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 
Abstract—Bluetooth Low Energy (BLE) mesh networking is an 

emerging technology domain that promises an important role in 
the Internet of Things (IoT). Significant market opportunities for 
BLE mesh networking have motivated the recent development of 
two different BLE mesh networking standards: Bluetooth Mesh 
and 6BLEMesh, produced by the Bluetooth SIG and the IETF, 
respectively. These two standards follow different technical 
approaches. In this paper, we present the main features of 
Bluetooth Mesh and 6BLEMesh, and investigate their 
performance characteristics and trade-offs. 

I. INTRODUCTION 

Bluetooth Low Energy (BLE) is a low-power, short-range 
wireless technology that was first specified by the Bluetooth 
Special Interest Group (SIG) in 2010, as part of Bluetooth 4.0 
[1]. Since then, BLE has become a fundamental technology 
for the Internet of Things (IoT). In fact, BLE is suitable for 
resource-constrained devices (e.g. battery-operated small 
sensors and actuators), which are typical in the IoT. However, 
in contrast with other IoT technologies, BLE also has 
widespread presence in consumer electronics devices such as 
smartphones. This distinctive feature of BLE facilitates 
interaction between a user and surrounding BLE devices, since 
the smartphone may naturally become a user interface and/or a 
gateway in IoT scenarios.  

For simplicity, BLE was originally designed to only enable 
star topology networks. However, this feature would limit 
BLE applicability in crucial IoT application domains wherein 
a star topology network cannot ensure coverage for all 
intended devices. For example, many relevant wireless 
technologies in the smart home space, such as ZigBee, Z-
Wave or Thread, support the mesh topology [2, 3]. 
Furthermore, the mesh topology provides path diversity, and 
thus intrinsic robustness, which allows to better face radio 
propagation impairments, interference and device failures.  

In order to offer greater flexibility, subsequent Bluetooth 
specification updates removed the network topology 
constraints of Bluetooth 4.0 for BLE. However, such 
specification updates did not provide mechanisms to enable 
end-to-end data delivery in a BLE mesh network. In order to 
address this problem, a plethora of proprietary and academic 
BLE mesh network solutions have been recently created [4]. 
Nevertheless, such solutions do not offer interoperability 
among products of different manufacturers and developers.  

In order to overcome the network topology limitations of 

 
 

BLE, while offering a standardized approach, the Bluetooth 
SIG published in 2017 the Bluetooth Mesh suite of 
specifications [5]. On the other hand, the IETF is currently 
standardizing functionality for enabling IPv6-based BLE 
Mesh Networks (6BLEMesh), by following a different 
technical approach [6]. Given the potential of BLE mesh 
networking, it is fundamental to understand the features and 
limitations of the two main types of standards-based BLE 
mesh network solutions. This paper overviews, compares and 
discusses both Bluetooth Mesh and 6BLEMesh.  

The remainder of this article is organized as follows. 
Section 2 introduces BLE fundamentals. Sections 3 and 4 
overview Bluetooth Mesh and 6BLEMesh, respectively. 
Section 5 comparatively discusses and evaluates these two 
solutions, while section 6 relates their design goals and 
performance. Section 7 concludes the article. 

II. BLUETOOTH LOW ENERGY 

BLE defines a protocol stack (Fig. 1.a). At the Physical 
layer, BLE operates over 40 frequency channels in the          
2.4 GHz band. These channels are organized into 3 advertising 
channels and 37 data channels. The Physical layer bit rate is 1 
Mbit/s in Bluetooth 4.x. Further bit rates (from 125 kbit/s to 2 
Mbit/s) were introduced in Bluetooth 5.0 [7].  

