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ABSTRACT
The current generation of sensor nodes rely on commodity
components. The choice of the radio is particularly impor-
tant as it impacts not only energy consumption but also
software design (e.g., network self-assembly, multihop rout-
ing and in-network processing). Bluetooth is one of the most
popular commodity radios for wireless devices. As a repre-
sentative of the frequency hopping spread spectrum radios,
it is a natural alternative to broadcast radios in the con-
text of sensor networks. The question is whether Bluetooth
can be a viable alternative in practice. In this paper, we
report our experience using Bluetooth for the sensor net-
work regime. We describe our tiny Bluetooth stack that
allows TinyOS applications to run on Bluetooth-based sen-
sor nodes, we present a multihop network assembly proce-
dure that leverages Bluetooth’s device discovery protocol,
and we discuss how Bluetooth favorably impacts in-network
query processing. Our results show that despite obvious
limitations the Bluetooth sensor nodes we studied exhibit
interesting properties, such as a good energy per bit sent
ratio. This reality check underlies the limitations and some
promises of Bluetooth for the sensor network regime.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Wireless communication; C.2.2
[Computer Systems Organization]: Network Protocols;
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems

General Terms
Design, Performance, Experimentation
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1. INTRODUCTION
It is now possible to develop software for sensor networks

and to conduct experiments using sensor nodes readily avail-
able through research groups or commercial companies.
These sensor nodes, based on commercial off-the-shelf com-
ponents, guarantee a good trade-off between cost (of devel-
opment and production), reliability and performance. One
of the key differences between sensor nodes is their radio
component: it impacts not only energy consumption but
also software design (network self-assembly, multihop rout-
ing and in-network processing).
We can distinguish two types of radio components for

sensor nodes: those based on fixed frequency carriers, i.e.,
all sensor nodes within communication range compete for a
shared channel in order to transmit data, and those based on
spread-spectrum transmissions such as Bluetooth, i.e., sensor
nodes within communication range use separate channels to
transmit data. Roughly, the former type of radio favors con-
nectionless data broadcast while the latter favors connection
oriented communications. In this paper, we focus on the use
of Bluetooth modules as radio components for sensor nodes.
Bluetooth was initially designed as a cable replacement

technology. Does it make sense to consider it in the context
of sensor networks? Spread spectrum radios are serious can-
didates for sensor network usage because of their resilience
to interferences (notably in the free 2.4 GHz band). The
WINS prototypes from UCLA, for instance, relied on this
type of radio. The mass production of Bluetooth radios en-
sures robustness and decreasing costs. Bluetooth modules
are thus valid candidates, but how suited are they to the
sensor network regime?

• A Bluetooth module embeds both the physical layer
and the MAC layer through the three bottom layers of
the Bluetooth stack (baseband, link manager and host
controller interface). As a consequence there is no need
to implement a MAC layer as part of the sensor node
software. Is the Bluetooth MAC layer, based on chan-
nel reservation through frequency hopping, adapted to
the sensor network regime? How much of an overhead
is a Bluetooth module embedded on a sensor node?

• The Bluetooth protocol is complex with its six layers
and its drastic compliance requirements. Is it possi-
ble to define a stripped down version of the Bluetooth
software stack adapted to the footprint requirement of
a sensor node?

• Bluetooth’s multihop capabilities (scatternets) have
been announced for years. However these announce-
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ments have not been backed up by product releases.
How can we establish a multihop network with Blue-
tooth based sensor nodes?

• A typical assumption in sensor networks is that each
sensor node can communicate with its neighbors to
collect information used for collaborative signal pro-
cessing, routing or in-network processing. Because
Bluetooth-based sensor nodes have to establish con-
nections before they send or receive data, a Bluetooth-
based sensor network can only be operational after a
self-assembly phase during which connections are es-
tablished. What is an appropriate network-assembly
algorithm relying on Bluetooth’s device discovery
mechanism?

• When two devices are connected, one of them is a mas-
ter and the other a slave. Nodes are arranged in clus-
ters composed of one master and up to seven slaves.
Slaves are following the hopping sequence dictated by
the master and they are only allowed to transmit data
once the master has contacted them. During network
assembly, the choice of masters and slaves is not neu-
tral. If node A is sending data to node B, what is
the impact of the choice of master and slave? What
is the impact of the number of slaves connected to the
master?

• Proposals for in-network query processing [11] assume
that the underlying radio supports connectionless data
broadcast. What is the impact of Bluetooth on these
proposals? In particular, they rely on the introduction
of time division multiplexing (TDM) at the application
level to synchronize the transmission and processing of
data across nodes. Does Bluetooth alleviate the need
for application based TDM?

Because we favour a pragmatic approach, we have decided
to experiment with actual Bluetooth-based devices in order
to study these questions. We chose the BTnodes developed
at ETH Zurich [10]. The BTnodes rely on an Atmel micro-
controller similar to the one used in the Berkeley motes [4].
Because no Bluetooth module currently supports scatter-
nets, we equipped the BTnodes with two radios in order to
enable multihop networking. Using two radios, it is possi-
ble to combine clusters of Bluetooth nodes into a multihop
topology. This decision was inspired by the dual-radio node
design from Sensoria [16]. The BTnodes are detailled in
Section 2.
In this paper, we report our experience with Bluetooth-

based sensor nodes. Specifically, we make the following con-
tributions:

1. We designed and implemented a tiny Bluetooth stack
for TinyOS. We decided to use TinyOS [9] and port
it to the BTnodes in order (a) to benefit from its pro-
gramming model for the design and implementation of
our stripped down Bluetooth stack and (b) to benefit
from the library of existing components. We measured
the code footprint as well as the throughput and the
energy consumption on the BTnodes running our Tiny
Bluetooth stack.

2. We developed a network assembly procedure that le-
verage Bluetooth’s device discovery protocol. Our pro-
cedure is inspired by BlueTree [20] and is adapted to

the configuration of the BTnodes with two radios. We
measured the latency and energy consumption of our
procedure.

