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Abstract

Complex data queries, because of their need for random

accesses, have proven to be slow unless all the data can be

accommodated in DRAM. There are many domains, such as

genomics, geological data and daily twitter feeds where the

datasets of interest are 5TB to 20 TB. For such a dataset, one

would need a cluster with 100 servers, each with 128GB to

256GBs of DRAM, to accommodate all the data in DRAM.

On the other hand, such datasets could be stored easily in the

flash memory of a rack-sized cluster. Flash storage has much

better random access performance than hard disks, which

makes it desirable for analytics workloads. In this paper we

present BlueDBM, a new system architecture which has flash-

based storage with in-store processing capability and a low-

latency high-throughput inter-controller network. We show

that BlueDBM outperforms a flash-based system without these

features by a factor of 10 for some important applications.

While the performance of a ram-cloud system falls sharply

even if only 5%~10% of the references are to the secondary

storage, this sharp performance degradation is not an issue

in BlueDBM. BlueDBM presents an attractive point in the

cost-performance trade-off for Big Data analytics.

1. Introduction

By many accounts, complex analysis of Big Data is going to

be the biggest economic driver for the IT industry. For exam-

ple, Google has predicted flu outbreaks by analyzing social

network information a week faster than CDC [13]; Analysis of

twitter data can reveal social upheavals faster than journalists;
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Amazon is planning to use customer data for anticipatory ship-

ping of products [43]; Real-time analysis of personal genome

may significantly aid in diagnostics. Big Data analytics are

potentially going to have revolutionary impact on the way

scientific discoveries are made.

Big Data by definition doesn’t fit in personal computers or

DRAM of even moderate size clusters. Since the data may be

stored on hard disks, latency and throughput of storage access

is of primary concern. Historically, this has been mitigated

by organizing the processing of data in a highly sequential

manner. However, complex queries cannot always be orga-

nized for sequential data accesses, and thus high performance

implementations of such queries pose a great challenge. One

approach to solving this problem is ram cloud [34], where

the cluster has enough collective DRAM to accommodate the

entire dataset in DRAM. In this paper, we explore a much

cheaper alternative where Big Data analytics can be done with

reasonable efficiency in a single rack with distributed flash

storage, which has much better random accesses performance

than hard disks. We call our system BlueDBM and it provides

the following capabilities:

1. A 20-node system with large enough flash storage to host

Big Data workloads up to 20 TBs;

2. Near-uniform latency access into a network of storage de-

vices that form a global address space;

3. Capacity to implement user-defined in-store processing

engines;

4. Flash card design which exposes an interface to make

application-specific optimizations in flash accesses.

Our preliminary experimental results show that for some

applications, BlueDBM performance is an order of magnitude

better than a conventional cluster where SSDs are used only

as a disk replacement. BlueDBM unambiguously establishes

an architecture whose price-performance-power characteris-

tics provide an attractive alternative for doing similar scale

applications in a ram cloud.

As we will discuss in the related work section, almost every

element of our system is present in some commercial system.

Yet our system architecture as a whole is unique. The main

contributions of this work are: (1) Design and implementation



of a scalable flash-based system with a global address space,

in-store computing capability and a flexible inter-controller

network. (2) A hardware-software codesign environment for

incorporating user-defined in-store processing engines. (3)

Performance measurements that show the advantage of such

an architecture over using flash as a drop-in replacement for

disks. (4) Demonstration of a complex data analytics appliance

which is much cheaper and consumes an order of magnitude

less power than the cloud-based alternative.

The rest of the paper is organized as follows: In Section 2

we explore some existing research related to our system. In

Section 3 we describe the architecture of our rack-level system,

and in Section 4 we describe the software interface that can

be used to access flash and the accelerators. In Section 5 we

describe a hardware implementation of BlueDBM, and show

our results from the implementation in Section 6. In Section 7

we describe and evaluate some example accelerators we have

built for the BlueDBM system. Section 8 summarizes our

paper.

2. Related Work

In Big Data scale workloads, building a cluster with enough

DRAM capacity to accommodate the entire dataset can be

very desirable but expensive. An example of such a system is

RAMCloud, which is a DRAM-based storage for large-scale

datacenter applications [34, 39]. RAMCloud provides more

than 64TBs of DRAM storage distributed across over 1000

servers networked over high-speed interconnect. Although

RAMCloud provides 100 to 1000 times better performance

than disk-based systems of similar scale, its high energy con-

sumption and high price per GB limits its widespread use

except for extremely performance and latency-sensitive work-

loads.

NAND-Flash-based SSD devices are gaining traction as

a faster alternative to disks, and close the performance gap

between DRAM and persistent storage. SSDs are an order of

magnitude cheaper price compared to DRAM, and an order

of magnitude faster performance compared to disk. Many

existing database and analytics software has shown improved

performance with SSDs [8, 21, 27]. Several SSD-optimized

analytics softwares, such as the SanDisk Zetascale [40] have

demonstrated promising performance while using SSD as the

primary data storage. Many commercial SSD devices have

adopted high-performance PCIe interface in order to overcome

the slower SATA bus interface designed for disk [11, 30, 16].

Attempts to use flash as a persistent DRAM alternative by

plugging it into a RAM slot are also being explored [45].

