
Blueprint for Introducing Innovation
into Wireless Mobile Networks

Kok-Kiong Yap† Rob Sherwood� Masayoshi Kobayashi? Te-Yuan Huang†
Michael Chan† Nikhil Handigol† Nick McKeown† Guru Parulkar†

†Stanford University �Deutsche Telekom Inc. R&D Lab ?NEC

yapkke@stanford.edu, robert.sherwood@telekom.com, m-kobayashi@eo.jp.nec.com,
{huangty, mcfchan, nikhilh, nickm, parulkar}@stanford.edu

ABSTRACT
In the past couple of years we’ve seen quite a change in the
wireless industry: Handsets have become mobile computers
running user-contributed applications on (potentially) open
operating systems. It seems we are on a path towards a more
open ecosystem; one that has been previously closed and pro-
prietary. The biggest winners are the users, who will have
more choice among competing, innovative ideas.

The same cannot be said for the wireless network infras-
tructure, which remains closed and (mostly) proprietary, and
where innovation is bogged down by a glacial standards pro-
cess. Yet as users, we are surrounded by abundant wireless
capacity and multiple wireless networks (WiFi and cellular),
with most of the capacity off-limits to us. It seems industry
has little incentive to change, preferring to hold onto control
as long as possible, keeping an inefficient and closed system
in place.

This paper is a “call to arms” to the research community to
help move the network forward on a path to greater openness.
We envision a world in which users can move freely between
any wireless infrastructure, while providing payment to in-
frastructure owners, encouraging continued investment. We
think the best path to get there is to separate the network
service from the underlying physical infrastructure, and al-
low rapid innovation of network services, contributed by re-
searchers, network operators, equipment vendors and third
party developers.

We propose to build and deploy an open—but backward
compatible—wireless network infrastructure that can be eas-
ily deployed on college campuses worldwide. Through virtual-
ization, we allow researchers to experiment with new network
services directly in their production network.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VISA 2010, September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0199-2/10/09 ...$10.00.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS—Network Architecture and
Design

General Terms
Design, Experimentation, Measurement

Keywords
OpenFlow, Software-Defined Networks, FlowVisor, Wireless,
Mobile Networks, Mobility

1. INTRODUCTION
There is currently much excitement in the air about open-

ness in wireless and mobile computing. Users can choose from
a thriving array of handsets and, in many countries, use their
handset with a variety of commercial carriers. A burgeon-
ing army of third-party developers are creating applications,
games and content for mobile devices. And the Android op-
erating system claims to be the “first truly open and compre-
hensive platform for mobile devices; all of the software to run
a mobile phone, but without the proprietary obstacles that
have hindered mobile innovation.” [4]

Arguably these are all positive steps towards a more open
ecosystem for the mobile world, creating more choice for
users. We applaud the move towards openness and are great
believers in the power of choice in the marketplace to bring
innovation, efficiency and high quality service to the user.
Industry benefits too. An innovative marketplace grows the
business for everyone, and attracts new players eager to com-
pete with incumbents. Openness creates choice which breeds
innovation.

But despite all the progress, there are still real structural
barriers to openness – barriers that industry and government
will not break down on their own – requiring technical inno-
vation. This is the domain of university researchers. In the
spirit of enabling choice and innovation through openness, we
describe here how we, as a research community, can set out
to break down two large technological barriers:

1. The inaccessible and closed wireless capacity around
us. Today, if we stand in the middle of a city, we
can likely “see” multiple cellular and WiFi networks.
But, frustratingly, these infrastructures are not avail-
able for us to use. Cellular companies restrict us to use

Figure 1: Vision for Future Wireless Mobile Internet:
Choice of providers, networks and technologies.

their network; most private WiFi networks require au-
thentication, and are effectively inaccessible. Although
we are often surrounded by abundant wireless capac-
ity, almost all is off-limits; our choice is almost non-
existent. We believe users should be free to travel in a
rich field of wireless networks with access to all infras-
tructure around them. Openness doesn’t mean free;
here it means a healthy market-place with lower-cost
connectivity and broader coverage. In the extreme, if
all barriers to fluidity can be removed, users could con-
nect to multiple networks at the same time, opening up
enormous capacity and coverage.