3. We adapted the in-network query processing approach
of TinyDB for a Bluetooth-based sensor network. We
focused on the TDM scheme managed by TinyDB to
drive query processing on individual nodes.

Our results suggest that Bluetooth based sensor networks
could be appropriate for a niche of applications, such as
mounted operations in urban terrain, that necessitate heavy
data exchanges during a few criticial periods within a time-
frame of up to a week.

2. BTNODES
The BTnodes were developed by ETH Zurich in the con-

text of the Smart-Its project [15]. They are based on the
Atmel ATmega128L microcontroller - an 8 bit microcon-
troller (MCU) clocked at 7.4 MHz, with 4 KiB1 on chip
memory and an external memory chip of up to 64 KiB. The
MCU has digital and analog I/O ports that can be used to
connect external sensor devices through Molex plugs on the
edge of the board. The nodes are equipped with a Bluetooth
module (Ericsson ROK 101 007) together with an onboard
antenna. Two UARTs connect the MCU with the embedded
Bluetooth chip and one of the Molex plugs. Four leds can
be used for debugging purposes. The board also contains
a voltage regulator: the BTnode can be plugged to power
supplies ranging from 3.3 V to 12 V.

MCU Atmel ATmega128L at 7.372 MHz
Memory Built in: 128 KiB Flash, 4 KiB SRAM

4 KiB EEPROM
External: 64 KiB RAM

I/O 8 Channel 10-bit A/D-converter
2 programmable serial UARTS

Embedded Ericsson ROK 101 007
Radio

External BTTester
Radio (Ericsson ROK 101 007)

Figure 1: BTnodes characteristics

As explained in the Introduction, we used dual-radio nodes
for our experiments in order to assemble a multihop network.

1EIC standard 60027-2 defines KiB as 1024 bytes [6]

104



HCI Driver

Higher Layers

Physical Bus Firmware

Physical Bus Driver

HCI Firmware

Baseband Controller

Bluetooth Hardware

Link Manager
Controller

Bluetooth Host

Physical Bus Hardware

(a) Bluetooth
Stack

T
IN

Y
 B

L
U

E
T

O
O

T
H

 S
T

A
C

K

in
qu

ir
y

iin
qu

ir
y 

R
es

ul
t

ca
nc

el
 in

qu
ir

y

in
it

co
nn

ec
t

co
nn

ec
t r

eq
ue

st

ac
ce

pt
 c

on
ne

ct

di
sc

on
ne

ct

se
nd

 re
ce

iv
e

re
ce

iv
ed

 d
at

a

re
ce

iv
ed

 e
ve

nt

se
nd

 c
om

m
an

d

HCI Core (HCI driver)

HCI Packet

in
it 

se
nd

 p
ac

ke
t

re
ce

iv
ed

 e
ve

nt

re
ce

iv
ed

 d
at

a

er
ro

r
er

ro
r

(Physical Bus UART Driver)

in
it 

pu
t

ge
t

UART (Hardware Presenation Layer)

(b) Tiny Bluetooth Stack

Figure 2: Design and Implementation of the Tiny Bluetooth Stack

We thus connected an extra Bluetooth module to the BT-
node (via the Molex plug connected to an UART). For this
purpose, we used the BTtester (also from ETH Zurich), a
serial dongle based on the ROK 101 007 Ericsson chip (in-
cluding an onboard antenna and a monitoring led).
Figure 1 summarizes the characteristics of the BTnodes.

Further documentation can be obtained on the BTnode proj-
ect page [5].
The Bluetooth specification defines two software layers

abstracting the higher layers from the hardware character-
istics:

1. Physical Bus Driver: This layer abstracts the char-
acteristics of the physical bus; on the BTnodes the
UART connecting the MCU and the Bluetooth radio.

2. HCI Driver: This layer maps the interface of the
underlying HCI layer (the upper layer embedded on
the Bluetooth radio) into the programming model used
for implementing the higher layers.

3. TINY BLUETOOTH STACK
In this section, we report on the design and implemen-

tation of our Tiny Bluetooth stack. We compare it to the
ETH Bluetooth stack for the BTnodes and to existing com-
munication stacks developed for TinyOS.

3.1 Design
Our goal with the Tiny Bluetooth stack was to make it

possible for TinyOS programs2 to access a Bluetooth radio.

2We could reuse most existing components of TinyOS except
of course those abstracting hardware elements differentiat-
ing the BTnodes from the Mica and Rene motes, e.g., the
uarts, the leds, and the clock.

We are not interested in implementing a full-fledged Blue-
tooth stack: while the three lower timing sensitive layers
are embedded within the radio modules and thus a given,
the higher computation intensive layers (l2cap, sdp, profiles)
are essentially dealing with the connection of heterogeneous
devices (e.g., a mobile phone and a headset) without provid-
ing solutions to problems such as cross layer optimizations
or multihop routing, which characterize the sensor network
regime. The ability to connect to heterogenous devices is
not of paramount interest in sensor networks, which are
composed of sensor nodes tailored to operate together as
one unit. We thus decided not to implement those three
higher layers. Rather, we focus the Tiny Bluetooth stack on
the interface to the Bluetooth hardware and its mapping to
TinyOS. Network assembly and multihop routing are imple-
mented on top of the Tiny Bluetooth stack.
The Bluetooth specification distinguishes the Bluetooth

host, on which the three upper layers of the protocol are im-
plemented from the Bluetooth hardware on which the three
lower layers are implemented. The host and the hardware
are connected via a physical bus (e.g., USB, UART, RS232).
Figure 2(a) illustrates the connection of the Bluetooth host
and the Bluetooth hardware.
Our design is based on these hardware abstraction layers.

