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ABSTRACT 

Physical activity is critical to improve the condition of patients with chronic leg and foot ulcers, especially those who 
are obese and experienced multiple co-morbid conditions. Unfortunately, these individuals are unable to engage in 
guideline based physical activity (PA) programs. A prototype of BluetoothTM enabled acceleration tracking (BEAT) 
mHealth system was developed and manufactured for remote monitoring and stimulation of adherence to PA in decon-
ditioned patients. The system consists of a miniature accelerometer-based sensor, smartphone application, and a net-
work service. Validation testing showed high reliability and reproducibility of the BEAT sensors. Pilot study with hu-
man subjects demonstrated high accuracy of the BEAT system in recognition of different exercises and calculating 
overall outcomes of PA. Taken together, these results indicate that BEAT system could become a valuable tool for 
real-time monitoring of PA in deconditioned patients. 
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1. Introduction 

Annually leg ulcers cost the US healthcare system in 
excess of $20 billion, additionally leading to an estimated 
2 million lost workdays per year; one ulcer can cost more 
than $40,000 for medical care, possibly exceeding $1000 
in patient out-of-pocket expenses [1,2]. 

Patients with chronic leg and foot ulcers, especially 
those who are obese and experienced multiple co-morbid 
conditions, are often physically inactive causing them to 
develop deconditioned legs that are weak and have re- 
duced ranges of motion, especially of the ankle. Many 
leg and foot ulcer patients do not walk; they “shuffle” 
and generally move no more than a few steps at a time, 
and at distances of less than 5 feet. The majority use 
walkers, scooters, or wheelchairs leading to social isola- 
tion and lack motivation to engage in regular physical 
activity on their own. Often, these same patients have 
previously tried physical therapy but continued to suffer 
from deconditioned legs and ulcers due to poor compli- 
ance. 

Physical activity is critical to improve the condition of 
their legs and promote wound healing. Unfortunately, 
these individuals are unable to engage in guideline based 
physical activity programs (i.e., supine cycle ergometry, 
walking, treadmill exercises offered through community 
exercise groups, etc.) most commonly recommended for 
ulcer patients. They are “left out” of typical physical ac- 
tivity programs due to inability to participate; most pro- 
grams have problems with accommodation of patients 
with leg and foot ulcers. Furthermore, because de-condi- 
tioned individuals with leg and foot ulcers are unable to 
engage in these types of activities, personalized programs 
need to be developed. 

In a recent physical therapy intervention study at 
Medical University of South Carolina (MUSC), results 
demonstrated that the lower legs of patients with ulcers 
have significantly reduced range of motion and strength. 
A statistically significant improvement in ankle range of 
motion, specifically dorsiflexion and leg strength (p = 
0.03) was found in patients with a history of leg ulcers 
who participated in a videoconferencing physical activity 
coaching intervention delivered over the internet [3]. *Corresponding author. 

Copyright © 2013 SciRes.                                                                                ETSN 



A. SHAPOREV  ET  AL. 50 

While the goal of the study was to test the feasibility of 
using the internet for the virtual face-to-face intervention, 
the “signals” of significance in function suggested that 
even with small doses of physical activity (one week), 
patients who were motivated and engaged (there was a 
statistically significant increase in self-efficacy during 
the study) were more likely to exercise. In order to prop- 
erly examine a behavioral intervention to increase physi- 
cal activity in a group of regular patient wound care an 
establishing outcome to objectively monitor movement, 
particularly small toe and forefoot movements is neces- 
sary; integration using a technology-assisted Mobile 
Health (mHealth) can help to monitor physical activity 
adherence and enhance healing. 

In studies that measure adherence to physical activity, 
accelerometers are widely used. Researchers have dem- 
onstrated the reliability and validity as well as the utility 
of accelerometers to increase physical activity in patient 
programs using step count as a surrogate measure for 
energy expenditure (EE) among ambulatory patient po- 
pulations [4,5]. Moreover, accelerometers were used for 
motion and gesture recognition [6-9] and even were 
proven to be able to record fairly small movements (such 
as tremor [10]). 