2. A network infrastructure that is closed to inno-
vation. Cellular networks increasingly use IP. IP has
been tremendously successful in bringing choice and in-
novation to the end user: Arguably its greatest feat is
enabling innovation at the edges. IP is simple, stan-
dardized, and provides universal connectivity. But we
believe that as-is, IP is not the right choice for the fu-
ture mobile Internet: It is ill-suited to support mobility
and security; and it is hard to manage. Its architecture
is fixed, allowing little room to add new capabilities.
Today cellular providers feel the pain from poor sup-
port for mobility, security, and innovations in general.
If we tweak IP to solve these problems, we will find
new limitations. We need a network that allows contin-
ued innovation, for services we can’t yet imagine, while
allowing existing applications to work unchanged.

So as we look to the future, we want a network that will
allow any mobile computer to connect to any network, and to
move freely and seamlessly from one network to another. The
logical next step is for a handheld to connect to any network
around it – regardless of who owns the network and what
radio technology it uses, as exemplified in Figure 1. While
there are obvious non-technical barriers that stand in our
way, e.g., economic and regulatory, we believe a new network
architecture is needed to break down these barriers.

In this new architecture, there will exist lots of service
providers, lots of radios, and lots of types of radios, all tied
together by lots of wired networks. There will be diversity

at all levels: diversity in network (many networks to choose
from), channels (more spectrum will become available), an-
tennas (more MIMO), radios (a handheld will contain many
radios). Whereas today’s phones commonly have three or
four radios (e.g. GSM, WiFi, Bluetooth), in future they will
have more. Shrinking geometries and energy-efficient circuit
design will lead to mobile devices with ten or more radios,
with several of the same type. A handheld may connect to
several networks at once, for robustness and increased signal
quality. If users are to move freely among many networks,
the service provider needs to be separate from the network
owner. Service provider should handle the mobility, authen-
tication and billing for their users, regardless of the network
they are connected to. To a limited extent, this is happening:
Some cellular companies allow MVNOs1 to provide services
over their network. And in WiFi networks, when we login to
a hotel or airport network, a third party provides authenti-
cation and billing services. We assert that all these will al-
low streaming applications to operate seamlessly as we walk,
drive, or fly.

Our general approach is to open up that which has been
closed – to help industry move towards an open network ar-
chitecture. As cellular providers make the transition to IP, we
would like to enable them to innovate in their own network.
We would like them to be able to research and experiment
with new security models (e.g. new approaches to access con-
trol, and user authentication), and with new, more scalable
alternatives to mobile IP. An open architecture allows a new
industry of suppliers to provide improved features in the net-
work; and it will help an open-source community to grow,
which in turn will provide contributions to all users.

We believe the research community has a big part to play
in bringing this new open architecture to fruition, and there
are many interesting research problems to be solved along the
way. For example, in service of end-users, we need to figure
out how to cleanly cleave the network service from the un-
derlying network infrastructure. A clean separation of “ser-
vice from infrastructure’ across different networks (cellular
providers, home networks, enterprise networks, coffee-shop
networks, etc.) and across different types of wireless network
(e.g. GSM, WiFi, WiMAX, LTE) would give us access to
a lot more wireless capacity, and more competition among
providers. Other research includes how to create a person-
alized mobility manager that lives in the cloud in service of
one or more customers. A personal mobility manager can
implement a user’s preferences for routing, network selection
and pricing. An open network will enable new experiments
with location-aware services. And it will enable experiments
with new, large scalable directory services for a population
of billions of mobile users and services. Finally, we can re-
search ways to improve measurement and instrumentation of
the network, to allow users to compare service quality from
different providers and in different networks.

To support this vision and research along the way, we
present OpenFlow Wireless (§ 2), a blueprint for this open
network architecture. We also describe the current deploy-
ment of OpenFlow Wireless (§ 3) on our campus, and how it

1MVNO: Mobile Virtual Network Operator. In the US, Vir-
gin is an MVNO in Sprint’s network; Sprint owns the radios
and wired network, and Virgin provides branded AAA and
billing services for its customers. In some countries, notably
Holland, hundreds of MVNOs compete over a small number
of physical networks.

Figure 2: OpenFlow Wireless (a.k.a. OpenRoads)
Architecture

has already been used in classrooms to enable new research in
wireless networks (§ 3.3). We conclude the paper with a call
to action for the research community to join in our expedition
towards this vision of openness (§ 4).