The Tiny Bluetooth stack is composed of two components:
HCI Packet that corresponds to the physical bus driver and
HCI Core that corresponds to the HCI driver. The interfaces
of both components are described in Figure 2(b) (we omit
the events associated to each TinyOS command according
to the asynchronous programming model).
TinyOS applications access the HCI Core component to

communicate via Bluetooth. The HCI Core component sup-
ports the main HCI commands related to (i) the initializa-
tion of the Bluetooth radio, (ii) the inquiries used for device
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discovery, (iii) the connection establishment, (iv) the trans-
mission of data and (v) the reporting of errors. It relies on
the services of the HCI Packet layer that maps send com-
mands and receive events onto the UART component (a na-
tive TinyOS component slightly modified for the BTnodes).
We detail below the implementation of these components.

3.2 Implementation
The HCI Core component is responsible for making the

HCI interface available in the TinyOS programming model.
This task is facilitated by the fact that both HCI and TinyOS
are based on an asynchronous programming model. TinyOS
commands are naturally mapped onto HCI commands. HCI
events need to be dispatched into TinyOS events.
Figure 3 illustrates how events are handled: The UART

component generates an event for each byte it receives. This
event is handled by HCI Packet in the UART interrupt con-
text. Once a packet is constructed with bytes from the
UART, the HCI Packet event handler posts a task that in
turn generates an event (this way this event will not be pro-
cessed in the UART interrupt context). Once the HCI Core
component receives this event it posts a task whose goal is
to generate the appropriate TinyOS event given the nature
of the received packet.
The key aspect for the implementation of the Tiny Blue-

tooth stack, as for any TinyOS program, is memory manage-
ment. It must be simple in order to minimize code footprint
(i.e., we should avoid a complex allocation/deallocation
scheme) and it must optimize data footprint. As a conse-
quence we rely on statically allocated buffers reused across
components. We rely on the following two principles for the
management of these buffers [8]:

• transfer of ownership: one component hands owner-
ship of a buffer to another component.

• buffer trading: components switch buffers – a compo-
nent passes the ownership of a buffer to another com-
ponent and obtain the ownership of another in return.

In order to be able to take advantage of the buffer trad-
ing style of memory management, we design a buffer struc-
ture that is used throughout the Bluetooth subsystem. This
buffer structure, called gen packet, is inspired by Linux
socket buffers [17]. It defines a chunk of data as well as
a start and an end pointer that allow for easy header re-
moval/insertion. A sending application moves the start
pointer to use the trailing part of a buffer when filling in
the data chunk. A receiving application moves both the
start and the end pointers when a header is added or re-
moved. In this way no layer needs to copy any part of the
package before handing it off to an other module. Of course
this has the disadvantage that the buffer is required to be
big enough to store HCI Packets3

When exchanged across components a gen packet is typ-
ically typecast into a specific buffer type (for a given HCI
command or event). This typecasting allows passing buffers
between modules without copying from general to specific

3The maximum size for the data payload of an HCI packets
is 668 bytes. Depending on the nature of the data sent by the
application it might be possible to choose buffers of smaller
size in order to minimize memory footprint. The chosen
buffer size is communicated to the Bluetooth module that
segments all packets that would not fit in the buffer.
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Figure 3: Event Processing in Tiny Bluetooth

structures. Figure 4 show the generic packet as well as one
specific packet type.
In our example, on Figure 3, the UART component re-

ceives bytes that are simply passed by value to the HCI
Packet component. Bytes are accumulated into a gen pack-
et buffer. Those buffers are traded between the application,
the HCI Core and HCI Packet components. Once an HCI
Packet is done filling up a packet, it makes it accessible to
HCI Core and obtains an empty buffer in exchange. It can
thus start filling it with the bytes it obtains from the UART
as the previous buffer is being processed by HCI Core. Sim-
ilarly, once HCI Core is done processing an event it makes
it accessible to the application and obtains an empty buffer
in exchange so that the application does not have to copy a
buffer to process its contents. Similar mechanisms are used
when processing commands.

3.3 Related Work
Oliver Kasten [10] implemented a Bluetooth stack for the

BTnodes as part of the Smart-its software package. One of
their priorities was to make the BTnodes accessible from any
Bluetooth device. As a result, they implemented part of the
higher Bluetooth layers (link control, connection manage-
ment and profile). Our emphasis was different: we focused
on an efficient access to the Bluetooth radio for TinyOS ap-
plications deployed on BTnodes. Minimal support for het-
erogeneity could be added by implementing support for con-
nectionless l2cap packets in a component on top of the Tiny
Bluetooth stack.
The native TinyOS stack from UC Berkeley [18] as well

as S-MAC from ISI [19] both rely on a broadcast radio com-
ponent that support bit-level communication. As a result,
their stack (i) implement a CSMA mechanism for media
access control and (ii) implement byte as well as packet ab-
stractions on top of the radio itself. In comparison, our Tiny
Bluetooth stack is thin: it basically encapsulates the three
lower layers of the Bluetooth stack embedded in the radio
module. We compare the footprint of these stacks as well as
their performance in Section 6.

4. MULTIHOP NETWORK ASSEMBLY
Because Bluetooth is connection oriented, the BTnodes

need to be assembled into a multihop network before any
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typedef struct { typedef struct {
uint8_t *end; uint8_t *end;
uint8_t *start; sniff_mode_cp *start;
uint8_t data[HCIPACKET_BUF_SIZE]; uint8_t data[HCIPACKET_BUFSIZE-sizeof(sniff_mode_cp)];

} __attribute__ ((packed)) gen_packet; sniff_mode_cp cp;
} __attribute__ ((packed)) sniff_mode_pkt;

Figure 4: Generic Packet Type (gen packet) and Example of a Specific Packet Type. The generic packet type
defines a buffer together with start and end pointers. The specific packet type, sniff mode packet, is used for
sending the HCI command that turns a connection into the power saving sniff mode. This specific packet
type defines a buffer of the same size as the generic packet but more structured (the buffer is composed of an
array of integers – meant to store a packet header – to which is concatenated a variable of type sniff mode cp
– that contains the HCI command definition and its arguments). The start pointer is of type sniff mode cp
so that a header can easily be added.

form of multihop routing can be established (e.g., a routing
tree for TinyDB as discussed in the next section).

4.1 Design
We must take into account the following characteristics of

our platform when designing a multihop network assembly
procedure:

1. Bluetooth Connection Establishment. Bluetooth con-
nections are established between a master and a slave.
The assembly procedure must establish the role of each
node with respect to a connection. Note that nodes
cannot exchange information before they have estab-
lished a connection. In addition, slaves cannot com-
municate with other slaves or overhear the communi-
cation taking place on other connections. As a result,
we cannot use protocols involving spontaneous com-
munication among neighbor nodes.

2. Dual Radio Approach. There are three possible con-
figurations for each dual-radio node: (i) a node can be
connected as slave on its two radios, (ii) a node can
be connected as slave on one radio and as master with
up to seven connections on the other radio, or (iii)
a node can be connected as master with up to seven
connections on both its radios.

3. Device Discovery Protocol. In order for two devices to
discover each other, they must be in two complemen-
tary states at the same time: Inquiry and inquiry scan.
The inquiring device continuously sends out is anybody
out there messages hoping that these messages (known
as ID packets) will collide with a device performing an
inquiry scan. To conserve power a device wanting to
be discovered usually enters inquiry scan periodically
and only for a short time known as the inquiry win-
dow. During this period, the device listens for inquiry
messages.

The main challenges for the assembly procedure are thus
(a) to pick up pairs of nodes that should be connected and
(b) to decide the attribution of slave and master for each
connection.
A first approach would be for the nodes to discover their

physical location (e.g., each node discovering its neighbors),
and to exchange this information with each other in order to
reach a decision concerning their configuration. Such an ap-
proach would allow to construct robust networks with mul-
tiple paths between nodes. Bluetooth however offers limited
support for such solutions. The device discovery protocol
can be used to discover neighbors, however connections need

to be established between pairs of nodes to distribute the
discovered information.
A second approach consists in configuring each node a

priori. Each node is configured with a radio operating as a
master and the other operating as a slave. This obliterates
the need for the discovery and information exchange phases
from the first approach. The second approach constitutes
a baseline. We chose to implement it on top of our Tiny
Bluetooth stack.
Our baseline solution, inspired by BlueTree [20] (discussed

below), is the following. When a node boots up, it enables
one of its radios (the slave radio) and starts looking for an-
other node to connect to. In this stage, the node will not
be discoverable/visible for other nodes; it considers itself an
orphan looking for a network. If it discovers other nodes, it
tries to connect to one of them as a slave4. If the connection
succeeds, it will consider itself member of the network, and
turn on its other radio (the master radio), making it discov-
erable and ready to accept connections from nodes that are
not currently members of the network.
If the connection as a slave fails, it is because the master

has reached its limit on the number of connection it can
accept (recall that a master can connect to seven slaves).
The node then tries to connect to one of the other nodes
it has found in its vicinity. If there is no such other nodes
ready to accept a connection then the node tries to connect
again to the first node it contacted. If a master connected
to seven slaves receives three repeated connection requests
from the same node N , then it disconnects one of its slaves
and accepts the connection from the node N . It has been
shown that when a master is connected to more than five
slaves, additional slaves are in connection range with at least
one of the connected slaves [20]. As a consequence, it is
probable that the disconnected node will find a node that it
can connect to in its vicinity.
When a node is disconnected from its parent (on its slave

radio), it does not try to find a new parent node to which
it could connect (because it is probable that it will try con-
necting to its own children). Instead, it disconnects in turn
all the connections on its master radio. As a consequence,
when a node is disconnected (due to a failure or because
a master has more than seven slaves), all nodes directly or
indirectly connected to this node will end up being discon-
nected. They start again as orphan nodes; the assembly
procedure is restarted, and a connected multihop network is
reconstructed (if at all possible). This is again part of our

4Note that when a node discovers another node it is by
default a master; connecting as a slave requires a role switch.
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baseline approach, smarter solutions for the reconnection of
an orphan node would imply exchanging information across
nodes in order to reach an appropriate decision.
In order to bootstrap the assemply procedure, one of the

nodes, say a gateway, starts-up with its master radio turned
on, thus being discoverable for other nodes. Its slave remains
disabled, or is used to connect to the external world. The
network topology obtained with this assembly procedure is a
tree, that we call a connection tree, rooted at the gateway
node that starts-up the assembly procedure. Note that if we
assume that all nodes start-up with their slave radio enabled,
then the connection tree will be bushy: once a node activates
its master radio, all nodes in its vicinity will have a chance
to connect to it before they get a chance to connect to its
children.
It is desirable that a sensor network be accessible via sev-

eral gateways. One has a privileged role as the root of the
connection tree. Other gateways are connected as leaves
(they do not activate their master radio once they are con-
nected to the network via their slave radio). If the root of the
connection tree fails, then all the nodes disconnect and the
assembly procedure can restart with another gateway taking
the responsability of being root of the connection tree.

4.2 Related Work
Sohrabi et al. [16] describe two assembly procedures for

the Sensoria dual-radio nodes (equipped with proprietary
frequency hopping radios). The first procedure proceeds
as follows: the two radios of a node are tuned to two fixed
channels. During network assembly, messages are exchanged
on those channels to form clusters (in each cluster a node is
elected as a master while the other nodes are slaves). The
constraint that a node cannot be master on its two radios
ensures that the clusters constructed for the two radios are
different. Such overlapping clusters cover the entire network
with a high probability; but there is no control over the
topology of the connection tree. The second procedure relies
on a discovery phase during which one of the radios is tuned
to a control channel in order to broadcast information. Once
a node has received information about its neighbors it takes
a decision on its own role: a master remains tuned to the
control channel and exchange data to its slaves on its second
radio while a slave exchanges data on both its radios. Both
procedures rely on tuning one or both radios onto a fixed
channel so that nodes can broadcast information to their
neighbors. This is not possible with Bluetooth.
Basagni et al. [20, 2, 13] proposed a set of scatternet for-