Nevertheless, developed PA monitors are typically de-
signed to be stand-alone devices (with thus reduced mo-
tivation and control functionality), and only in rear cases 
researchers develop comprehensive feedback-oriented 
systems for remote patient monitoring. 

A breakthrough in patients monitoring in terms of en- 
hanced motivation and control functionality with rea- 
sonable solution cost can be achieved using smartphones 
[11] (widely spreading over cellular network users [12]). 
Such an mHealth solution can be useful and efficient for 
insufficiently motivated deconditioned patients with lim- 
ited mobility to achieve improvement of PA adherence 
and enhance healing. Considering specific aspects of this 
population it has to comply with the following require- 
ments: 
 High sensitivity—sensor must be able to record 

small accelerations corresponding to minute foot mo- 
tions; 

 Small size—sensor must be small enough to be 
nested at foot or shoes; 

 Recognition of foot motions—system must be able 
to recognize prescribed exercise patterns based on 
forefoot movements proven to be efficient in wound 
healing; 

 Power efficiency—sensor battery lifetime must be 
reasonably long, so that under normal usage condi- 
tions patient could use sensor for at least a week on a 
single battery set; 

 Interactivity—device must be able to analyze pa- 
tient’s physical activity patterns, assess their compli- 

ance, and encourage them to exercise more in the case 
of poor compliance; 

 Telecommunication capabilities—device must be 
able to transmit physical activity data to their care 
provider, and retranslate clinician’s recommendations 
to the patient. 

mHealth solutions were shown to be efficient for re- 
mote monitoring of patients and to provide enhanced 
feedback and motivation options [13]; however, person- 
alized mHealth systems that fulfill all of the above re- 
quirements are not readily available. In response to the 
lack of monitoring devices specifically targeting lower 
leg activity for minimally active population, we report 
here a comprehensive mHealth system consisting of a 
wireless BluetoothTM-enabled accelerometer tracking 
device (BEAT) with an application for Android-based 
smartphones and integrated web-services (Figure 1). Use 
of smartphone allows us to simplify BEAT sensor (and 
thus significantly reduce solution cost), miniaturize it, 
increase battery lifetime and enhance system functions 
since BEAT sensor mainly performs accelerometer data 
acquisition and their transmission to the smartphone 
while smartphone carries the load of data analysis, net- 
working and communication between the patient and 
clinician. 

The purpose of the current study was to design and test 
a prototype mHealth BEAT system and provide evidence 
of its reliability and validity. Furthermore, smartphone- 
based software algorithms for recognition of specific 
exercises were developed. Finally, the capabilities for 
participant motivation and feedback using a smartphone 
program are also described. 

2. Materials and Methods 

The BEAT (Bluetooth-enabled accelerometer tracking 
device) sensor consists of a 3-axis accelerometer 
(ADXL335, Analog devices Inc., MA, USA), micro- 
processor (PIC18F14K22, Microchip Technology Inc., 
 

 

Figure 1. Schematic of developed mHealth BEAT system. 
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AZ, USA) and a BluetoothTM module (RN-42, Roving 
Networks, CA, USA). The accelerometer has dynamic 
range of −3 g - 3 g and resolution of 0.006 g, and those 
parameters were found sufficient for foot minute move- 
ment detection application. A custom printed circuit 
board (PCB) was produced using Surface Mount tech- 
nology to reduce physical footprint. 

In the BEAT sensor (see Figure 2), acceleration data 
produced by 3-axis accelerometer are acquired by the 
microprocessor using on-board 10-bit analog-to-digital 
converter with a desired sampling rate which can be ad- 
justed accordingly to experiment conditions. As a rule, 
sampling frequency should be 2 times higher than target 
frequency of measured events (5 - 10 times higher for 
better detalization), so in this study for exercises (foot 
movements) with target frequency of 0.5 - 1 Hz we 
picked sampling frequency of 10 Hz. The microprocessor 
also performs primary data processing and sends the 
processed data to the BluetoothTM module, which in its 
turn transmits the data to the receiving Bluetooth-capable 
device (the smartphone). Power supply was provided by 
a CR2032 battery (Panasonic Industrial Company Applied 

 

 
(a) 

 
(b) 

Figure 2. Scheme of the BEAT sensor (a) and a photograph 
of the manufactured device (b). 

