x) (∇x · n) dA.

W.r.t. weights: Since the regions Vw
i partition the domain D, the

sum of all capacities is constant; hence,

∇wi
mi +

∑

j∈Ωi

∇wi
mj = 0.

Moreover, Reynolds theorem applied to the capacities yields

∇wi
mj = − ρ̄ij

2

|e∗
ij |
|eij |

.

Next, by using both Reynolds theorem and the equality of power
distances along dual edges, one obtains






∇wi
E(X,W ) =

∑

j∈Ωi
(wj − wi) (∇wi

mj)

∇wi

[

∑

j wj(mj−m)
]

= mi−m+
∑

j∈Ωi
(wj−wi)(∇wi

mj).

Therefore, the gradient simplifies to ∇wi
F(X,W ) = m−mi.

Combining the results above yields that the Hessian of F with
respect to weights is simply a negated weighted Laplacian operator:

∇2
wF(X,W ) = −∆w,ρ

with
[

∆w,ρ
]

ij
= − ρ̄ij

2

|e∗
ij |
|eij |

For fixed points, F is thus a concave function in weights and there
is a unique solution Wopt for any prescribed capacity constraints.

W.r.t. position: We first note that∇xi
mi+

∑

j∈Ω(i)∇xi
mj =0 as

in the weight case. Using the definition of the weighted barycenter
bi (Eq. 3), Reynolds theorem then yields






∇xi
E(X,W ) = 2 mi(xi − bi) +

∑

j∈Ωi
(wj − wi)(∇xi

mj)

∇xi

[

∑

j wj(mj−m)
]

=
∑

j∈Ωi
(wj−wi)(∇xi

mj) .

Therefore: ∇xi
F(X,W ) = 2mi(xi − bi).

Equivalence of Optimizations: The constrained minimization
with Lagrangian multipliers (Eq. 1) is equivalent to extremizing
the functional F (Eq. 2). Indeed, observe that any solution of the La-
grangian formulation is a stationary point of the functional F , since
we just derived that a null gradient implies that mi = m (constraints
are met) and xi = bi (centroidal power diagram). Another way
to understand this equivalence is to observe that the gradient with
respect to weights of the Lagrangian formulation is ∆w,ρ(W + Λ);
hence, extremization induces that W = −Λ+ constant, and the La-
grange multipliers can be directly replaced by the (negated) weights.