mation protocols for Bluetooth devices: BlueTree, BlueStar,
BlueMesh. The basic protocol is BlueTree that constructs a
multihop network with a tree topology. BlueTree proceeds
in two phases. First, every node obtains information from
its neighbors (nodes spend enough time inquiring and re-
sponding to discover their neighbors). Second, a designated
node, the blueroot, initiates the construction of the BlueTree.
This node is assigned the role of a master and its neighbors
becomes its slaves. Recursively, each node that has become
a slave is assigned the role of master with respect to its un-
connected neighbors. The blueroot is thus the root of the
connection tree, all the intermediate nodes in the connection
tree are both slaves and masters, while the leaves are just
slaves. The constraint that one master cannot be connected
to more than seven slaves is handled via tree reorganization.
This work rely on the assumption that Bluetooth supports

scatternets (intermediate nodes are master and slaves on a
single radio). Our assembly procedure is an adaption of
the BlueTree protocol for the dual-radio configuration. The
main difference is that our approach does not include a dis-
covery phase, rather nodes can join the network at any time
(an unconnected node has its slave radio turned on and is
looking for a master).

5. IN-NETWORK QUERY PROCESSING
TinyDB developed at UC Berkeley and Intel Research [11,

12], processes declarative queries over sensor data within the
sensor network. The proposed query language allows user to
collect, filter and aggregate data produced in the sensor net-
work. In-network query processing proceeds in two phases.
First, the query is disseminated from a gateway node to
all appropriate sensor nodes inside the network. This first
phase results in the establishment of a routing tree rooted
at the gateway and spanning all the sensor nodes producing
data for the given query. Second, data is processed when
transmitted up the routing tree.
Each sensor node runs an instance of TinyDB, which is

responsible for (i) establishing and maintainting the rout-
ing tree, (ii) processing query fragments over data received
via the network or read on a local sensor and (iii) trans-
mitting processed data up the routing tree. Aggregates are
processed in a distributed manner: each node computes a
partial state record based on the values it reads and obtains
from its children. The partial state records are transmitted
and the actual aggregate value is obtained at the root of the
routing tree.
TinyDB is a TinyOS library. It relies on basic TinyOS

building blocks essentially for sending and receiving data
over the network, for setting the power saving mode, for
setting timer events and for reading sensor data.
TinyDB has been designed for the Mica motes [4], assum-

ing communication based on connection less broadcast on
a shared channel radio. The choice of a Bluetooth radio
challenges some of the assumptions that underly its design
and implementation. In the rest of this section, we discuss
the key issues when designing a version of TinyDB based
on our Tiny Bluetooth stack that we call BlueTinyDB for
convenience.

5.1 Topology Management
For each query, TinyDB constructs a routing tree rooted

at the gateway on which the query is submitted. The rout-
ing tree is constructed by having nodes pick one of their
neighbours as their parent.
This procedure for routing tree construction is very much

similar to the one we described in the previous section for
network self-assembly. The construction of the BlueTinyDB
routing tree consists in constructing a directed version of the
connection tree, with the edges oriented towards the gate-
way on which the query is submitted. The oriented edges
are maintained as a parent-child relationship (independent
from the master-slave relationship maintained by the self-
assembly component).
BlueTinyDB constructs the parent-child relationship while

disseminating a query. Each node retrieves the list of neigh-
bors from the self-assembly component. The node from
which the query is received becomes the parent, the other
neighbors become children, regardless of whether they are
master or slaves. There are two issues to be considered:
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• There might be several gateways connected to a cluster
of nodes and there might be several queries submitted
to different gateways at the same time. Those queries
will share the same connections. It is thus desirable
that the connection tree is as bushy as possible, in
order to minimize the height of the routing trees, re-
gardless of the gateway to which a query is submitted.

• Madden et al. [12] have proposed Semantic Routing
Trees to restrict the distribution of a query to those
nodes who actually participate in a given query. The
idea is to maintain meta-data on each node to decide
whether the nodes accessed through a given child will
participate in the answer to the query (in which case
the query is distributed further to this child) or not (in
which case the query is not distributed to this child).
The fact that all routing trees share the same connec-
tion tree facilitates the collection and the maintenance
of this meta-data.

5.2 TDM at the Radio Level
TinyDB organizes a time division multiplexing (TDM)

scheme at the application level in order to organize the pro-
cessing and the transfer of data along the routing tree. The
design of the TDM scheme described by Madden et al. [11]
is driven by the following observations:

1. The output of a TinyDB query is a stream of values.
To each value is associated a time-stamp. Aggregates
are performed on values whose time-stamp belong to
a same time interval, or epoch. Because the processing
of an aggregate is distributed across a set of nodes, it
should be synchronized across nodes in order to ensure
that data is indeed processed within an epoch.

2. It is desirable to power down a node while it is not
processing or transmitting data.

TinyDB’s TDM scheme is implementated at the applica-
tion level as follows. First, the query is disseminated to-
gether with timing information that allow nodes (i) to syn-
chronize clocks and (ii) to set the timer that will drive the
TDM scheme. Then each node is put to sleep (i.e., the
microcontroller is forced into power saving mode using the
TinyOS Snooze command) until it is woken up by a timer
event. When a node is asleep, it cannot process sensor or
network data. Once a node is awake it receives data from its
children, reads sensor data, processes the query locally and
transmit the partial state record to its parent. The timers
are set on each node so that there is an overlap between the
intervals children are sending and parents are listening.
The main problem with this approach is the timer set-

up: How to assign time slots in the TDM scheme at the
application level? The duration of each slot depends on
the duration of an epoch (defined in the query), the height
of the tree (data produced during an epoch should be pro-
cessed together), the breadth of the tree (each node must
receive data from all its children before it transmits pro-
cessed data up the routing tree) and the density of nodes
(there can be collisions between nodes within transmission
range whether they are siblings in the routing tree or not).
The TDM scheme also relies on clock synchronization across
nodes, which is only approximate at the application level5.