SSD storage devices have been largely developed to be a

faster drop-in replacement for disk drives. This backwards

compatibility has helped their widespread adoption. How-

ever, additional software and hardware is required to hide the

difference in device characteristics [1]. Due to the high perfor-

mance of SSDs, even inefficiencies in the storage management

software becomes significant, and optimizing such software

has been under active investigation. Moneta [4] modifies the

operating system’s storage management components to reduce

software overhead when accessing NVM storage devices. Wil-

low [41] provides an easy way to augment SSD controllers

with additional interface semantics that make better use of

SSD characteristics, in addition to a backwards compatible

storage interface. Attempts to remove the translation layers

and let the databse make high-level decisions [14] have shown

to be beneficial.

Due to their high performance, SSDs also affect the network

requirements. The latency to access disk over Ethernet was

dominated by the disk seek latency. However, in a SSD-based

cluster the storage access latency could even be lower than

network access. These concerns are being addressed by faster

network fabrics such as 10GbE and Infiniband [2], and by

low-overhead software protocols such as RDMA [29, 17, 38,

46, 29, 37] or user-level TCP stacks that bypass the operating

system [19, 15]. QuickSAN [5] is an attempt to remove a layer

of software overhead by augmenting the storage device with a

low-latency NIC, so that remote storage access does not need

to go through a separate network software stack.

Another important attempt to accelerate SSD storage per-

formance is in-store processing, where some data analytics is

offloaded to embedded processors inside SSDs. These proces-

sors have extremely low-latency access to storage, and helped

overcome the limitations of the storage interface bus. The

idea of in-store processing itself is not new. Intelligent disks

(IDISK) connected to each other using serial networks have

been proposed in 1998 [23], and adding processor to disk

heads to do simple filters have been suggested as early as in

the 1970s [28, 35, 3]. However, performance improvements

of such special purpose hardware did not justify their cost at

the time.

In-store processing is seeing new light with the advance-

ment of fast flash technology. Devices such as Smart

SSDs [9, 22, 41] and Programmable SSDs [6] have shown

promising results, but gains are often limited by the perfor-

mance of the embedded processors in such power constrained

devices. Embedding reconfigurable hardware in storage de-

vices is being investigated as well. For example, Ibex [48]

is a MySQL accelerator platform where a SATA SSD is cou-

pled with an FPGA. Relational operators such as selection

and group-by are performed on the FPGA whenever possible,

otherwise they are forwarded to software. Companies such

as IBM/Netezza [42] offload operations such as filtering to a

reconfigurable fabric near storage. On the other end of the

spectrum, systems such as XSD [6] embeds a GPU into a SSD

controller, and demonstrates high performance accelerating

MapReduce.

Building specialized hardware for databases have been ex-

tensively studied and productized. Companies such as Ora-

cle [33] have used FPGAs to offload database queries. FP-

GAs have been used to accelerate operations such as hash

index lookups [25]. Domain-specific processors for database



queries are being developed [44, 47], including Q100 [49] and

LINQits [7]. Q100 is a data-flow style processor with an in-

struction set architecture that supports SQL queries. LINQits

mapped a query language called LINQ to a set of acceler-

ated hardware templates on a heterogeneous SoC (FPGA +

ARM). Both designs exhibited order of magnitude perfor-

mance gains at lower power, affirming that specialized hard-

ware for data processing is very advantageous. However, un-

like BlueDBM, these architectures accelerate computation on

data that is in DRAM. Accelerators have also been placed

in-path between network and processor to perform operations

at wire speed [32], or to collect information such as histogram

tables without overhead [18].

Incorporating reconfigurable hardware accelerators into

large datacenters is also being investigated actively. Microsoft

recently has built and demonstrated the power/performance

benefits of an FPGA-based system called Catapult [36]. Cat-

apult uses a large number of homogeneous servers each aug-

mented with an FPGA. The FPGAs form a network among

themselves via high-speed serial links so that large jobs can be

mapped to groups of FPGAs. Catapult was demonstrated to

deliver much faster performance while consuming less power,

compared to a normal ram cloud cluster. BlueDBM has similar

goals in terms of reconfigurable hardware acceleration, but it

uses flash devices to accelerate lower cost systems that do not

have enough collective DRAM to host the entire dataset.

This system improves upon our previous BlueDBM proto-

type [20], which was a 4-node system with less than 100GB

of slow flash. It was difficult to extrapolate the performance of

real applications from the results obtained from our previous

prototype, because of both its size and different relative perfor-

mance of various system components. The current generation

of BlueDBM has been built with the explicit goal of running

real applications, and will be freely available to the community

for developing Big Data applications.

3. System Architecture

The BlueDBM architecture is a homogeneous cluster of host

servers coupled with a BlueDBM storage device (See Fig-

ure 1). Each BlueDBM storage device is plugged into the

host server via a PCIe link, and it consists of flash storage, an

in-store processing engine, multiple high-speed network inter-

faces and on-board DRAM. The host servers are networked

together using Ethernet or other general-purpose networking

fabric. The host server can access the BlueDBM storage de-

vice via a host interface implemented over PCIe. It can either

directly communicate with the flash interface, to treat is as a

raw storage device, or with the in-store processor to perform

computation on the data.

The in-store processing engine has access to four major

services: The flash interface, network interface, host interface

and the on-storage DRAM buffer. Figure 1 and Figure 2

shows the four services available to the in-store processor. In

the following sections we describe the flash interface, network

interface and host interface in order. We omit the DRAM

buffer because there is nothing special about its design.

3.1. Flash Interface

Flash devices or SSDs achieve high bandwidth by grouping

multiple flash chips into several channels, all of which can

operate in parallel. Because NAND flash has limited pro-

gram/erase cycles and frequent errors, complex flash manage-

ment algorithms are required to guarantee reliability. These

include wear leveling, garbage collection, bit error correction

and bad block management. These functions are typically

handled by multiple ARM-based cores in the SSD controller.