2. OPENFLOW WIRELESS: BLUEPRINT
FOR AN OPEN WIRELESS NETWORK

In support of our vision – and as a first step towards engag-
ing the broader research community – we propose OpenFlow
Wireless: a mobile wireless network platform enabling exper-
imental research and realistic deployments of networks and
services using virtualization. Figure 2 provides an overview
of OpenFlow Wireless. OpenFlow Wireless uses OpenFlow
to separate control from the datapath through an open API,
FlowVisor [12] to create network slices and provide isola-
tion among them, hence allowing multiple experiments to
run simultaneously in production wireless network, and SN-
MPVisor to mediate device configuration access among ex-
periments. These components which virtualize the underly-
ing infrastructure relate directly back to our vision for future
wireless Internet design, in terms of decoupling mobility from
physical network (OpenFlow), and allowing multiple service
providers to concurrently control (FlowVisor) and configure
(SNMPVisor) the underlying infrastructure.

2.1 OpenFlow
OpenFlow [7] is a feature added to switches, routers, access

points (APs) and base-stations, allowing these datapath de-
vices to be controlled through an external, standardized API.
OpenFlow exploits the fact that almost all datapath devices
already contain a flow-table (originally put there to hold fire-
wall ACLs), although current switches and routers don’t have
a common external interface. In OpenFlow Wireless, we add
OpenFlow to WiFi APs and WiMAX base-stations as well
by modifying their software; and in principle the same thing
could be done for LTE and other cellular technologies.

In OpenFlow - and therefore in OpenFlow Wireless - the
network datapath is controlled by one or more remote con-
trollers that run on a PC. The controller manages the flow-
table in all the datapath elements and gets to decide how
packets are routed in the network. In this manner, the dat-
apath and its control are separated, and the controller has
complete control over the operation of the datapath. The
controller can define the granularity of a flow. For example a
flow can consist of a single TCP session or any combination
of packet headers (Layer 1-4) allowing aggregation.2

2.2 Network OS: NOX
In our network we use a freely available open-source con-

troller NOX [5, 10]; but in principle any controller is possible,
so long as it speaks the OpenFlow protocol. NOX provides
network-wide visibility of the current topology, link-state and
flow-state, and all other network events. As a network OS,
NOX hosts applications or plug-ins that can observe and con-
trol the network state—for example, to implement a new
routing protocol, or in our case to implement a new mobil-
ity manager. The mobility manager can choose to be made
aware of every new application flow in the network, and can
pick the route it takes. When the user moves, the mobil-
ity manager is notified, and can decide to re-route the flow.
Because OpenFlow is independent of the physical layer (i.e.,
whether the wireless termination point is running WiFi or
WiMAX), vertical handoff between different radio networks
is transparent and simple.

The openness of the controller makes it is easy to add or
change the functionality of the network. For example, a re-
searcher can create a new mobility manager (e.g., one that
does faster or lossless handoff) by simply modifying an exist-
ing one. In our prototype deployment (§3.3), we have already
seen this happen many times, as researchers and students ex-
change code and build on each others work. In this way,
we believe rapid innovation is possible. Further, by separat-
ing the datapath and its control, we can reap many benefits
of centralized control (see below, A Trend Towards Central-
ized Control of WiFi Networks). Anecdotally, we have found
network administrators receptive to a centrally managed net-
work that is easily monitored.

Taken to the extreme, an application could be an entire mo-
bility service, akin to the cellular service we buy from compa-
nies like AT&T, Vodafone, Orange, etc. An application can
be written to implement AAA, billing, routing, directory ser-
vices and so on... all running as a program on an OpenFlow
controller. And because the controller is simply a program
running on a server, it can be placed anywhere in the network
- even in a remote data center. In the short term, we expect
applications and experiments to be much simpler; but, in the
long-term, an open network can grow to support a wealth of
new services.

2.3 Hosting Multiple Simultaneous
Experiments

Although we’ve explained how we can run a new experi-
mental service in the OpenFlow Wireless network, it still begs
the question of how we can have multiple competing services
running at the same time in the same network. And how one

2More information about OpenFlow can be found at http:
//OpenFlow.org, including reference systems, specifications,
and a list of commercial switches supporting the OpenFlow
protocol.