In BLE, there exist two approaches for communication 
between neighboring nodes. The first one is based on using 
advertising channels, which are defined for broadcasting 
purposes only. The second one requires two nodes to establish 
a Link layer connection. Once connected, the nodes become a 
master, which manages the connection, and a slave. A Link 
layer connection allows bidirectional data exchange 
opportunities between two connected devices every 
connInterval over data channels. In this case, the full BLE 
protocol stack is used. The Logical Link Control and 
Adaptation Protocol (L2CAP) layer supports upper layer data 
unit fragmentation and reassembly, and flow control. The 
Attribute protocol (ATT) layer and the Generic Attribute 
profile (GATT) layer define functionality for communication 
between a server (e.g. a temperature sensor) and a client (e.g. a 
device that collects temperature readings).  

III. BLUETOOTH MESH 

This section overviews Bluetooth Mesh. First, the Bluetooth 
Mesh protocol stack is presented. Next, each Bluetooth Mesh 
protocol stack layer is described. 

Bluetooth Low Energy Mesh Networks: a 
Standards Perspective 

Seyed Mahdi Darroudi1, Carles Gomez1, Jon Crowcroft2 
1Universitat Politècnica de Catalunya, 2University of Cambridge 

sm.darroudi@entel.upc.edu, carlesgo@entel.upc.edu, jon.crowcroft@cl.cam.ac.uk 

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 
This paper has been accepted for publication in IEEE Communications Magazine. Please refer to the final paper version once published. 



 

A

B
ap
pr
th
Ac
lay

B

or
m
ad
th
su
no
be
He
tra
ch

lay
co
ou
th
Ti
an
lim
se
be
no
ca
th

en
ne
in
pr

D

an
ca
is 
ac
m
re

E

fir
an
fro
th
ke
av

A. Protocol s

Bluetooth Me
pplications by 
rotocol stack c
e Lower Tra
ccess layer, t
yer.  

B. Bearer lay

The Bearer la
r 5.x specifica

messages. For s
dvertising-base
at do not ope

upported in B
ode role, wh
earers to GAT
ereinafter, we
ansmits a me
hannels. 

C. Network l

The Network
yer data units 

ontrolled flood
ut by Relay no
e flooding me
ime To Live (
nd it is decrem
miting the m
ender can tailo
etween itself a
ode receives a
ache. If a copy
at copy is disc
The Network

ncrypts and au
etwork. Furthe
cluding the so

rivacy threats, 

D. Lower Tra

The Lower T
nd reassembly
arried by a sin

used, the r
cknowledgmen

message have b
transmits any 

E. Upper Tra

The Upper T
rst one is secu
nd authenticat
om the Netwo
e network fro

ey will be u
vailable to the 

stack 

esh offers netw
means of a p

comprises the 
ansport layer, 
the Foundatio

yer 

ayer uses BLE
ations) as the 
simplicity, Bl
ed bearers (F
erate as adver

Bluetooth Mes
hich relays m
TT-based bea
e assume that
ssage, the lat

layer 

k layer offers 
over a Blueto

ding mechanis
odes. In order 
echanism, two
(TTL) field is 
mented each 

maximum num
or the TTL of a
and its destinat
a new data m

y of the same m
carded by the n
k layer also 
uthenticates al
ermore, releva
ource address,
such as node 

ansport layer 

Transport laye
y for upper l
ngle Bearer lay
receiving pee
nt, which rep
been received
missing segm

ansport layer 

Transport laye
uring applicat
tion. Such se
ork layer one

om eavesdropp
used for each

communicatin

working servi
protocol stack 

Bearer layer,
the Upper T

on Model lay

E (i.e. as defin
means to car

luetooth Mesh
ig. 1.b). Neve
rtisers, the G
sh by means 

messages from
arers (Fig. 1.
t when a Blu
tter is sent vi

end-to-end tra
ooth Mesh netw
sm. Message fo

to limit the m
o techniques a
included in e
time a messa

mber of hops 
a message to th
tion. Secondly

message, the 
message is rec
node.  
provides secu
ll messages in
ant Network 
, are obfuscate
tracking.  

er provides eff
layer data un
yer data unit. 
er endpoint 

ports whether 
d or not. The

ments. 

r offers three 
tion data by m
ecurity functi
, as a measur
pers. A differe
h application, 
ng endpoints. 

ices and suppo
(Fig. 1.b-1.c)

, the Network 
Transport laye
yer, and the M

ned in Bluetoo
rry Bluetooth 
h relies typica
ertheless, for 
ATT bearer i
of a special 

m advertising
c), and vice 
uetooth Mesh
ia the 3 adve

ansmission of 
work, by mean
forwarding is c
message overh
are applied. F
ach message h
age is relayed

for a messa
he hopwise di
y, each time a 
node stores i

ceived subsequ

urity services,
n a Bluetooth 
layer header 
ed in order to

ficient segmen
nits that cann
When segmen
transmits a 
the segments

e sender selec

main service
means of encr
ionality is se
re to further p
ent application

and will on
  

ort for 
). This 

k layer, 
er, the 
Model 

oth 4.x 
Mesh 

ally on 
nodes 

is also 
proxy 

-based 
versa. 

h node 
rtising 

f upper 
ns of a 
carried 
head of 
First, a 
header 
d, thus 
age. A 
istance 
Relay 

it in a 
uently, 

, as it 
Mesh 
fields, 

o avoid 

ntation 
not be 
ntation 

block 
s of a 
ctively 

s. The 
ryption 
eparate 
protect 
n-level 
nly be 

T
ener
This
so-c
redu
mes
to c
wak
mill
slee

T
peri
whi
trav
mes

F.

T
indi
to-e
ackn
auto

G

In
arch
on/o
state
asso
and 
call

T
the 
whi
supp
offe
ligh
func

T

 
Fig. 
c) Bl

The second U
rgy-constraine
s service is ba
called Friend n
uced duty cyc
ssages intende
conserve ene
kes up, polls it
liseconds for p
ep state.  
The third servi
iodic transmis
ich allows rec
versed by such
ssage flooding

. Access laye

The Access lay
icates how suc
end reliability
nowledged o
omatic repeat r

G. Foundation

n Bluetooth M
hitecture, wher
off variables a
es by using 
ociated with a

d associated b
ed a model. 

The two highe
Foundation M

ich define mo
port for mana
ers a framewo
hting, etc.), 
ctionality. 

IV. 6BLEM

The previous 

1. Protocol stac
luetooth Mesh (G

Upper Transpo
ed devices cal
ased on a conc
node allows a
cles to save e
ed for the LPN
rgy. Every P
ts Friend node
potentially inc

ice provided b
ssion of netw
ceiving nodes
h messages a

g. 

er 

yer defines a 
ch data need t

y. This layer 
or unacknowl
request mecha

n Model layer 

Mesh, applicati
re servers sup
and their valu
messages (e.g

an on/off varia
behaviors rela

st layers of th
Model layer 

odels. The Fo
aging a BLE m
ork for smart 

as well as 

MESH: IPV6-BA

section ove

cks: a) BLE, b) 
GATT bearer), d) 

ort layer servi
lled Low Pow
ept called frie

a neighboring 
energy. The F

N while the latt
PollTimeout i
e, listens durin
coming messa

by the Upper 
work-wide He
s to learn the 
and optimize 

format for ap
o be handled, 
defines whet

ledged. In th
anism is suppo

and Model lay

ions are based
pport resources
ues) and client
g. to toggle a
able). A set o

ated with a sp

he BLE mesh 
and the Mod
undation Mod

mesh network
home applica

generic dev

ASED BLE MES

rviewed the 

Bluetooth Mesh 
6BLEMesh.  

ice is support
wer nodes (LP
endship, where
LPN to opera

Friend node st
ter is in sleep 
interval, the 
ng ReceiveWin
ges, and return

Transport lay
eartbeat messa

hopwise dist
the scope of 

pplication data
and supports 

ther a messag
he first case
orted. 