The host side interface of an SSD is typically SATA or PCIe,

using AHCI or NVMe protocols to communicate with host.

SSDs are viewed as a typical block device to the host oper-

ating system, and its internal architecture and management

algorithms are completely hidden.

However, this additional layer of management duplicates

some file system functions and adds significant latency [26].

Furthermore, in a distributed storage environment, such as

BlueDBM, independent flash devices do not have a holistic

view of the system and thus cannot efficiently manage flash. Fi-

nally, in-store processors that we have introduced in BlueDBM

would also incur performance penalties if passing through this

extra layer. Thus in BlueDBM, we chose to shift flash manage-

ment away from the device and into file system/block device

driver (discussed in Section 4).

3.1.1. Interface for High Performance Flash Access Our

flash controller exposes a low-level, thin, fast and bit-error

corrected hardware interface to raw NAND flash chips, buses,

blocks and pages. This has the benefit of (i) cutting down

on access latency from the network and in-store processors;

(ii) exposing all degrees of parallelism of the device and (iii)

allowing higher level system stacks (file system, database

storage engine) to more intelligently manage data.

To access the flash, the user first issues a flash command

with the operation, the address and a tag to identify the request.

For writes, the user then awaits for a write data request from

the controller scheduler, which tells the user that the flash

controller is ready to receive the data for that write. The user

will send the write data corresponding to that request in 128-

bit bursts. The controller returns an acknowledgement once

write is finished. For read operations, the data is returned

in 128-bit bursts along with the request tag. For maximum

performance, the controller may send these data bursts out

of order with respect to the issued request and interleaved

with other read requests. Thus completion buffers may be

required on the user side to maintain FIFO characteristics.

Furthermore, we note that to saturate the bandwidth of the

flash device, multiple commands must be in-flight at the same

time, since flash operations can have latencies of 50 µs or

more.

3.1.2. Multiple Access Agents Multiple hardware endpoints

in BlueDBM may need shared access to this flash controller
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interface. For example, a particular controller may be accessed

by local in-store processors, local host software over PCIe

DMA, or remote in-store processors over the network. Thus

we implemented a Flash Interface Splitter with tag renaming

to manage multiple users (Figure 3). In addition, to ease

development of hardware in-store processors, we also provide

an optional Flash Server module as part of BlueDBM. This

server converts the out-of-order and interleaved flash interface

into multiple simple in-order request/response interfaces using

page buffers. It also contains an Address Translation Unit that

maps file handles to incoming streams of physical addresses

from the host. The in-store processor simply makes a request

with the file handle, offset and length, and the Flash Server

will perform the flash operation at the corresponding physical

location. The software support for this function is discussed

in Section 4). The Flash Server’s width, command queue

depth and number of interfaces is adjustable based on the

application.

3.2. Integrated Storage Network

BlueDBM provides a low-latency high-bandwidth network in-

frastructure across all BlueDBM storage devices in the cluster,

Network 
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In-Storage 

Processor 

Host 

Interface 

Flash 

Interface 

Flash Interface 

Splitter 
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Figure 3: Flash interface

using a simple design with low buffer requirements. BlueDBM

storage devices form a separate network among themselves

via high-performance serial links. The BlueDBM network

is a packet-switched mesh network, in which each storage

device has multiple network ports and is capable of routing

packets across the network without requiring a separate switch

or router. In addition to routing, the storage network supports

functionality such as flow control and virtual channels while

maintaining high performance and extremely low latency. For

data traffic between the storage devices, the integrated network

ports removes the overhead of going to the host software to

access a separate network interface.

Figure 4 shows the network architecture. Switching is done

at two levels, the internal switch and the external switch. The

internal switch routes packets between local components. The

external switch accesses multiple physical network ports, and

is responsible for forwarding data from one port to another in

order to relay a packet to its next hop. It is also responsible for

relaying inbound packets to the internal switch, and relaying

outbound packets from the internal switch to a correct physical

port.

Due to the multiple ports on the storage nodes, the

BlueDBM network is very flexible and can be configured

to implement various topologies, as long as there is sufficient

number of ports on each node. Figure 5 shows some example

topologies. To implement a different topology the physical

cables between each node has to be re-wired, but the rout-

ing across a topology can be configured dynamically by the

software.

3.2.1. Logical Endpoint The BlueDBM network infrastruc-

ture exposes virtual channel semantics to the users of the

network by providing it with multiple logical endpoints. The

number of endpoints are determined at design time by setting a

parameter, and all endpoints share the physical network. Each

endpoint is parameterized with a unique index that does not
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need to be contiguous. Each endpoint exposes two interfaces,

send and receive. An in-store processor can send data to a

remote node by calling send with a pair of data and destina-

tion node index, or receive data from remote nodes by calling

receive, which returns a pair of data and source node index.

These interfaces provide back pressure, so that each endpoint

can be treated like a FIFO interface across the whole cluster.

Such intuitive characteristics of the network ease development

of in-store processors.

3.2.2. Link Layer The link layer manages physical connec-

tions between network ports in the storage nodes. The most

important aspect of the link layer is the simple token-based

flow control implementation. This provides back pressure

across the link and ensures that packets will not drop if the

data rate is higher than what the network can manage, or if

the data cannot be received by the destination node which is

running slowly.