Technologies Group, NJ, USA) with nominal voltage of 
3 V and nominal capacity of 225 mAh. 

Custom firmware was developed for the BEAT device 
to perform data collection and initial data processing. 
The developed firmware provides variable processor 
operation frequency, data acquisition rate, data buffering 
parameters and allows Bluetooth module operation at 
data transfer rates up to 57.6 KB/s. 

In order to minimize volumes of data transmitted from 
BEAT sensor to the smartphone, a protocol for acceler- 
ometer data transmission over BluetoothTM was devel- 
oped. Assuming 30 bits of acceleration data per single 
data point (3 axes, 10 bits per each), it uses 6 bytes of 
data to transmit acceleration data, a checksum and a 
timestamp (to provide availability to synchronize the data 
in the case of partial data loss) to a smartphone. This 
protocol provides significant benefits compared to tran- 
smission of uncompressed data (~20 - 30 bytes per data- 
point) and thus decreases amount of energy used for data 
transmission. 

Motorola Droid2 smartphone (Motorola Mobility Inc., 
IL, USA) operated on Android OS v.2.2 was used in the 
study. A special BEAT application was developed for 
this smartphone (see Figure 3) using Android SDK 
(Google, Inc., CA, USA). The application performs the 
following main functions: 
 Data acquisition from BEAT sensor via BluetoothTM 

(using developed data transmission protocol); 
 

 

Figure 3. BEAT application for Android OS-based smart- 
phones. 

Copyright © 2013 SciRes.                                                                                ETSN 



A. SHAPOREV  ET  AL. 52 

 Analysis of the data acquired from the BEAT sensor, 
recognition of specific exercise patterns and determi- 
nation of major quantitative parameters (exercise in- 
tensity, duration, frequency, angles etc.); 

 Communication with the user (display exercise pro- 
gress, output of exercise results, statistical data, trans- 
mission of incoming messages from the server and/or 
from clinician); 

 Compilation of exercise summary and uploading 
these data to a server using HTTP protocol. Data buf- 
fering and storage was implemented in order to pre- 
vent data loss in case of absence of Internet connec- 
tion. 

The exercise recognition mechanism implemented in 
the app is based on determination of acceleration extrema, 
and comparison of “target” acceleration with signal thres- 
hold value, as well as “non-target” with noise threshold 
values. Sequence of “target” acceleration events was set 
based on exercise geometry. Additional correction for 
sensor displacement based on principal component ana- 
lysis was added to increase signal and suppress noise 
caused by minor sensor displacement, and thus reduce 
the number of erroneous recognitions. Despite the rela- 
tive simplicity of this analysis method, it was found to 
work well for recognition of two exercises used in the 
study. 

The application is in an active state only when exercise 
session is in progress (~5 - 10 sessions per day), it does 
not consume much energy. No significant influence of 
the app work on smartphone battery was noted during 
test. 

A server for physical activity monitoring results stor- 
age and processing was deployed at Clemson University. 
It is based on Apache HTTP server (The Apache Soft- 
ware Foundation, USA), supports relational database 
(MySQL 5, Oracle, CA, USA) and runs PHP interpreter 
(PHP 5, The PHP group) that was used to perform data 
analysis and output results to clinicians. Developed 
server provides access for authorized users (clinicians) to 
patients’ results, and can present these results in a variety 
of ways, including personal patient’s progress, total/av- 
eraged exercise frequencies and durations and patient’s 
compliance with prescribed training plan. 

BEAT sensor reliability was tested with two main tests. 
First one was continuous (60 seconds) data acquisition 
from motionless BEAT sensor. Data acquisition was 
performed using MATLAB (The MathWorks, Inc., MA, 
USA), 3 data channels (x-, y-, z-components of accel- 
eration) were recorded and signal standard deviations 
were calculated. This test was used to estimate level of 
noises (e.g., RF noises) and pick up proper data acquisi- 
tion parameters. 