yer 

d on a client-se
s called states 
ts operate on 
a physical sw

of states, mess
pecific purpos

protocol stack
del layer, bot
del layer prov
. The Model l

ations (e.g. sce
vice and se

SH NETWORKS

Bluetooth S

(advertising bea

2 

t for 
PNs). 
eby a 
ate at 
tores 
state 
LPN 

ndow 
ns to 

yer is 
ages, 
tance 
data 

a that 
end-

ge is 
, an 

erver 
(e.g. 
such 

witch 
sages 
se is 

k are 
th of 
vides 
layer 
enes, 
ensor 

S 

SIG’s 

arer),



3 
 

Bluetooth Mesh standard. Another major standards-based 
solution for BLE mesh networking, 6BLEMesh, is currently 
being developed by the IETF IPv6 over Networks of 
Resource-Constrained Nodes (6Lo) working group [6]. In 
order to enable IPv6-based BLE mesh networks, 6BLEMesh 
extends RFC 7668. The latter specifies IPv6 over star-
topology BLE networks by leveraging IPv6 over Low Power 
Wireless Personal Area Network (6LoWPAN) [8].  

This section presents 6BLEMesh. First, the background 
concepts of 6LoWPAN and IPv6 over star-topology BLE 
networks are introduced. Subsequently, the main 6BLEMesh 
features are described. 

A. 6LoWPAN 

6LoWPAN is an adaptation layer that was originally 
designed to efficiently enable IPv6 over IEEE 802.15.4 
networks [9]. Like BLE networks, IEEE 802.15.4 networks 
typically comprise resource-constrained devices, and offer 
relatively low bit rates. IEEE 802.15.4 networks are 
fundamentally different from the resource-rich networking 
environments assumed for IPv6 when it was created. In fact, 
an adaptation layer between the IPv6 layer and the IEEE 
802.15.4 layer is required to comply with IPv6 requirements, 
and for efficiency. 

6LoWPAN comprises three fundamental mechanisms:            
i) compression of IPv6 and UDP headers, ii) optimized IPv6 
Neighbor Discovery (ND), and iii) fragmentation 
functionality. The first two mechanisms allow energy- and 
bandwidth-frugal operation. 6LoWPAN header compression 
exploits intra-packet redundancy and an expectation of 
typically used header field values. 6LoWPAN-optimized IPv6 
ND reduces use of multicast and allows energy conservation 
intervals by enforcing interactions initiated by energy-
constrained devices. 6LoWPAN fragmentation supports the 
transmission of 1280-byte packets (as required for IPv6) over 
the smaller maximum frame payload size of IEEE 802.15.4, of 
~100 bytes.  

IEEE 802.15.4 supports the mesh network topology. 
Accordingly, 6LoWPAN defines three node roles for such 
topology: i) 6LoWPAN Border Router (6LBR) for routers at 
the edge of the 6LoWPAN network, ii) 6LoWPAN Router 
(6LR) for routers internal to the 6LoWPAN network, and iii) 
6LoWPAN Node (6LN) for non-routing devices. A 6LBR 
often supports several network interfaces, typically including 
one that offers Internet connectivity. A 6LBR also manages 
the configuration of a 6LoWPAN network. 6LRs typically 
support only one network interface and enable the 
connectivity between 6LNs and the 6LBR. Since 6LBRs and 
6LRs need to generally be ready to receive (and forward) data 
packets, they often require mains power. 6LNs are typically 
simple devices that run on limited energy sources.  

B. IPv6 over star topology BLE networks 

RFC 7668 enables IPv6 over star topology BLE networks 
by modifying 6LoWPAN for BLE [8]. RFC 7668 uses Link 
layer connections over data channels for communication 
between neighboring BLE devices. When an IPv6 packet 

needs to be sent, 6LoWPAN-based header compression is 
applied; then, the packet is handled by the BLE L2CAP layer.  

RFC 7668 simplifies and optimizes 6LoWPAN for BLE 
star topology networks in different ways. First, in star 
topology networks, the 6LR role does not exist, leading to a 
network comprising only a central 6LBR directly connected to 
a set of neighboring 6LNs. In such scenario, a routing protocol 
is not needed. Second, in a star topology, a 6LN can omit the 
source address from the packets it transmits, since the 6LBR 
can unambiguously infer that the packet sender is that 6LN; 
likewise, the 6LBR can omit the destination address from the 
packets it sends to a 6LN. Finally, 6LoWPAN fragmentation 
is not needed over BLE, since L2CAP provides native 
fragmentation functionality. 