Endpoint 1

Endpoint 2

Endpoint 3

Switch
Node 2

Node 3

Endpoint 1

Endpoint 2

Endpoint 3

Switch

Node 1

Node 4

…

…

Figure 6: Packets from the same Endpoint to a destination

maintain FIFO order

3.2.3. Routing Layer In order to make maximum use of

the bandwidth of the network infrastructure while keeping

resource usage to a minimal, the BlueDBM network imple-

ments deterministic routing for each logical endpoint. This

means that all packets originating from the same logical end-

point that are directed to the same destination node follow the

same route across the network, while packets from a different

endpoint directed to the same destination node may follow a

different path. Figure 6 shows packet routing in an example

network. The benefits of this approach is that packet traffic

can be distributed across multiple links, while maintaining the

order of all packets from the same endpoint. If packets from

the same endpoint are allowed to take different paths, it would

require a completion buffer which may be expensive in an

embedded system. For simplicity, the BlueDBM network does

not implement a discovery protocol, and relies on a network

configuration file to populate the routing tables.

In order to maintain extremely low network latency, each

endpoint is given a choice whether to use end-to-end flow

control. If the developer is sure that a particular virtual link

will always drain on the receiving end, flow end-to-end flow

control can be omitted for that endpoint. However, if the

receiver fails to drain data for a long time, the link-level back

pressure may cause related parts of the network to block. On

the other hand, an endpoint can be configured to only send data

when there is space on the destination endpoint, which will

assure safety but result in higher latency due to flow control

packets, and more memory usage for buffers.

3.3. Host Interface

The in-store processing core can be accessed from the host

server over either a direct interface that supports RPC and

DMA operations, or a file system abstraction built on top of

the direct interface. The file system interface is described in

detail in Section 4.

In order to parallelize requests and maintain high perfor-

mance, the host interface provides the software with 128 page

buffers, each for reads and writes. When writing a page, the

software will request a free write buffer, copy data to the write

buffer, and send a write request over RPC with the physical ad-

dress of the destination flash page. The buffer will be returned

to the free queue when the hardware has finished reading the

data from the buffer. When reading a page, the software will

request a free read buffer, and send a read request over RPC

with the physical address of the source flash page. The soft-

ware will receive an interrupt with the buffer index when the

hardware has finished writing to software memory.

Using DMA to write data to the storage device is straight-

forward to parallelize, but parallelizing reads is a bit more

tricky due to the characteristics of flash storage. When writing

to storage, the DMA engine on the hardware will read data

from each buffer in order in a contiguous stream. So hav-

ing enough requests in the request queue is enough to make

maximum use of the host-side link bandwidth. However, data

reads from flash chips on multiple buses in parallel can arrive

interleaved at the DMA engine. Because the DMA engine

needs to have enough contiguous data for a DMA burst before

issuing a DMA burst, some reordering may be required at the

DMA engine. This becomes even trickier when the device

is using the integrated network to receive data from remote

nodes, where they might all be coming from different buses.

To fix this issue, we provide dual-ported buffer in hardware

which has the semantics of a vector of FIFOs, so that data for

each request can be enqueued into its own FIFO until there is

enough data for a burst. Figure 7 describes the structure of the

host interface for flash reads.

4. Software Interface

In BlueDBM, we aim to provide a set of software interfaces

that support the execution of any existing application as well

as modified applications that leverage the in-store processors

in the system. Furthermore, software layers in BlueDBM must

perform flash management functions since we chose to expose

a raw flash interface in hardware for higher efficiency (pre-
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viously discussed in Section 3.1). The software architecture

is shown in Figure 8. Three interfaces are supplied to the

user application: (i) a file system interface, (ii) a block device

driver interface and (iii) an accelerator interface.

We first discuss the file system. Commercial SSDs incorpo-

rate a Flash Translation Layer (FTL) inside the flash device

controller to manage flash and maintains a block device view

to the operating system. However, common file systems man-

age blocks in a fashion optimized for hard disks. SSDs use the

FTL to emulate block device interfaces for compliance with

operating systems, performing logical-to-physical mapping

and garbage collection, which require large DRAM and incur

lots of extra I/Os. Some file systems have tried to remedy this

by refactoring the I/O architecture in order to offload most of

the FTL functions into a flash-optimized log-structured file

system. A prominent example of this is RFS [26]. Unlike

conventional FTL designs where the flash characteristics are

hidden from the file system, RFS performs some functionality

of an FTL, including logical-to-physical address mapping and

garbage collection. This achieves better garbage collection ef-

ficiency at much lower memory requirement. The file system

interface in BlueDBM is built on the same paradigm.

For compatibility with existing software, BlueDBM also

offers a full-fledged FTL implemented in the device driver,

similar to Fusion IO’s driver. This allows us to use well-known

Linux file systems (e.g., ext2/3/4) as well as database systems

(directly running on top of a block device) with BlueDBM.

The BlueDBM software allows developers to easily make

use of fast in-storage processing without any efforts to write

their own custom interfaces manually. Figure 8 shows how

user-level applications access hardware accelerators. In the

BlueDBM software stack, user-level applications can query

the file system for the physical locations of files on the flash

(see (1) in Figure 8). This was made possible because the file

system maintains the mapping information. Applications can

then provide in-storage processors with a stream of physical

addresses (see (2)), so that the in-storage processors can di-

rectly read data from flash with very low latency (see (3)). The

results are sent to software memory and the user application

can be notified (see (4)).