5A child node uses the timing information contained in the

In addition, modifications of the routing tree should lead to
a modification of the slot duration on each node. In prac-
tice, the slot duration will be a rough estimate (e.g., the
duration of an epoch divided by the size of the tree) and the
control of the TDM scheme will be at best an approximate
leading to the loss of values that cannot be transmitted and
processed during a given epoch.
Using Bluetooth, it is possible to let the radio drive the

TDM scheme. Bluetooth relies on a TDM scheme at the
physical and MAC layers to implement the frequency hop-
ping transmission. It also provides a power saving mode that
allows reducing the duty cycles between connected devices:
the sniff mode. In sniff mode, two devices negociate specific
slots where communication can begin. If no communication
takes place at these sniff slots, the devices may spend the
time until the next sniff slot in low power mode. Otherwise,
communication takes place until one of the devices decides
to end the communication. A message sent from the host to
the Bluetooth module while the radio is in low power mode
will first be transmitted when a sniff slot is reached. A mas-
ter can enter the sniff mode for each individual connection it
manages. The period of the sniff slots is a parameter given
by an application when a connection enters the sniff mode.
The application has however no control over the timing of
the sniff slots.
BlueTinyDB relies on the sniff mode as follows. On each

node, all connections (to all children and to the parent) en-
ter sniff mode with a period equal to the epoch specified
in the query and the microcontroller is put in sleep mode.
Whenever the node receives data from a child, it updates the
partial state record for the given query. Once all data with a
same time-stamp have been received6, the rest of the query
is evaluated (the partial state record is consolidated, filter
predicates are applied) and the processed data is sent up the
routing tree. The processed data is actually sent only when
the sniff slot for the parent connection is encountered. Note
that BlueTinyDB does not explicitely set a timer to control
the TDM scheme; it is the Bluetooth radio that manages
timing through the sniff mode.
The use of the sniff mode to drive the TDM scheme in

BlueTinyDB raises the following issues:

• Because BlueTinyDB has no control over the timing
of the sniff slot, it cannot guarantee that data is trans-
mitted and processed from the leaves of the routing
tree up to the root within a single epoch. Process-
ing is thus pipelined across epochs. We thus relaxes
the initial constraint to process aggregates within an
epoch. This approach was suggested by Madden et al.
as an alternative to their TDM scheme [14].

• The microcontroller sleeps until it is woken up by in-
coming data received over the network (or possibly by
data produced by a local sensor). Depending on the
number of children, the microcontroller switches from
operational to power saving mode several times per
epoch. The duration of the intervals during which the
microcontroller is in power saving mode depend on the
timing of the sniff slots.

message from its parent (how long until the end of the epoch)
to synchronize its clock (+/− 1 ms).
6If a child fails to send data, it is simply ignored.
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5.3 Separated Channels
TinyDB relies on the TinyOS MAC layer to avoid colli-

sions between nodes transmitting during the same interval.
Those collisions occur not only between parents and chil-
dren but between any two nodes who are in transmitting
range of each other. If the density of nodes is high, then
we can expect a high rate of collisions. As a consequence,
TinyDBmonitors channel contention and adaptively reduces
the number of packets sent as contention rises.
The problem of channel contention is not acute in the

context of a Bluetooth radio. Each connection constitutes a
separated channel. There is only interference between pairs
of nodes hopping on the same frequency at a given point in
time. This is a marginal problem.
Note that separated channels are expected to boost the

performance of flooding as collisions are avoided between
parents and children as well as between branches of the rout-
ing tree.
Note however that separated channels do not permit the

snooping used in TinyDB to optimize the performance of
certain aggregate operators (such as MAX) or to compen-
sate for the loss of some messages.

6. EXPERIMENTS

6.1 Calibration of the BTnodes
The Tiny Bluetooth stack allows us to run experiments

with the BTnodes in order to calibrate them with respect
to throughput as well as energy consumption.

6.1.1 Code Footprint
Our first challenge was to squeeze a tiny version of the

Bluetooth stack within the BTnode. The code footprint for
our Tiny Bluetooth stack is less than 3 KiB. It is thus compa-
rable to the native TinyOS stack (approximately 2 KiB [9])
and one order of magnitude less than the Smart-its Blue-
tooth stack (approximately 30 KiB [15]).
In the dual radio configuration, we have duplicated the

Tiny Bluetooth stack for the sake of simplicity. The code
footprint of these stacks together with network assembly and
multihop routing is approximately 8 KiB. We estimate that
we can reduce the code footprint by 30 to 40% if we avoid
duplicating the stack. The data footprint (taking into ac-
count the non initialized variables—traditionnally denoted
as bss) is 1 KiB due to the packets statically allocated in
the Tiny Bluetooth stack.
Table 1 breaks down the code, bss (non initialized vari-

ables) and data (initialized variables)7 footprint for the dual-
radio configuration.

6.1.2 Throughput
Bluetooth specification promise high throughput. Can our

Tiny Bluetooth stack take advantage of this potential on the
BTnodes?
We measured throughput on point-to-point connection

between master and slave. Figure 5 shows the results we
obtained for all possible Bluetooth encodings and two pay-
load sizes.

7The distinction between initialized and non initialized vari-
ables is interesting as non initialized variables are not part
of the code uploaded to the nodes.

Description code bss data
Support & TinyOS core 1180 0
UART0 & interrupts 346 4
UART1 & interrupts 292 5
hciPacket0 604 155
hciPacket1 588 155
hciCore0 1624 159
hciCore1 1590 159
Assembly component 4796 1021 16
Total 11020 1658 16

Table 1: Code size breakdown (bytes)

90.459.7373.2

0

5

10

15

20

25

30

35

40

45

50

DM1 DH1 DM3 DH3 DM5 DH5

Bluetooth Encoding

T
h

ro
u

g
h

p
u

t 
(K

iB
/s

)

20 bytes payload

668 bytes payload

Theoretical max

Figure 5: Throughput Master to Slave

Bluetooth defines 6 encoding that correspond to the com-
bination of two levels of resistance to noise (due to differ-
ent levels of redundancy in the encoding – DM: high resis-
tance and DH: low resistance) and three configurations of
the TDM scheme (the node transmits for 1, 3 or 5 time
slots). The two payload sizes we consider are 20 bytes, i.e.,
enough to transport a few integers which is the case for
many sensor network applications, and 668 bytes which is
the maximum HCI packet size, i.e., enough to transport high
bandwidth traffic such as images or sounds.
For payloads of 20 bytes, the encoding used does not make

a significant difference. We achieve a throughput of about
5 KiB/sec. For the maximum payload of 668 bytes, through-
put is significantly higher: it varies from 6 to 35 KiB/sec.
Here, the number of slots used for transmission and the re-
sistance to noise have a significant impact. Our result shows
that the best throughput is achieved with 3 slots transmis-
sions (more data is transmitted than with 1 slot transmission
and there is less retransmissions than with 5 slots).
Note that the throughput we achieve is far from the the-

oretical max. First, our Tiny Bluetooth stack accesses the
Bluetooth module via the UART and the maximum through-
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put supported by the UART is approximately 45 KiB/sec8.
Second, the Bluetooth module generates superfluous mes-
sages that take up bandwidth on the UART interface (hard-
coded Ericsson string events).

1 2 3
Aggregate 38.1 KiB/s 25.4 KiB/s 19.3 KiB/s
Pr. slave 38.1 KiB/s 12.7 KiB/s 6.4 KiB/s

Table 2: Throughput for an multipoint asymmet-
ric DM3 connection, aggregate and individual band-
width

Additional experiments have shown that slave to master
communication achieves a throughput which is very similar
to the master to slave communication shown in Figure 5.
This means that data can flow up the routing tree regardless
of whether individual connections are master-slave or slave-
master.
The master is responsible for allocating the channel band-

width for each slave in a multipoint connection. We setup
the master to connect to a number of slaves and send pack-
ets in round-robin order on each connection. We measured
the bandwidth on each connection. It would be expected
that the total bandwidth stays the same and that each slave
receives a fair share.
Table 2 shows that the aggregate bandwidth drops con-

siderably but that each slave receives a fair share of that
bandwidth. It is peculiar that the aggregate bandwidth
drops as much as 50 %—the lower layers of Bluetooth allow
the master to switch between slaves without any additional
overhead. Hence the ROK modules wastes in-air slots by
not sending meaningful data.
Madden et al. [12] write that it is reasonable to expect

that the Mica motes transmit approximately 500 bytes per
second. We thus achieve with the BTnodes a throughput,
which is between one and two orders of magnitude higher
for point-to-point connections and at the very least a factor
of two for multipoint connections.

6.1.3 Energy Consumption
The throughput results are encouraging; however energy

consumption is the key metric for the calibration of the BTn-
odes. We thus measured both current draw and voltage9 for
different regimes of our experimentation platform. Figure 6
summarizes our results.
Our first goal was to measure energy consumption for an

idle BTnode (in black on the figure). According to the man-
ufacturer [1], the 8 MHz MCU can use up to 12 mA at 5 V
(60 mW) in idle sleep mode. With a slightly lower clock
frequency, we observe a lower energy consumption (about

8Note that we had to modify TinyOS to operate the UART
at full speed. The UART relies on two registers for sending
bytes: one, called the shift register, contains the byte cur-
rently being sent, the other contains the byte to send next.
We fixed the UART module so that it generates an event
each time the UART moves a byte to the shift register in-
stead of generating an event each time the shift register is
empty and the UART has no more data to send.
9We used an input voltage of approximately 5V. We ob-
served that voltage varied slightly during the experiments.
We thus decided not to assume constant voltage to compute
the energy consumption.
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Figure 6: Energy usage breakdown. The graph
presents a master and a slave equipped with one
radio (bt0) as well as a dual-radio node (with bt0
and bt1). In the legend, comm0 and comm1 denote
connections established on bt0 and bt1 respectively.

46 mW). In the dual case, the base energy consumption is
80 mW. This is mostly due to the (unused but turned on) led
on the BTtester, which consumes about 22 mW, as well as
the voltage regulator and the serial voltage level converter.
Turning a Bluetooth radio on consumes about 30 mW ex-

tra (in idle mode). Making the radio pageable, or inquiriable
requires an additional 9 mW. A BTnode with a single ra-
dio waiting for a connection thus consumes 89 mW. In the
dual radio case, turning on both radios and making them
pageable and inquirable consumes about 155 mW.
Nodes use about 136 mW to maintain connections. Addi-

tional experiments showed that putting a connection in sniff
mode saves a marginal 5 mW. This suggests that some opti-
mizations might have been missed in the Bluetooth module
design.
Once a connection is established sending or receiving data

consumes an additional 65 mW when transferring at 6 KiB/-
sec when using a single radio and 5 mW for each radio when
transferring 10 packets per second.