Second test was used to evaluate inter-device repro- 
ducibility. A rotary shaker (MaxQ Mini 4000, Barnstead 

International, IA, USA) with 4 BEAT sensors attached 
was used. BEAT sensors were mounted in similar or dif- 
ferent (random) orientations on the platform and placed 
onto a shaker plate (shaking frequency was varied from 
45 to 75 rpm). MATLAB (The MathWorks, Inc., MA, 
USA) was used to acquire data from all participating 
sensors (via Bluetooth) simultaneously. Coefficients of 
variations (CV) were calculated for all 4 devices. In case 
of similar sensor orientation raw x-, y-, z-acceleration 
components were used for CV calculations, while in case 
of random BEAT sensors orientation accelerations ob- 
tained from different sensors were transformed into a 
uniform coordinate system using principal component 
analysis method thus eliminating difference in orienta- 
tions of the devices, and thus transformed acceleration 
components were used for CV calculations. 

General purpose of BEAT is recognition of rotational 
motions of patients’ foot since these exercises can be 
done even by overweight patients with limited mobility 
and because these motions can be effective in restoring 
normal blood flow in a foot. Two exercises recommend- 
ed to ulcer leg patients were chosen as the model ones for 
this pilot study. Exercise 1 consists of a horizontal rota- 
tion of foot (floor wiping) with target frequency of ~0.5 
Hz and amplitude of ~80˚. Exercise 2 consists of a verti- 
cal rotation of foot in x-z plane (where z is “up” and x is 
“front” for the patient) of accelerometer with target fre- 
quency of ~0.5 Hz and amplitude of ~45˚. Patient is 
supposed to sit during both exercises and his heal should 
be pressed to the floor. These exercises were chosen be- 
cause they include two key foot movements (longitudal 
and lateral rotations) and are recommended for leg ulcer 
patients. 

A pilot validation of the BEAT system was performed 
with two healthy volunteers (MUSC IRB protocol 
#Pro00013314). BEAT sensor was attached to a slipper 
worn by a healthy volunteer (Figure 4). The volunteer 
was asked to perform exercise 1 or 2 with BEAT sensor 
on and simultaneous video recording to determine accu- 
racy of motion recognition by the BEAT application. 
Initially volunteers were supposed to do 60 one-way mo- 
tions to simulate 1 minute training session (with target 
frequency of 1 motion/second) for both exercises, but 
during the study it was found that not all volunteers were 
able to do exercise 1 for 60 times, and target number of 
one-way motions for exercise 1 was cut to 50 to maintain 
same amount of exercise motions for all volunteers. To 
check for potential false positives, in some exercise ses- 
sions BEAT software was set to recognize the incorrect 
exercise type (e.g., set to recognize exercise 2 while the 
subject was doing exercise 1). Thus, four different exer- 
cise sessions were used (see Table 1). After the end of 
every exercise session results were automatically uploaded 
by the BEAT app to a server and BEAT app motion rec- 
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improvements of battery life. Increased buffer size would 
however lead to higher device latency, or lag between 
data acquisition and transmission. Variable buffer size 
implemented here allows BEAT to be used in different 
monitoring modes, depending on application. For exam- 
ple, choosing the buffer size of 120 B results in the la- 
tency of 2 sec and battery life of approximately 24 h of 
continuous use, appropriate for real time recording of 
short-term user-initiated sessions (assuming the session 
length of 15 min daily, the device would run without the 
need to change battery for up to 96 days). If 24/7 moni-
toring in passive mode is desired, increasing the buffer 
size to 10 kB would allow continuous monitoring for up 
to 10 days with latency time of 133 sec. 

ognition results were compared to those obtained from 
the video records. Each exercise set was performed three 
times by each volunteer. Results of the recognition by 
BEAT software were then recorded for each volunteer. 

Additional test was performed to determine if BEAT 
app will provide any false positives in resting volunteers. 
Volunteers were asked to sit still for 30 seconds, with 
BEAT sensor on and BEAT app set to recognize either 
exercise 1 or 2. