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Blueprint for fault-tolerant quantum computation with Rydberg atoms
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We present a blueprint for building a fault-tolerant universal quantum computer with Rydberg atoms. Our
scheme, which is based on the surface code, uses individually addressable, optically trapped atoms as qubits and
exploits electromagnetically induced transparency to perform the multiqubit gates required for error correction
and computation. We discuss the advantages and challenges of using Rydberg atoms to build such a quantum
computer, and we perform error correction simulations to obtain an error threshold for our scheme. Our findings
suggest that Rydberg atoms are a promising candidate for quantum computation, but gate fidelities need to
improve before fault-tolerant universal quantum computation can be achieved.
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I. INTRODUCTION

Rydberg atoms are a promising candidate for quantum
computation [1], having desirable properties such as relatively
simple entangling gates between many qubits and the ability
to fit thousands of qubits into a very small footprint.

Although there has been much interest in using Rydberg
atoms for quantum computation, including a recent 51-qubit
quantum simulator [2], very little work has considered the steps
required to build a fault-tolerant quantum computer with Ryd-
berg atoms. Previous work on error correction has been limited
to [3], which considered error correction within an ensemble of
atoms representing a single qubit, [4], which focused on using
Rydberg atoms in measurement-free error correction schemes,
and [5] which investigated error rates for multiple-controlled
CNOT gates using Rydberg atoms. Additionally, methods for
building a universal quantum computer with Rydberg atoms
using a decoherence-free subspace to mitigate the effects of
errors were suggested in Ref. [6].

In this work, we propose a Rydberg atom scheme for per-
forming fault-tolerant quantum computation with the surface
code [7,8]. The platform is a regular two-dimensional array
of atoms with spacings of a few micrometers, which can be
obtained using microscopic dipole trapping techniques [9].
Ideas for a Rydberg-atom-based quantum simulator using the
toric code were considered in Refs. [10,11], but our work goes
beyond this to consider some of the steps required to build a
fully fledged universal Rydberg atom quantum computer with
active error correction.

This paper is structured as follows. Sections II and III
provide a brief introduction to Rydberg atoms and the surface
code, respectively. We then describe our proposed scheme in
Sec. IV, before obtaining an error correction threshold for it
in Sec. V.

II. QUANTUM COMPUTATION WITH RYDBERG ATOMS

Rydberg atoms are neutral atoms with one or more electrons
in a highly excited state, i.e., with principal quantum number
n � 1— the alkali metals, particularly rubidium and caesium,
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are the species of atoms most commonly used for Rydberg
atom experiments due to their single valence electrons. One
of their most useful features for quantum computation is
the dipole blockade, which facilitates the implementation
of entangling gates between multiple atoms. When two
neighboring neutral atoms are in their ground states with
separation R, the energy required to excite one of them to a
particular Rydberg state |r〉 is Er . However, once one atom is in
its Rydberg state, the energy required to excite the neighboring
atom to the state |r〉 is increased to Er + V (R); exciting one
atom to its Rydberg state effectively blockades the other.

The size of this energy shift V (R) generally falls into one
of two regimes: when the atoms are sufficiently close, the
dominant interaction is due to the dipole-dipole interaction,
which scales as V (R) ≈ 1/R3. When the atoms are sufficiently
distant from each other, the dominant interaction becomes the
van der Waals interaction, which scales as V (R) ≈ 1/R6. This
work will favor the van der Waals regime due to the faster
decay in interaction strength, which will reduce unwanted
interactions between distant atoms.

Experimentally, single-qubit gate fidelities in excess of
99% have been demonstrated [12,13], but two-qubit gates
are languishing behind, with the best experiments achieving
fidelities of around 80% when postselecting for qubit loss
[14,15]; it is to be noted that this is due to technical limitations
rather than a fundamental limit. For a recent summary of the
state of Rydberg atom experiments, we direct the reader to [16].

III. THE SURFACE CODE

The surface code is a topological quantum error correction
code with qubits arranged on a two-dimensional manifold. The
toric code [7] is the prototypical example and has the qubits
arranged in a square lattice on the surface of a torus; this
idea was later extended to the planar code, which is defined
on a flat surface with boundaries [8]. The surface code can
be readily adapted to perform universal quantum computation
through techniques such as lattice surgery [17] or braiding
defects [18]. Throughout this work, the logical state of the
surface code will be denoted by |ψ〉.

The surface code is a type of stabilizer code, which are
codes that detect errors by measuring a set of carefully chosen
commuting Pauli operators known as stabilizer generators;
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FIG. 1. A distance d = 5 planar code (black dots represent
physical data qubits). (a) Primal lattice showing a star stabilizer
generator As , a plaquette stabilizer generator Bp , and a logical Pauli
operator Z. (b) Dual lattice showing the same stabilizer generators
and a logical Pauli operator X that anticommutes with the logical Z

operator in (a).

these stabilizer generators and their products form an Abelian
group known as the stabilizer, S. When there are no errors, all
operators in the stabilizer have measurement outcome +1, i.e.,

S|ψ〉 = |ψ〉 ∀ S ∈ S.

If an error occurs that anticommutes with one or more stabilizer
operations, the outcomes of these measurements will then be
−1; the measurement outcomes provide a syndrome that can
be used to diagnose the error. Arbitrary trace-preserving qubit
errors collapse into Pauli errors when the stabilizer generators
are measured [19], so it suffices to detect and correct only Pauli
X and Pauli Z errors. Non-trace-preserving leakage errors are
discussed later.

Figure 1(a) shows the arrangement of physical data qubits
in the planar code. Each vertex s is associated with a star
stabilizer generator As on the qubits surrounding the vertex

As =
⊗
i∈s

Xi,

and each square p is associated with a plaquette stabilizer
generator Bp on the qubits surrounding the square

Bp =
⊗
i∈p

Zi.

All stabilizer generators involve only neighboring qubits.
Figure 1(b) shows the same lattice as Fig. 1(a), but with

the role of stars and plaquettes swapped between vertices and
squares; this configuration is known as the dual lattice, and
that in Fig. 1(a) is known as the primal lattice. This section
will discuss the detection and correction of Pauli Z errors on
the primal lattice, but an analogous procedure can be used to
detect and correct Pauli X errors on the dual lattice.

In addition to the stabilizer generators, one also defines
logical Pauli X and Pauli Z operators, X and Z. These
operators commute with all star and plaquette operators but
anticommute with each other, and they are formed by strings of
qubit operators between opposing boundaries of the lattice, as
shown in Fig. 1. Note that the logical operators are not unique:
each logical operator can be modified by multiplication with
an element of the stabilizer to form a new logical operator that

has the same effect on the logical state, i.e.,

X|ψ〉 = SX|ψ〉
Z|ψ〉 = SZ|ψ〉

}
∀ S ∈ S.

The weight of the lowest-weight logical operator is known
as the code distance, d. A code with distance d can reliably
correct errors on �(d − 1)/2� data qubits.

Whenever a Pauli Z error occurs on a single qubit, it flips
the parity of the adjacent star operators. When Z errors occur
on two qubits adjacent to a single star operator, the combined
error commutes with the star operator, so the parity of the star
operator will remain unchanged. However, these errors will
be detected by the neighboring star operators such that only
the ends of strings of errors are detected and not the actual
locations of the errors.

The collective outcomes of all star measurements—the
error syndrome—provide the locations of the ends of all strings
of errors, and it is the job of the classical decoder to find
a suitable correction for the errors. If the decoder finds a
correction that results in the error being exactly corrected,
the correction succeeds. Additionally, any correction that
results in the errors and corrections forming a contractible
loop is also a successful correction, as it is equivalent to a
product of plaquettes and therefore leaves the logical state
unaltered. However, corrections that combine with errors to
form uncontractible strings across the lattice are equivalent to
logical operations and mean a logical error has occurred and
the error correction has failed.

In general, the measurement of stars and plaquettes is itself
subject to error, but this can be handled by repeating the mea-
surements many times to build up a syndrome over multiple
time steps; this repeated measurement means the syndrome
extraction itself does not have to be fault tolerant. Computation
and error correction are performed simultaneously, such that
the stabilizer generators are measured repeatedly until the
computation is complete. Corrections can either be applied as
they are found, or, more likely, their effect can be propagated
through the computation and accounted for when the final
measurement is performed.

Numerous approaches have been suggested for surface
code decoders, including minimum weight perfect matching
decoders [20], renormalization decoders [21], and cellular
automaton decoders [22]. An optimal decoder would provide
the maximum probability of successful correction, but known
algorithms for such decoders are generally computationally
inefficient (with certain exceptions [23,24]). Decoders based
on minimum weight perfect matching [20] are the most
widely used for the surface code, as they are computationally
efficient and achieve relatively high error thresholds. Minimum
weight perfect matching decoders work by pairing the ends of
error strings in a way that minimizes the total weight of the
correction strings, with each edge of the planar code having
a weight assigned to it related to the probability of an error
occurring at that location.

IV. PROPOSED SCHEME

In this work, we propose using individually addressable
optically trapped neutral atoms to represent qubits in a planar
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FIG. 2. Using EIT to perform a CNOT gate with the method in
Ref. [25] (control qubit always on the left, target qubit always on the
right). (a) Shows the order of the pulses, (b) shows EIT blocking the
|0〉t ↔ |1〉t transition on the target qubit, and (c) shows the dipole
blockade shifting the EIT out of resonance and allowing the |0〉t ↔
|1〉t transition on the target qubit.

code, with multiqubit gates performed by exploiting electro-
magnetically induced transparency (EIT) using the methods in
Ref. [25]. The atoms are arranged in a two-dimensional array of
micron-sized traps, with atomic spacings of a few microns [9].
This approach has several desirable features, including parallel
operation, the ability to activate local interactions with large
contrast as needed via laser addressing, and robustness towards
interactions between target atoms, provided Rabi frequencies
and interaction strengths involved (i.e., Rydberg states) are
chosen appropriately, as discussed in Ref. [25].

The |0〉 and |1〉 states of each physical qubit are represented
by hyperfine ground states of the atoms, and Rydberg states,
labeled |r〉, are used to mediate interactions. Note that atoms
involved in an interaction may utilize different Rydberg states
such that |r〉i and |r〉j are not necessarily the same states for
atoms i and j .

Figure 2 shows the process for using EIT to perform a
CNOT gate between a control and a target qubit, as proposed
in Ref. [25]. Initially, the |1〉c state of the control atom is
resonantly coupled to the |r〉c state using a π laser pulse with
Rabi frequency �b. A second π pulse with Rabi frequency �c

is then used to off-resonantly couple the |0〉t and |1〉t states
of the target atom via an off-resonantly coupled intermediate
state |p〉t , before another π pulse with frequency �b is applied
to again couple the |1〉c and |r〉c states of the control atom.
Throughout this process, a strong laser with Rabi frequency
�a , where �a � �c, is used to off-resonantly couple the
Rydberg state |r〉t of the target to the intermediate state |p〉t
and achieve EIT. When the control atom starts in the |0〉c state,
the initial �b pulse has no effect and the beam �a prevents
Raman transfer between the |0〉t and |1〉t states on the target
due to EIT. When the control atom starts in the |1〉c state, the
|r〉c state of the control atom becomes populated after the first
�b pulse, which in turn shifts the Rydberg state |r〉t 
→ |r ′〉t
of the target atom to take the �c beam out of resonance and
remove the EIT condition on the target, leading to an effective
coupling between the |0〉t and |1〉t states.

|0 H • H

data

qubits

⎧⎪⎪⎪⎨
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FIG. 3. Measuring a star operator using a multitarget EIT CNOT

gate. The top qubit is the ancilla syndrome qubit and is used only
for syndrome measurement. The method for measuring a plaquette
stabilizer generator involves applying Hadamard gates to each data
qubit before and after the entangling operation but is otherwise
identical.

This method can be used to perform simultaneous CNOT

gates between a single control qubit and multiple target qubits,
making it ideal for syndrome measurement in the surface code
using the measurement circuit shown in Fig. 3. Every star and
plaquette has an associated ancilla syndrome qubit used to
measure the stabilizer generators. The �c pulse is of the order
of a few tens of megahertz such that the multiqubit interaction
can be performed in under a millisecond [25].

The fidelity of the process is dependent upon the chosen
atom species, Rabi frequencies, and Rydberg states, but to
give an indication [25], calculated that EIT can be used
to perform the operation |+000〉 
→ 1/

√
2(|0000〉 + |1111〉)

with a fidelity in excess of 97% with 87Rb. Higher fidelities
may be achieved by an appropriate choice of the laser
parameters and Rydberg states, as discussed in Ref. [26] and
[27], where the gating parameters were optimized for different
spatial arrangements of the target qubits. Fidelities alone do not
provide details of the underlying error channels and so cannot
be mapped to error correction thresholds; leakage errors, for
example, can be less harmful than Pauli errors [28].

Our proposal requires atoms to be trapped in a lattice
configuration like that shown in Fig. 4. Deterministic load-
ing of traps remains a major hurdle for Rydberg atom
quantum computation, but methods to overcome this have
been suggested, including starting with a partially loaded
lattice and rearranging the qubits [29]. This approach has
been successfully used to construct 2D lattice geometries of
∼50 qubits [30] with atomic separations of a few μm using

Z

Z

X

XX

X

FIG. 4. Arrangement of Rydberg atoms for a planar code. Green
shaded qubits denote ancilla syndrome qubits used to measure
stabilizer generators, and solid black qubits denote data qubits of
the planar code. Using different species of atoms for syndrome and
data qubits may help to reduce crosstalk during measurement [32].
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FIG. 5. Stabilizer generators must be measured in at least four
stages to ensure that each data qubit is involved in only a single
interaction at any time. Each of the subfigures represents one stage
of measurement, with all four stages required for one complete round
of syndrome measurement. (a, b) Measurements of star stabilizer
generators, (c, d) measurements of plaquette stabilizer generators.

optical tweezers, which would be sufficient for a prototype
device. It is not necessary to construct a perfect lattice, as
low rates of missing qubits can be handled with no additional
quantum processing [31].

Once the atoms are trapped, error correction proceeds by
repeatedly measuring the stabilizer generators of the surface
code. For example, to measure a star stabilizer generator,
the syndrome qubit is prepared in the |+〉 state, and then
the EIT gate method is used to apply simultaneous CNOT

gates controlled by the associated syndrome qubit, with the
four surrounding data qubits as targets. A Hadamard gate
is then applied to the syndrome qubit before it is measured
in the computational basis. This process is shown in Fig. 3.
Measurement of plaquette stabilizer generators is performed
in the same manner, but with Hadamard gates applied to each
data qubit before and after the CNOT gates.

Each data qubit can only be involved in one interaction at a
given time, so the star and plaquette measurement operations
must be performed in at least four separate stages, as shown in
Fig. 5. It should be noted that because of the scaling of the van
der Waals interaction with distance, the number of staggered
measurements may need to be increased to avoid crosstalk
between control and target qubits belonging to different stars
and plaquettes. This staggered measurement pattern should
not impact the overall speed of the computation significantly,
as the readout stage is several orders of magnitude slower than
the interaction stage, and the actual readout from the syndrome
qubits can be performed simultaneously. Should measurement

|ψ〉 • • |ψ〉
|0〉

FIG. 6. Leakage detection circuit from [35]. If the top qubit is in
the computational basis, then the bottom qubit (an ancilla) will be
observed in the |1〉 state. If the top qubit has leaked or been lost, the
bottom qubit will be observed in the |0〉 state. The top qubit can be
reinitialized if leakage or loss occurs.

speed be increased, then the choice of measurement pattern
will depend upon the tradeoff between errors accumulating
due to the delay between stabilizer generator measurements
and errors occurring due to crosstalk during the EIT gates.

Fast, high-fidelity measurement is another outstanding
challenge for Rydberg atom devices. Quantum nondemolition
measurements with arrays of qubits have only been performed
using relatively noisy electron-multiplying CCDs [33] rather
than discrete photon detectors. Such measurements take
around 20 ms [34], so this is currently the limiting factor for the
clock speed of our scheme and will limit the computation speed
to Hz frequencies until improvements are made. Crosstalk
during measurement poses an additional problem, although
suggestions for reducing crosstalk by using a two-species
architecture [32] would be ideally suited to a surface code
quantum computer, where rubidium atoms could be used for
the frequently measured syndrome qubits and caesium atoms
could be used for the data qubits.

As atoms are nonbinary systems and we are making
extensive use of nonqubit Rydberg states of atoms, it is
prudent to include some form of leakage and loss detection
and reduction; the leakage detection circuit in Fig. 6 can be
used periodically for such a purpose [35]. Methods for dealing
with leakage in the surface code were considered in Ref. [28],
which showed that low levels of leakage can be tolerated at
the cost of a slightly lower error correction threshold. When a
qubit has leaked or been lost, this qubit can be reset to a known
state, e.g., |0〉, and the error correction can proceed as normal,
with the decoder taking account of the increased probability
of an error occurring on the leaked qubit. The frequency with
which leakage detection needs to be performed will depend on
the rate at which leakage errors occur; leakage detection will
introduce additional errors and so will ideally be performed as
infrequently as possible.

In addition to syndrome measurement, performing full
quantum computation by braiding defects or lattice surgery
will require the ability to measure individual data qubits
occasionally. This could be achieved by using CNOT gates
and measuring syndrome qubits, therefore removing the
requirement to be able to directly measure the data qubits.

V. ERROR THRESHOLDS

We have performed a simulation of this scheme to obtain
an error correction threshold—the threshold is the critical
physical qubit error rate below which increasing the number
of qubits in the code reduces the logical error rate, meaning
arbitrary quantum computations can be performed, provided
there are enough qubits. The simulation uses the planar code
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FIG. 7. Logical error rates from error simulations for code
distances 8, 10, 12, and 14. The crossing point gives the resulting
error threshold of 1.25%.

with stabilizer generator measurements, as outlined in Sec. IV,
in the presence of errors.

The error model used in the simulation is based around a
single error parameter p as follows. State preparation and
measurement are assumed to result in the preparation or
detection of orthogonal states, respectively, with probability p.
Each multiqubit EIT gate is modeled to act perfectly followed
by depolarizing noise with probability p, i.e., for an n qubit
gate, each of the possible 4n − 1 nonidentity Pauli operations
will occur with probability p/(4n − 1). Single-qubit gates,
such as identity gates and Hadamard gates, are assumed to be
free from error on the basis that such operations will generally
have much lower error rates than other operations.

As mentioned in Sec. III, measuring the surface code
stabilizer generators leads to a discretization of errors: a more
general error will collapse into a combination of Pauli errors
[19]. It is nontrivial to perform a simulation with physical
errors or to directly relate physical errors to a simulatable
error model. This error model therefore has been chosen in
lieu of knowledge of the exact error channel and associated
Pauli error rates, as is standard when obtaining quantum
error correction thresholds; this allows for a comparison with
thresholds obtained for other approaches, such as those in
Ref. [36].

Leakage errors, such as atom loss or excitation of unin-
tended energy levels, were not considered in the simulation.
Such a simulation is left for future work.

Planar codes with code distance d = 8,10,12, and 14 were
simulated for 2d rounds of syndrome measurement using the
scheme outlined in Sec. IV and the above error model, and a
minimum weight perfect matching algorithm was used for
decoding. Figure 7 shows the logical error rates obtained
during the simulations. The error threshold is given by the
crossing point in this plot [20,37], resulting in a threshold of
pth ≈ 1.25% for our chosen error model.

Correlated errors

The van der Waals interaction between atoms scales
with 1/R6, where R is the separation between atoms. This

polynomial decay means that there may be a non-negligible
crosstalk between distant qubits during multiqubit gates, which
could cause correlated errors between non-neighboring qubits.
Similar errors were considered for the surface code in Ref. [38],
which found that logical error suppression could be achieved
even in the extreme case of quadratically decaying interactions.

VI. SUMMARY

We have proposed a scheme for fault-tolerant quantum
computation with Rydberg atoms. Our proposal uses EIT
to perform multiqubit gates for syndrome extraction, and
we suggest methods to mitigate the effects of leakage and
qubit loss. We have found a threshold of 1.25% for an
error model based on this scheme, which we hope will
provide an initial target for experimentalists looking to build a
prototype quantum computer with Rydberg atoms. Prospects
for initial scalability are good, with arrays with on the order of
104 atoms being realistically achievable [16]. Larger numbers
of qubits would be desirable in the long run, but this should
be satisfactory for early devices attempting to demonstrate
quantum speedup.

Experimentally achieving quantum operations with suffi-
ciently high fidelities and low loss rates remains a challenge
with Rydberg atoms, but this is mostly due to engineering
obstacles rather than physical limitations, so we are optimistic
that large improvements will be made. While quantum gates
can be performed at MHz frequencies, slow measurements for
arrays of atoms currently limits the potential clock speed of
our scheme to the order of a few tens of Hz, so this is a key area
for improvement. A thorough error analysis of multiqubit gates
based around EIT is required to determine whether sufficiently
low error rates can be achieved. It is likely that improvements
will be needed to achieve the error rates below 1.25% required
for reliable quantum computation. If necessary, the EIT gates
in our proposal can easily be replaced by another multiqubit in-
teraction without significantly affecting the rest of the scheme.

It should be noted that a threshold alone cannot be used to
verify that a scheme will work for surface-code-based quantum
computation. A more convincing analysis is to experimentally
demonstrate that a larger system has superior error suppression
compared to a smaller system, as has been accomplished with
bit-flip errors on superconducting qubits [39].

Our findings suggest that while there are many advanta-
geous features of Rydberg atoms, gate fidelities need to be
improved before fault-tolerant universal quantum computation
can be achieved. Experiments based on other implementations
of fault-tolerant quantum computation, such as superconduct-
ing qubits [40] and trapped ions [41], are currently ahead of
Rydberg atoms. We nonetheless believe Rydberg atoms are a
candidate for building a fault-tolerant quantum computer.
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