6.1.4 Discussion
All in all, a single-radio BTnode uses approximately 50 mW

when idle and 285 mW when communicating, while these
numbers are up to 80 and 450 mW for a dual-radio BTnode.
If we compare with the Mica motes from UC Berkeley, these
numbers are high. Indeed, Madden et al. [12] report 10 mW
for for an idle node and 60 mW when communicating.
The BTnodes consume five times more energy than the

Mica motes doing nothing! This is due to the fact that
the MCUs are placed in different sleep modes. As we have
seen with TinyDB in Section 5.1, the Mica motes favour
applications that manage themselves the time they spend in
sleep mode. This way, the MCU can be put to sleep in power
save mode, where only the external clock can send wake-up
signals, i.e., the motes do not get data from sensors or from
other nodes while the MCU is in sleep mode. The power
save sleep mode is the most energy efficient.
The BTnodes favour applications that are in sleep mode

until events are received from the Bluetooth radio or the sen-
sors. This precludes the use of the power save mode because
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events generated by the Bluetooth radio would be ignored.
The MCU is best put in idle sleep mode until an event is
received from the UART or from the clock. The idle sleep
mode is however less energy efficient than the power save
mode. We can estimate to 8 days the life expectancy of a
BTnode in idle sleep mode with two standard AA batteries.
We noted that energy consumption was high when trans-

mitting data. However, if we consider the ratio energy
per bit transmitted, then the BTnode exhibits rather good
performances. Running at 6 KiB/s, we obtain approxi-
mately 5.5 µJ/bit for a single radio and 10 µJ/bit for two
radios. These numbers are close to the ones reported in the
original TinyOS paper [9] (approximately 4 µJ/bit) for an
ideal transmission without interference or loss. According
to Madden et al. 15 µJ/bit is a more realistic number for
the Mica motes.
Another characteristics of these results is that connection

maintenance consumes a lot of energy, both on master and
slave. Using the sniff mode does not make a significant dif-
ference. These results suggest that connections should only
be established for short periods. There is thus a trade-off
between the cost of connection maintenance and the cost
of network assembly. We explore this trade-off in the next
Section.
In summary, all these remarks suggest that the BTnodes

are well suited for applications that are active over a limited
time period, with few unpredictable bursts of very heavy
network traffic (taking advantage of the high throughput).
An example of such application could be a sensor network
deployed to secure a building in a mounted operation in
urban terrain. Such a network could have a life expectancy
of up to a week, operating in sleep mode until individuals
are detected in which case as much situational information
as possible could be obtained (including possibly images or
sound on a suite of point-to-point connections).

6.2 Network Self-Assembly
Because it is expensive to maintain a connection it is likely

that the network will be assembled repeatedly when data
needs be transmitted. Network assembly should thus be
rapid and energy efficient.
Figure 7 shows energy consumption as a function of time

on a BTnode during network assembly. The figure is anno-
tated with letters corresponding to the different phases of
the experiment. As the node is turned on (a), it initializes
its slave radio. After a while, it discovers its parent-to-be,
connects to it (b) and enables its master radio that becomes
discoverable. The connection is established within 20 sec-
onds.
For the sake of clarity, we turn on the children nodes one

after the other. After 30 seconds, the first child is turned on,
it is detected and a connection is established on the node’s
master radio (c). After 40 second, the second child is turned
on and a second connection is established (d). Energy con-
sumption corresponds to the calibration presented in the
previous Section. Additional connections result in a very
limited increase in energy consumption (about 3-4 mW).
Once those connections are established, the node routes

data from both children to its parent: both children send
packets with payload of 5 and 50 bytes every 10 seconds
for a 100 seconds. Note that the children do not send in
synch. The peaks of energy consumption we observe from 40
seconds until 160 seconds correspond primarily to the master

a

b

c

d

e
f

g h h

h

i

j

0 50 100 150 200

seconds

0

50

100

150

200

250

300

350

400

450

500

550

m
W

Figure 7: Energy Usage during Network Assembly
and Transmissions

radio being discoverable (e) and also to the transmission of
data packets (f)10.
After 160 seconds, both children are disconnected (g) and

after 180 seconds the parent is disconnected (h). The node
remains idle with both Bluetooth radios disabled but pow-
ered on.
Additional experiments show that our assembly procedure

requires in most cases between 5 and 10 seconds per level in
the connection tree assuming all nodes have already initial-
ized their Bluetooth radios11 . Indeed, children can only be
discovered once the connection to the parent is established.
Energy consumption corresponds to what could be pre-

dicted after calibrating the nodes. There is no extra over-
head introduced by the assembly procedure. In order to save
energy, it thus seems a good idea to assemble the network
repeatedly, for relatively short periods during which high
volumes of data can be transmitted.

7. CONCLUSION
Our experiments with the BTnodes suggest that Blue-

tooth based sensor nodes could be appropriate for a niche of
applications exchanging unpredictable bursts of data during
a limited time period.
It is difficult to predict that Bluetooth will emerge as an

alternative of choice for a larger class of sensor network ap-
plications. First, as long as scatternets are not supported
we will have to rely on a dual-radio approach which is ex-
pensive and energy inefficient. Second, using Bluetooth for
commercial purpose requires a certification (to guarantee
that heterogeneous devices can communicate) which is ir-
relevant and unrealistic in the context of sensor networks.
Third, the encapsulation of the three lower layers on hard-

10A similar experiment without data transmission also ex-
hibits energy peaks but with a more regular intensity.

11We observe that connections take most of the time 5 to
10 seconds with some outliers requiring 20 to 30 seconds.
We have studied the characteristics of device discovery and
connection establishment in previous work [3].
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ware does not allow applications to access relevant informa-
tion (concerning time synchronization or device discovery
in particular). Fourth, our experiments show that connec-
tion maintenance is expensive even with a low duty cycle
in power saving (sniff) mode. This renders unpractical the
possibility for the radio clock to drive TDM on behalf of the
application.
Instead of using a Bluetooth module separate from the

MCU, both could be integrated on one die. This system-on-
a-chip approach has already been adopted by CSR for their
Bluetooth module [7]. The MCU runs both the lower lay-
ers of the communication stack and the applications. The
arguments mentioned above disqualify Bluetooth as a first
choice for sensor nodes based on a system-on-a chip design.
In addition, the dual-radio approach is not reasonable on
such integrated systems because of interferences. We believe
however that a form of spread-spectrum radio is appropriate
for system-on-a-chip sensor nodes because the timing sensi-
tive hardware necessary to implement such radios can be
leveraged by the application (as we have shown in this pa-
per). It is however necessary to devise an effective solution
for the scatternet problem. It is necessary to devise aggres-
sive power saving strategies based on the characteristics of
the radio as well as the application. These are topics for
future work.
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