A Trend Towards
Centralized Control of WiFi Networks

Independently, campus WiFi networks are rapidly be-
coming more centralized. A central controller man-
ages many wireless access points across a campus, al-
locating non-overlapping channels, setting power levels
to reduce interference, and authenticating users in a
single consistent way. Mobile users can roam freely
across a campus without changing IP address, and
without dropping TCP connections. Such a network is
“software-defined”, with the entire network operation
determined by code running in the controller. When
new features are needed in the networks (e.g. new rout-
ing algorithms, new authentication policies, etc.) the
manufacturers simply update the central controllers.
This trend is typified by a range of products from Cisco,
Aruba, Meraki, Meru [2, 1, 9, 8] and a set of stan-
dards [6]; together they show a trend towards central
control, and show it is viable (although commercial con-
trollers are proprietary and closed, and are designed to
work with specific products in a particular market seg-
ment).
Our experience so far is that network administrators
like centralized control of their wireless network: it pro-
vides a single point of management, network configura-
tion (e.g., access control) is more likely to stay consis-
tent, and the network is easier to upgrade. OpenFlow
Wireless provides this in an open way, building on reli-
able hardware, presenting (probably the first) practical
way to open up the wireless network we all use every-
day. We contend the synergy between administrators’
trend towards centralized control and researchers’ de-
sire to work with production systems provides a power-
ful“carrot”for deploying OpenFlow Wireless as campus
networks.

service could allow its users to roam freely across multiple
physical networks. The trick here is to slice or virtualize the
network, allowing multiple controllers to co-exist, each con-
trolling a different slice of the network. A slice may consist
of one user or many users; one network or many networks;
one subset of traffic or all traffic. So, we use the FlowVi-
sor: an open-source application created specifically to slice
OpenFlow networks.

FlowVisor slices the network by delegating control of dif-
ferent flows to different controllers. As shown in Figure 2,
FlowVisor is an additional layer added between the datapath
and controllers. Because the FlowVisor speaks the OpenFlow
protocol to the datapath, the datapath believe they are con-
trolled by a single controller (the FlowVisor); and because
the FlowVisor speaks OpenFlow to the controllers above, the
controllers think they each control their own private network
of switches (meaning a virtual network); i.e. FlowVisor is a
transparent proxy for OpenFlow. The trick is to correctly
isolate the flows according to a policy, and hence create one
slice per experiment with its own private “flowspace” (a range
of header values). FlowVisor works by deciding which Open-
Flow messages belong to each slice, and pass them to the
controller for that slice. If, for example, Controller A is re-
sponsible for all of Alice’s traffic, then the FlowVisor passes
all control messages relevant to Alice to Controller A. There-

fore, FlowVisor separates slices according to a policy, defined
by the network manager, by providing a strict communication
isolation between slices.

A direct consequence of slicing the network is that we can
safely run experiments in a production network. The FlowVi-
sor allocates flowspace by default to the production network,
which can be routed using legacy protocols. Each experiment
is assigned its own slice, defined by the flowspace and topol-
ogy, and implemented by the FlowVisor. Because real users
are already connected to the production network, it makes
opt-in relatively simple. If the network is sufficiently large,
then experiments can be run at the same scale as, say, a
campus wireless network. Or could even be run over multiple
networks on multiple campuses.

Slicing/virtualization also allows “versioning” in the pro-
duction network, where new features can gradually be in-
corporated into the production slice. Different slices can be
dedicated to different versions, some more stable than others,
as new features are carefully rolled out in stages. In this way,
new features can be deployed and tested quickly, then grad-
ually made available network-wide, and even shared with the
owners of other campus networks. Such an ecosystem allows
for the survival of the fittest, bringing the best to users. Also,
legacy clients can be supported on a separate legacy slice, and
the network can now evolve without being held-back by back-
ward compatibility.

Finally, slicing allows delegation. Network administrators
can cascade FlowVisors to further delegate (or slice) the flow
space allocated to them. Repeated delegation makes sense
in networks with a hierarchy of control; for example, in our
network the campus network manager delegates a slice of
the network for research experiments in our group, which
we in turn slice (using another FlowVisor) among different
experiments.

2.4 Configuring the Datapath
While OpenFlow provides a means to control the Open-

Flow Wireless datapath, it doesn’t provide a way to configure
the datapath elements: e.g. to set power levels, allocate chan-
nels, enable and disable interfaces. This job is normally left to
a command line interface, SNMP or NetConf. Although sim-
ple in principle, configuration is tricky in a sliced network, as
we want to configure each slice independently. For example,
we might wish to disable a certain network interface in one
slice, without disabling the same physical interface shared by
another slice.