It is worth noting that, in BlueDBM, all the user requests,

including both user queries and data, are sent to the hardware

directly, bypassing almost all of the operating system’s kernel,

except for essential driver modules. This helps us to avoid deep

OS kernel stacks that often cause long I/O latencies. It is also

very common that multiple instances of a user application may

compete for the same hardware acceleration units. For efficient

sharing of hardware resources, BlueDBM runs a scheduler that

assigns available hardware-acceleration units to competing

user-applications. In our implementation, a simple FIFO-

based policy is used for request scheduling.
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5. Hardware Implementation

We have built a 20-node BlueDBM cluster to explore the

capabilities of the architecture. Figure 9 shows the photo of

our implementation.

Host Server

BlueDBM Storage

Host Server

BlueDBM Storage

Host Server

BlueDBM Storage

Host Server
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…
SATA

cables

Ethernet

PCIe

Figure 9: A 20-node BlueDBM cluster

In our implementation of BlueDBM, we have used a Field

Programmable Gate Array (FPGA) to implement the in-store

processor and also the flash, host and network controllers.

However, the BlueDBM Architecture should not be limited to

an FPGA-based implementation. Development of BlueDBM

was done in the high-level hardware description language

Bluespec. It is possible to develop in-store processors in any



hardware description language, as long as they conform to the

interface exposed by the BlueDBM system services. Most of

the interfaces are latency-insensitive FIFOs with backpressure.

Bluespec provides a lot of support for such interfaces, making

in-store accelerator development easier.

The cluster consists of 20 rack-mounted Xeon servers, each

with 24 cores and 50GBs of DRAM. Each server also has

a Xilinx VC707 FPGA development board connected via a

PCIe connection. Each VC707 board hosts two custom-built

flash boards with SATA connectors. The VC707 board, cou-

pled with two custom flash boards is mounted on top of each

server. The host servers run the Ubuntu distribution of Linux.

Figure 10 shows the components of a single node. One of

the servers also had a 512GB Samsung M.2 PCIe SSD for

performance comparisons.

We used Connectal [24] and its PCIe Gen 1 implementation

for the host link. Connectal is a hardware-software codesign

framework built by Quanta Research. Connectal reads the

interface definition file written by the programmer and gen-

erates glue logic between hardware and software. Connectal

automatically generates RPC-like interface from developer-

provided interface specification, as well as a memory-mapped

DMA interface for high bandwidth data transfer. Connec-

tal’s PCIe implementation caps our performance at 1.6GB/s

reads and 1GB/s writes, which is a reasonable performance

for a commodity flash storage device. In the future we will

also explore the benefits of a faster host link including later

generation PCIe links.
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Figure 10: A BlueDBM storage node

5.1. Custom Flash Board

We have designed and built a high-capacity custom flash board

with high-speed serial connectors, with the help of Quanta

Inc., and Xilinx Inc.

Each flash card has 512GBs of NAND flash storage and a

Xilinx Artix 7 chip, and plugs into the host FPGA develop-

ment board via the FPGA Mezzanine Card (FMC) connector.

The flash controller and Error Correcting Code (ECC) is imple-

mented on this Artix chip, providing the Virtex 7 FPGA chip

on the VC707 a logical error-free access into flash. The com-

munication between the flash board and the Virtex 7 FPGA

is done by a 4-lane aurora channel, which is implemented

on the GTX/GTP serial transceivers included in each FPGA.

This channel can sustain up to 3.3GB/s of bandwidth at 0.5µs

latency. The flash board also hosts 8 SATA connectors, 4 of

which pin out the high-speed serial ports on the host Virtex 7

FPGA, and 4 of whch pin out the high-speed serial ports on

the Artix 7 chip. The serial ports are capable of 10Gbps and

6.6Gbps of bandwidth, respectively.

5.2. Network Infrastructure

In our BlueDBM implementation, the link is implemented

over the low-latency serial transceivers. By implementing

routing in the hardware and using a very low-latency network

fabric, we were able to achieve very high performance, with

less than 0.5µs of latency per network hop, and near 10Gbps

of bandwidth per link. Our implementation has a network

fan-out of 8 ports per storage node, so the aggregate network

bandwidth available to a node reaches up to 8GB/s, including

packet overhead.

5.3. Software Interface

Our host interface is implemented using Connectal [24]. Con-

nectal provides a PCIe Gen 1 endpoint and driver pair, and

provides up to 1.6GB/s DMA read to host DRAM bandwidth

and 1GB/s of DMA write from host DRAM bandwidth. Read-

ing or writing data from the host buffers were done by DMA

read/write engines implemented in the Connectal framework.

In our BlueDBM implementation, there are four read engines

and four write engines each, in order to more easily make

maximum use of the PCIe bandwidth.

6. Evaluation

This section evaluates the characteristics of the BlueDBM

implementation.

6.1. FPGA Resource Utilization

The FPGA resource usage of each of the two Artix-7 chips

are shown in Table 1. 46% of the I/O pins were used either to

communicate with the FMC port or to control the flash chips.

Module Name # LUTs Registers BRAM

Bus Controller 8 7131 4870 21

→ ECC Decoder 2 1790 1233 2

→ Scoreboard 1 1149 780 0

→ PHY 1 1635 607 0

→ ECC Encoder 2 565 222 0

SerDes 1 3061 3463 13

Artix-7 Total 75225 (56%) 62801 (23%) 181 (50%)

Table 1: Flash controller on Artix 7 resource usage

The FPGA resource usage of the Virtex 7 FPGA chip on

the VC707 board is shown in Table 2. As it can be seen, there

is still enough space for accelerator development on the Virtex

FPGA.



Module Name # LUTs Registers RAMB36 RAMB18

Flash Interface 1 1389 2139 0 0

Network Interface 1 29591 27509 0 0

DRAM Interface 1 11045 7937 0 0

Host Interface 1 88376 46065 169 14

Virtex-7 Total 135271 135897 224 18

(45%) (22%) (22%) (1%)

Table 2: Host Virtex 7 resource usage

6.2. Power Consumption

Table 3 shows the overall power consumption of the system,

which were estimated using values from the datasheet. Each

Xeon server includes 24 cores and 50GBs of DRAM. Thanks

to the low power consumption of the FPGA and flash devices,

BlueDBM adds less than 20% of power consumption to the

system.

Component Power (Watts)

VC707 30

Flash Board x2 10

Xeon Server 200

Node Total 240

Table 3: BlueDBM estimated power consumption

6.3. Network Performance

We measured the performance of the network by transferring

a single stream of 128 bit data packets through multiple nodes

across the network in a non-contentious traffic setting. The

maximum physical link bandwidth is 10Gbps, and per-hop

latency is 0.48 µs. Figure 11 shows that we are able to sustain

8.2Gbps of bandwidth per stream across multiple network

hops. This shows that the protocol overhead is under 18%.

The latency is 0.48 µs per network hop, the end-to-end latency

is simply a multiple of network hops to the destination.

Each node in our BlueDBM implementation includes a fan-

out of 8 network ports, so each node can have an aggregate

full duplex bandwidth of 8.2GB/s. With such a high fan-out,

it would be unlikely that a remote node in a rack-class cluster

to be over 4 hops, or 2 µs away. In a naive ring network of

20 nodes with 4 lanes each to next and previous nodes, the

average latency to a remote node is 5 hops, or 2.5 µs. The ring

throughput is 32.8 Gbps. Assuming a flash access latency of

50 µs, such a network will only add 5% latency in the worst

case, giving the illusion of a uniform access storage.

6.4. Remote Storage Access Latency

We measured the latency of remote storage access by read-

ing an 8K page of data from the following sources using the

integrated storage network:

1. ISP-F: From in-store processor to remote flash storage;

2. H-F: From host server to remote flash storage;

3. H-RH-F: From host server to remote flash storage via its

host server.

4. H-D: From host server to remote DRAM;

In each case, the request is sent from either the host server

or the in-store processor on the local BlueDBM node. In the

third and fourth case, the request is processed by the remote

server, instead of the remote in-store processor, adding extra

latency. However, data is always transferred back via the

integrated storage network. We could have also measured

the accesses to remote servers via Ethernet, but that latency

is at least 100x of the integrated network, and will not be

particularly illuminating.

The latency is broken up into four components as shown in

Figure 14. First is the local software overhead of accessing the

network interface. Second is the storage access latency, or the

time it takes for the first data byte to come out of the storage

device. Third is the amount of times it takes to transfer the

data until the last byte is sent back over the network, and last

is the network latency.

Figure 12 shows the exact latency breakdown for each ex-

periment. Notice in all 4 cases, the network latency is insignif-

icant. The data transfer latency is similar except when data

is transferred from DRAM (H-D), where it is slightly lower.

Notice that except in the case of ISP-F, storage access incurs

the additional overhead of PCIe and host software latencies.

If we compare ISP-F to H-RH-F, we can see the benefits of an

integrated storage network, as the former allows overlapping

the latencies of storage and network access.

6.5. Storage Access Bandwidth

We measured the bandwidth of BlueDBM by sending a stream

of millions of random read requests for 8KB size pages to local

and remote storage nodes, and measuring the elapsed time to

process all of the requests. We measured the bandwidth under

the following scenarios:

1. Host-Local: Host sends requests to the local flash and all

data is streamed returned over PCIe;

2. ISP-Local: Host sends requests to the local flash and all

data is consumed at the local in-store processor;

3. ISP-2Nodes: Like ISP-Local except 50% of the requests

are sent to a remote flash controller. Only one serial link

connects the two nodes;

4. ISP-3Nodes: Like ISP-Local except 33% of the requests

are sent to each of the two remote flash controllers. Two

serial links connect each remote controller to the local

controller.

Figure 13 shows the read bandwidth performance for each

of these cases. Our design of the flash card provides 1.2GB/s

of bandwidth per card. Therefore in theory, if both cards

are kept completely busy 2.4GB/s should be the maximum

sustainable bandwidth from the in-store processor, and this is

what we observe in the ISP-Local experiment. In our Host-

Local experiment, we observed only 1.6GB/s of bandwidth.

This is because this is the maximum bandwidth our PCIe

implementation can sustain. In ISP-2Nodes, the aggregate

bandwidth of two flash devices should add up to 4.8GB/s, but
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we only observe about 3.4GB/s, because remote storage access

is limited by the single 8Gbps-serial link. In ISP-3Nodes, the

aggregate bandwidth of three flash devices should add up

to 7.2GB/s, but we only observe about 6.5GB/s because the

aggregate bandwidth of the four serial links connecting the

remote controllers is limited to 32.8Gbps (=4.1GB/s).

What these sets of experiments show is that in order to make

full use of flash storage, some combination of fast networks,

fast host connections and low software overhead is necessary.

These requirements can be somewhat mitigated if we make use

of in-store computing capabilities, which is what we discuss

next.

7. Application Acceleration

In this section, we demonstrate the performance and benefits

of the BlueDBM architecture by presenting some accelerator

demonstrations.

7.1. Nearest Neighbor Search

Description: Nearest neighbor search is required by many

applications, e.g., image querying. One of the modern tech-

niques in this field is Locality Sensitive Hashing [12]. LSH

hashes the dataset using multiple hash functions, so that simi-

lar data is statistically likely to be hashed to similar buckets.

When querying, the query is hashed using the same hash func-

tions, and only the data in the matching buckets are actually

Storage Access

Latency

Data Transfer

Latency

Network

Latency

Software

LatencyNetwork

Latency

Software

Latency

Host SW

Local Storage

Remote Storage
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Figure 14: Breakdown of remote storage access latency

Locality-sensitive 

hash table Data 

Figure 15: Data accesses in LSH are randomly distributed

compared. The bulk of the work during a query process is

traversing hash buckets and reading the corresponding data

to perform distance calculation. Because data pointed to by

the hash buckets are most likely scattered across the dataset,

access patterns are quite random (See Figure 15).

We have built a LSH query accelerator, where all of the data

is stored in flash and the distance calculation is done by the

in-store processor on the storage device. For simplicity, we

assume 8KB data items, and calculate the hamming distance

between the query data and each of the items in the hash

bucket. The software sends a stream of addresses from a hash

bucket along with the query data page, and the system returns

the index of the data item most closely matching the query.

Since we do not expect any performance difference for queries

emanating from two different hash buckets, we simply send

out a million nearest-neighbor searches for the same query.

Evaluation: In this study, we were interested in evaluating

and comparing the benefits of flash storage (as opposed to

DRAM) and in-store processors. We also wanted to com-

pare the BlueDBM design with off-the-shelf SSDs with PCIe

interface. The following experiments aims to evaluate the

performance of each system during various access patterns,

such as random or sequential access, and when accesses are

partially serviced by secondary storage.

We have used a commercially available M.2 mPCIe

SSD, whose performance, for 8KB accesses, was limited

to 600MB/s. Since BlueDBM performance is much higher

(2.4GB/s), we also conducted several experiments with

BlueDBM throttled to 600MB/s. Since performance should
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scale linearly with the number of nodes for this application,

we concentrated on various configurations in a single node

setting:

1. Baseline: BlueDBM with in-store acceleration;

2. Baseline-T: Throttled BlueDBM with in-store acceleration;

3. H-DRAM: Multithread software on multi-core host access-

ing host DRAM as storage;

4. H-F Throttled: Multithreaded software on multi-core host

accessing Throttled BlueDBM as storage;

5. DRAM + 10% Flash: Same as H-DRAM with 10% ac-

cesses to SSD;

6. DRAM + 5% Disk: Same as H-DRAM with 5% accesses

to HDD;

7. H-RFlash: Multithreaded software on multi-core host ac-

cessing Off-the-shelf SSD;

8. H-SFlash: Same as H-RFlash except data accesses are

artificially arranged to be sequential.

Figure 16 shows the relative performance of a throttled

BlueDBM (Baseline-T) and multithreaded software accessing

data on host DRAM (H-DRAM), with Baseline BlueDBM.

The baseline performance we observed on BlueDBM was

320K Hamming Comparisons per second. There are two

important takeaways from this graph. (1) BlueDBM can keep

up with DRAM-resident data for up to 4 threads, because

host is getting compute-bound. However, as more threads

are added, performance will scale, until DRAM bandwidth

becomes the bottleneck. Since DRAM bandwidth as compared

to flash bandwidth is very high, DRAM-based processing wins

with enough resources. (2) Native flash speed matters i.e.,

when flash performance is throttled to 1/4th of the maximum,

the performance drops accordingly. The relationship between

flash performance and application performance will not be so

simple if flash was being accessed by software.

To make the comparisons fair, we conducted a set of experi-

ments shown in Figures 17, 18, 19 using throttled BlueDBM

as the baseline.

Results of DRAM + 5% Disk and DRAM + 10% Flash

experiments shown in Figure 17 show that the performance of

ram cloud (H-DRAM) falls off very sharply if even a small

fraction of data does not reside in DRAM. Assuming 8 threads,

the performance drops from 350K Hamming Comparisons

per second to < 80K and < 10K Hamming Comparisons

per second for DRAM + 10% Flash and DRAM + 5% Disk,

respectively. At least one commercial vendor has observed

similar phenomena and claimed that even when 40% of data

fits on DRAM, performance of Hadoop decreases by an order

of magnitude [10]. Complex queries on DRAM show high

performance only as long as all the data fits in DRAM.

The Off-the-shelf SSD experiment H-RFlash results in Fig-

ure 18 showed that its performance is poor as compared to even

throttled BlueDBM. However, when we artificially arranged

the data accesses to be sequential, the performance improved

dramatically, sometimes matching throttled BlueDBM. This

suggests that the Off-the-shelf SSD may be optimized for

sequential accesses.

Figure 19 comparing Baseline-T and H-F Throttled shows

the advantage of accelerators. In this example, the accelerator

advantage is at least 20%. Had we not throttled BlueDBM,

the advantage would have been 30% or more. This is be-

cause while the in-store processor can process data at full

flash bandwidth, the software will be bottlenecked by the PCIe

bandwidth at 1.6GB/s. We expect this advantage to be larger

for applications requiring more complex accelerators Com-

pared to a fully flash-based execution, BlueDBM performs an

order of magnitude faster.