C. 6BLEMesh features 

In order to enable IPv6-based BLE mesh networks, 
6BLEMesh inherits features from RFC 7668, while defining 
new functionality. 

As in RFC 7668, 6BLEMesh uses Link layer connections 
over data channels between neighboring devices. This 
approach is different from the Bluetooth Mesh one, where 
advertising channels are used as the main packet bearers.   

To enable mesh topology operation, 6BLEMesh restores the 
6LR role and requires an IPv6-based routing protocol. The 
IPv6 Routing Protocol for Low-power and lossy networks 
(RPL) is the main candidate routing protocol for 6BLEMesh, 
since it is the routing protocol standardized by the IETF for 
IoT environments [10]. Nevertheless, other routing protocols 
have been selected for some IP-based IoT protocol stacks. For 
example, Thread uses a routing protocol based on the Routing 
Information Protocol [3].  

In 6BLEMesh, the RFC 7668 header compression 
optimization which allows omitting a full address can only be 
applied in links between 6LNs and their routers. For example, 
in a link between routers A and B, if router A receives an IPv6 
packet from router B without a source address, router A 
cannot determine whether the source of the packet was router 
B or a previous node. Still, applying such header compression 
when possible is useful since 6LNs are likely to be energy-
constrained devices. 

D. Upper layers 

At the application and transport layers of the 6BLEMesh 
protocol stack, any IP-based set of protocols can be used. 
However, the Constrained Application Protocol (CoAP), atop 
UDP or TCP, appears to be a suitable choice [11]. CoAP is a 
lightweight application-layer protocol specifically designed 
for the IoT. CoAP is based on the REST architecture, like 
HTTP, and it allows the communication between CoAP and 
HTTP endpoints through a translation proxy. While CoAP was 
originally designed over UDP, use of CoAP over TCP has 
been recently specified, as it is required in some environments 
to traverse middleboxes such as firewalls [12]. Fig. 1.d 
illustrates a protocol stack for 6BLEMesh, which includes 
IoT-specific upper layer protocols such as CoAP. 
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VII. CONCLUSIONS 

Bluetooth Mesh and 6BLEMesh offer fundamentally 
different BLE mesh networking solutions. Their performance 
depends significantly on their parameter configuration. 
Nevertheless, the following conclusions can be obtained. 
Bluetooth Mesh exhibits slightly greater protocol 
encapsulation overhead than 6BLEmesh. Both Bluetooth 
Mesh and 6BLEMesh offer flexibility to configure per-hop 
latency. For a given latency target, 6BLEMesh offers lower 
energy consumption. In terms of message transmission count, 
both solutions may offer relatively similar performance for 
small networks; however, 6BLEMesh scales better with 
network size and density. 6BLEMesh approaches ideal packet 
delivery probability in the presence of bit errors for most 
parameter settings (at the expense of latency increase), 
whereas Bluetooth Mesh requires path diversity to achieve 
similar performance. Bluetooth Mesh does not suffer the 
connectivity gaps experimented by 6BLEMesh due to 
topology changes. Finally, 6BLEMesh naturally supports IP-
based Internet connectivity, whereas Bluetooth Mesh requires 
a protocol translation gateway. 
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6BLEMesh: IPv6-based BLE Mesh Networks 
6LBR:    6LoWPAN Border Router 
6LN:    6LoWPAN Node 
6LoWPAN:  IPv6 over Low Power Wireless Personal Area Network 
6LR:    6LoWPAN Router 
ATT:    Attribute protocol 
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CoAP:    Constrained Application Protocol 
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LPN:    Low Power node 
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RPL:   Routing Protocol for Low-power and lossy networks 
TTL:    Time To Live 
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