We slice datapath configuration using a“SNMPVisor”, that
runs alongside the FlowVisor, to allow an experimenter to
configure his slice. FlowVisor slices the datapath, and SN-
MPVisor slices the configuration by watching SNMP control
messages, and sending them (and possibly modifying them)
to the correct datapath element. Similar to FlowVisor, SNM-
PVisor acts as a transparent SNMP proxy between the datap-
ath and controllers, providing the same features of versioning
and delegation.

But sometimes it’s hard or impossible to slice the configu-
ration: For example, setting power levels for different slices
on a WiFi AP. If slices share a channel, then we want to
set different transmit power levels for the flows in each slice
- something not possible on existing APs. We follow the
general mantra of slicing where we can, and exposing non-
sliceable configuration parameters to the user via feedback
and error messages.

3. AN OPENFLOW WIRELESS
DEPLOYMENT

To gain some early experience with OpenFlow Wireless
(a.k.a. OpenRoads [14]), we built a prototype – based on
our blueprint – and deployed on our campus [15]. Along with
the details of our implementation and deployment, we also
describe an often overlooked but crucial component, our mea-
surement infrastructure. We implemented OpenFlow Wire-
less on top of NOX OpenFlow controller, through which we
control the switches, APs and base-stations; and we slice the
network using FlowVisor. We also extended SNMP into NOX
to let us control power, frequency, data rate, SSID, etc., and
to capture wireless events (like when hosts associate with an
AP). All of these tools are freely available under open-source
licenses [11], and we encourage the community to help us
improve them over time.

3.1 Datapath elements: Access Points,
Base-stations, and Switches

Our initial deployment consists of 30 WiFi APs, 2 WiMAX
base-station and 5 Gigabit Ethernet switches in our wiring
closets.

WiFi: Our WiFi APs, constructed with embedded com-
puters running Linux, have two radios and cost about $200.
We have also made available a lower-cost OpenWRT-based
AP.

WiMAX base-station: We added OpenFlow to a WiMAX
base-station, and placed it in our network using an FCC re-
search spectrum license. The base-station essentially operates
as a WiMAX AP running OpenFlow.

Switches: We use Ethernet switches in our wiring clos-
ets: NEC IP8800 24/48-port GE and HP 5406zl chassis GE
switches, with firmware upgrades to support OpenFlow.

For future work, we plan to (and hope the community
will also) experiment with more exotic hardware. For ex-
ample, we could attach experimental programmable radios
to our deployment, e.g., GNURadio [3] and WARP [13], add
OpenFlow interface to them, and then exploit their extra
programmability through SNMP or NetConf.

3.2 Logging and Measurement
To better ensure that the results of our experiments are ac-

curate and repeatable, we implement a comprehensive mea-
surement component as part of the OpenFlow Wireless de-
ployment. With NOX’s event logs, we record all network
events including changes in topology, link-state, flow-state,
etc. We have created a number of visualization, monitoring
tools and GUIs running on top of NOX to help users instru-
ment the state of their slice, and draw temporal correlations
between network events. We believe that the completeness
of the measurement infrastructure will further ease innova-
tion in open wireless networks, exposing important problems,
trends and interactions in the network.

3.3 Early Mobility Experiments
As a first foray into creating experiments on OpenFlow

Wireless, we charged students in a 12 week project-based
class to design and deploy their own novel mobility manager,
then deploy it into the network. Some interesting designs re-
sulted. Due to OpenFlow Wireless’ design, all mobility man-
agers were immediately able to do handover between WiFi
and WiMAX, resulting in insights about handovers in such
a heterogeneous environment. And another group used net-

work state information from NOX to predict which channel
they should use during a handover, to minimize the hunt
time. In each project, the students demonstrated the man-
ager working in our actual production network, running si-
multaneously in their own slice and evaluated them.

Examples of these mobility managers are as follows.

1. One group designed a mobility manager (Hoolock) to
perform lossless handoff that receives packets in-order.
The handover exploits the fact that if a device can
communicate through different wireless technologies, it
must also have multiple radios.

We will illustrate the working of Hoolock using an ex-
ample. Imagine a host handing over from AP α to AP
β. Having two interfaces, the host associates with AP
β with its second interface. The routing in the network
is then updated. However, delay along the route before
and after rerouting can be different, packets could be
in transit along both routes for a while. Exploiting the
fact that packets entering each interface on the host are
in order, we buffer packets in the interface connected
to AP β while waiting for packets from AP α to flush.
After some time, the host will dissociate with AP α and
switch completely to AP β, to complete the handover.

2. Another group created a“high-reliability”service by du-
plicating traffic across n distinct paths, i.e., n-casting,
so that every client received multiple copies of each
packet over different paths and radios. This can be
viewed as a generalized variant of macro-diversity de-
scribed in WiMAX.

A typical n-cast handover between AP α and AP β oc-
curs as follows. The mobile host starts with a single
connection to AP α. While on the move, the host uses
its idle interface to scan for and associate with AP β.
Once associated, the controller begins n-casting or bi-
casting to both AP α and β. The bicasting continues
until the mobile device dissociates from AP α and sends
a notification to the controller to resume unicast.

During n-cast, the host is likely to receive multiple
copies of the same packet. Also, differences in path
latencies and loss rates could cause reordering among
the two packet streams. To mitigate the effect of du-
plicates and out-of-order packets on TCP, we employ
a custom client-side Netfilter module on the receiving
network stack, to perform some level of reordering. It
buffers a small amount of incoming out-of-order packets
from both interfaces to remove duplicates and reorder-
ing.

The above-mentioned mobility managers exploit devices with
multiple interfaces. The control software is written in such a
way that this is assumed. Through virtualization in Open-
Flow Wireless, we can ensure that all devices controlled by
these slices are indeed having multiple interfaces. Creating
and testing this in conventional wireless networks would be
difficult (if not impossible).

We evaluate these mobility managers against conventional
hard handover, in terms of packet loss during handover and
TCP throughput. The evaluation network setup is simple:
two WiFi APs and a WiMAX base station are connected
to a single OpenFlow switch. A server is also connected to
the OpenFlow switch to generate traffic for the experiment.

Table 1: Statistics of Number of Packet Losses in
Handover

Handover Scheme Avg Std Dev Min Max
(holding time)

Hard 37.72 22.10 1 98
Hoolock (1 sec) 7.1 12.1 0 39
Hoolock (2 sec) 0.034 0.18 0 1
Bicasting (1 sec) 0 0 0 0
Bicasting (2 sec) 0 0 0 0

Vertical to WiMAX 161.25 32.5 67 195
(1 sec) to WiFi 6.1 9.43 0 37
Vertical to WiMAX 87.2 50.11 0 135
(2 sec) to WiFi 1.3 4.33 0 19
Vertical to WiMAX 39.9 19.5 0 80
(4 sec) to WiFi 0.0 0.0 0 0

In the cases of handover experiments, a mobile client moves
between two WiFi APs. In the cases of vertical handover
experiment, a mobile having a WiFi and a WiMAX interface
moves between a WiFi AP and the WiMAX base station.

3.3.1 Packet Loss during Handovers
In each experiment, a client alternated between two WiFi

APs (or between WiMAX base station and WiFi APs in ver-
tical handover) every ten second for twenty times. We send
ICMP requests from the server to the client and measure the
number of packet losses during handover. The interval be-
tween ICMP messages is 20 ms.

Tab. 1 shows the statistics of the packet losses. Hard han-
dover loses the largest number of packets. Losses in hard
handover occurs in spikes corresponding to the handover tim-
ings. In the case of Bicasting handover with 1 second holding
time, we observed no packet loss in all twenty handovers.
For Hoolock handover with holding time 2 seconds, we ob-
served one packet loss in one out of twenty handovers. With
Hoolock, increasing holding time reduces packet loss.

Fig. 3 shows the performance of vertical handover with
holding times 1, 2, and 4 seconds. With vertical handover,
two handover types—WiFi to WiMAX and WiMAX to WiFi—
show very different results, i.e., handover from WiMAX to
WiFi creates much smaller number of packet losses than that
from WiFi to WiMAX. This is because network entry to
WiMAX takes a long time, i.e., several seconds. If we re-
lease WiFi connection before the WiMAX connection is es-
tablished, then packets will be dropped. Increasing holding
time reduces packet loss.

3.3.2 TCP Throughout during Handovers
We also measured the TCP throughput during handovers

using iperf. Here the mobile host is the receiver of TCP
data transfer. During the 300 seconds of data transfer, the
mobile host switches WiFi APs every 60 seconds. Tab. 2
shows the aggregate results of the experiment. Fig. 4 show the
evolution of good-put for hard handover, Hoolock handover
and bicasting handover (both with holding time 2 seconds).