7.2. Graph Traversal

Description: Efficient graph traversal is a very important

component of any graph processing system. Fast graph traver-

sal enables solving many problems in graph theory, including

maximum flow, shortest path and graph search. It is also a

very latency-bound problem because one often cannot pre-

dict the next node to visit, until the previous node is visited

and processed. We demonstrate the performance benefits of

our BlueDBM architecture by implementing distributed graph

traversal that takes advantages of the in-store processor and

the integrated storage network, which allows extremely low-

latency access into both local and remote flash storage.

Evaluation: Graph traversal algorithms often involve depen-

dent lookups. That is, the data from the first request determines
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the next request, like a linked-list traversal at the page level.

Since such traversals are very sensitive to latency, we con-

ducted the experiments with settings that are very similar to

the settings in Section 6.4.

1. IPS-F: In-store processor requests data from remote storage

over integrated network

2. H-F: Software requests data from remote storage over inte-

grated network

3. H-RH-F: Software requests data from remote software to

read from flash

4. DRAM + 50% F: Store requests data from remote software.

50% chance of hitting flash

5. DRAM + 30% F: Store requests data from remote software.

30% chance of hitting flash

6. H-DRAM: Software requests data from remote software.

Data read from DRAM

As expected the results in Figure 20 show that the integrated

storage network and in-store processor together show almost a

factor of 3 performance improvement over generic distributed

SSD. This performance difference is large enough that even

when 50% of the accesses can be accommodated by DRAM,

performance of BlueDBM is still much higher.

The performance difference between H-F and H-RH-F il-

lustrates the benefits of using the integrated network to reduce

a layer of software access. Performance of ISP-F compared to

H-F shows the benefits of further reducing software overhead

by having the ISP manage the graph traversal logic.

7.3. String Search

Description: String search is common operation in analyt-

ics, often used in database table scans, DNA sequence match-

ing and cheminformatics. It is primarily a sequential read and

compare workload. We examine its performance on BlueDBM

with assistance from in-store Morris-Pratt (MP) string search

engines [31] fully integrated with the file system, flash con-

troller and application software. The software portion of string

search initially sets up the accelerator by transferring the target

string pattern (needle) and a set of precomputed MP constants

over DMA. Then it consults the file system for a list of phys-

ical addresses of the files to search (haystack). This list is

streamed to the accelerator, which uses these addresses to re-
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Figure 21: String search bandwidth and CPU utilization

quest for pages from the flash controller. The accelerated MP

engines may operate in parallel either by searching multiple

files or by dividing up the haystack into equal segments (with

some overlaps). This choice depends on the number of files

and size of each file. Since 4 read commands can saturate a

single flash bus, we use 4 engines per bus to maximize the

flash bandwidth. Only search results are returned to the server.

Evaluation: We compared our implementation of hardware-

accelerated string search running on BlueDBM to the Linux

Grep utility querying for exact string matches running on

both SSD and hard disk. Processing bandwidth and server

CPU utilizations are shown in Figure 21. We observe that

the parallel MP engines in BlueDBM are able to process a

search at 1.1GB/s, which is 92% of the maximum sequential

bandwidth a single flash board. Using BlueDBM, the query

consumes almost no CPU cycles on the host server since the

query is entirely offloaded and only the location of matched

strings are returned, which we assume is a tiny fraction of the

file (0.01% is used in our experiments). This is 7.5x faster

than software string search (Grep) on hard disks, which is

I/O bound by disk bandwidth and consumes 13% CPU. On

SSD, software string search remains I/O bound by the storage

device, but CPU utilization increases significantly to 65% even

for this type of simple streaming compare operation. This high

utilization is problematic because string search is often only

a small portion of more complex analytic queries that can

quickly become compute bound. As we have shown in the

results, BlueDBM can effectively alleviate this by offloading

search to the in-store processor thereby freeing up the server

CPU for other tasks.

8. Conclusion and Future Work

We have presented BlueDBM, an appliance for Big Data ana-

lytics that uses flash storage, in-store processing and integrated

networks for cost-effective analytics of large datasets. A rack-

size BlueDBM system is likely to be an order of magnitude

cheaper and less power hungry than a cloud based system

with enough DRAM to accommodate 10TB to 20TB of data.

We have demonstrated the performance benefits of BlueDBM

using simple examples on large amounts of data in compari-

son to a generic flash-based system without such architectural

improvements. We have also shown that the performance of



a system which relies on data being resident in DRAM, falls

rapidly if even a small fraction of data has to reside in sec-

ondary storage. BlueDBM like architecture does not suffer

from this problem because flash based systems with 10TB to

20TB of storage are very affordable.

Our current implementation uses an FPGA to implement

most of the new architectural features, that is, in-store pro-

cessors, integrated network routers, flash controllers. It is

straightforward to implement most of these features using

ASICs and provide some in-store computing capability via

general-purpose processors. This will simultaneously improve

the performance and lower the power consumption even fur-

ther. Notwithstanding such developments we are developing

tools to make it easy to develop in-store processors for the

reconfigurable logic inside BlueDBM.

We are currently developing or planning to develop several

new applications including: SQL Database Acceleration by

offloading query processing and filtering to in-store proces-

sors, Sparse-Matrix Based Linear Algebra Acceleration and

BlueDBM-Optimized MapReduce, which attempts to optimize

data flow of MapReduce to best fit an SSD-based cluster with

in-store processors. We plan to collaborate with other research

groups to explore more applications.
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