Hoolock and Bicast both improve on the simple hard han-
dover scheme. In hard handover, we observe a long period
of zero good-put. During the handover, large amounts of
packet loss causes the sender to throttle its window size. On
the other hand, Hoolock employs two interfaces to achieve

 0

 50

 100

 150

 200

 0 50 100 150 200

pa
ck

et
s

lo
st

 p
er

 h
an

do
ve

r

time [sec]

WiFi->WiMAX
WiMAX->WiFi

(a) 1 sec holding time

 0

 50

 100

 150

 200

 0 50 100 150 200

pa
ck

et
s

lo
st

 p
er

 h
an

do
ve

r

time [sec]

WiFi->WiMAX
WiMAX->WiFi

(b) 2 sec holding time

 0

 50

 100

 150

 200

 0 50 100 150 200

pa
ck

et
s

lo
st

 p
er

 h
an

do
ve

r

time [sec]

WiFi->WiMAX
WiMAX->WiFi

(c) 4 sec holding time

Figure 3: Packet losses in Vertical handover

 0

 5

 10

 15

 20

 25

 0 60 120 180 240 300

G
oo

dp
ut

 [M
bp

s]

Time [seccond]

Failed handover
causes throughput
to go to zero

Hard Handover Goodput

(a) Hard handover

 0

 5

 10

 15

 20

 25

 0 60 120 180 240 300

G
oo

dp
ut

 [M
bp

s]

Time [seccond]

Hoolock Handover Goodput

(b) Hoolock handover (holding time: 2 sec)

 0

 5

 10

 15

 20

 25

 0 60 120 180 240 300

G
oo

dp
ut

 [M
bp

s]

Time [seccond]

Bicasting Handover Goodput

(c) Bicasting handover (holding time: 2 sec)

Figure 4: TCP Throughput with Handover

Table 2: TCP Throughput (unit:Mbps)
Handover Scheme Avg Std Dev Min Max

Hard 13.7 7.19 0 22.3
Hoolock (2 sec) 18.0 2.87 0 23.1
Bicasting (2 sec) 17.1 4.58 0 23.1

nearly-zero packet loss during handover and hence a much
more stable good-put. The good-put of bicast is less stable for
two reasons. First, the OpenFlow switch performing bicast
is a software-based switch. Since bicast requires replicating
packets to two output interfaces, the relatively slow software
switch incurs much delay on the packet delivery. Second, the
receiver maintains a buffer of out-of-order packets, which is
flushed periodically. This period determines the delay and
mis-sequencing of packets during handover. A small period
would cause more frequent packet reordering, while a large
period would incur large delay. The combined effects of delay
and packet reordering are evident in the unstable good-put
shortly after handovers as TCP attempts to converge to a
new equilibrium. We note that choosing a suitable operating
point for bicast is an interesting candidate for future work.

The point here is not that the mobility managers were rad-
ically new; it is that each one was written by non-experts in
less than 4 weeks by building on top of a growing base of
open-source code and a steadily improving platform. While
we have many things to improve still - this is just a first pro-
totype - we were surprised to find that each mobility man-
ager could be written in approximately 200 lines of C++. We
take these experiences as preliminary validation that a system
like OpenFlow Wireless will indeed be useful to the research
community by easing the innovation process in wireless net-
works. At the time of writing, OpenFlow Wireless has been
deployed [15] and used as our production wireless network
for over a year. Moving forward we expect OpenFlow Wire-
less to be an important part of our production network and
our research alike, opening up new possibilities and enabling
innovation.

4. CONCLUSION
The architecture of wireless networks is going to change

significantly in the coming years, with a slow convergence
of the cellular and WiFi networks. Without change, the in-
dustry will stay closed and based on proprietary equipment.
Our role as the research community, is to help open up the
infrastructure - to allow multiple ideas to co-exist in the same
physical network - and therefore allow innovation to happen
more freely and more quickly. Opening a closed infrastructure
might seem like a naive pipedream; but recall the change that
Linux brought to the computer industry by a dedicated com-
munity of open-source developers. We believe the best place
to start opening the wireless infrastructure is on our own
college campuses, by replacing our wireless networks with a
more open (and backwardly compatible) alternative, which
supports virtualization. We call this new network“OpenFlow
Wireless”.

OpenFlow Wireless builds right on top of OpenFlow (which
is, itself, making progress in wireline networks). The main
technical additions are the ability to slice the network using
the FlowVisor (to slice or virtualize the datapath) and SNM-
PVisor (to slice or virtualize configuration); and the ability

for users to opt-in to experiments. As a whole, OpenFlow
Wireless forms a complete production network that can be
virtualized – by the existing network administrator – to cre-
ate isolated slices for new experiments or new versions of
features.

The blueprint we present here is a starting point. At the
time of writing, we are starting to see adoption of the plat-
form while we continue to improve and expand. We are in
midst of deploying our WiMAX service for our local commu-
nity, and looking at the possibility of including our work in
GENI’s open programmable WiMAX project. We will con-
tinue to explore how we can extend the platform to eliminate
the boundary between wireless LAN and wireless WAN and
enable seamless handover in the future mobile network.

More importantly, we hope our platform and this paper
serve as a “call to arms” to the networking research com-
munity to come together and adopt, build, deploy and use
the OpenFlow Wireless mobile wireless network architecture,
building the system using existing access points, stripped
down cellular base stations, wireline switches, and placed un-
der the control of an open system that allows multiple isolated
experiments to run concurrently in the network. We propose
that the resulting network be widely deployed as our cam-
pus production wireless network. Done right, we believe that
the community can share code, build on each other’s work,
and eventually create a common infrastructure in which re-
searchers can safely try out new ideas, and network adminis-
trators can pick the best ideas to deploy in their production
network and thus showcase “the future” on campuses before
it is realized broadly.

Acknowledgment
The authors would like to thank Ippei Akiyoshi for his kind
assistance in supporting the WiMAX base-station used. This
work is supported in part by the NSF POMI (Programmable
Open Mobile Internet) 2020 Expedition Grant 0832820, Stan-
ford Clean Slate Program, Google, Xilinx, Cisco, NEC, DT,
DoCoMo and the Mr. and Mrs. Chun Chiu Stanford Grad-
uate Fellowship.

5. REFERENCES
[1] Aruba Networks. http://www.arubanetworks.com.

[2] Mobility - Cisco Systems.
http://www.cisco.com/en/US/netsol/ns175/

networking_solutions_solution_segment_home.html.

[3] GNU Radio. gnuradio.org.

[4] Official google blog: Where’s my gphone?
http://googleblog.blogspot.com/2007/11/

wheres-my-gphone.html.

[5] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards and
operating system for networks. In ACM SIGCOMM
Computer Communication Review, July 2008.

[6] Internet-Drafts Database Interface. http://ftp.ietf.
org/drafts/draft-ohara-capwap-lwapp/.

[7] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communication
Review, 38(2):69–74, April 2008.

[8] Enterprise Wireless LAN Networks: Indoor and
Outdoor Wireless Networks By Meraki.
www.Meraki.com.

[9] Meru Networks. http://www.merunetworks.com/.

[10] NOX: An OpenFlow Controller.
http://noxrepo.org/wp/.

[11] OpenFlow Wireless.
http://www.openflow.org/wk/index.php/OpenRoads.

[12] Rob Sherwood, Michael Chan, Adam Covington, Glen
Gibb, Mario Flajslik, Nikhil Handigol, Te-Yuan Huang,
Peyman Kazemian, Masayoshi Kobayashi, Jad Naous,
Srinivasan Seetharaman, David Underhill, Tatsuya
Yabe, Kok-Kiong Yap, Yiannis Yiakoumis, Hongyi
Zeng, Guido Appenzeller, Ramesh Johari, Nick
McKeown, and Guru Parulkar. Carving research slices
out of your production networks with OpenFlow. In
Proceedings of ACM SIGCOMM (Demo), Barcelona,
Spain, August 2009.

[13] Rice University WARP - Wireless Open-Access
Research Platform. warp.rice.edu.

[14] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang,
M. Chan, N. Handigol, and N. McKeown. Openroads:
empowering research in mobile networks. SIGCOMM
Comput. Commun. Rev., 40(1):125–126, 2010.

[15] K.-K. Yap, M. Kobayashi, D. Underhill,
S. Seetharaman, P. Kazemian, and N. McKeown. The
Stanford OpenRoads Deployment. In WiNTECH ’09:
Proceedings of the fourth ACM international workshop
on Wireless network testbeds, experimental evaluation
and characterization. ACM, 2009.

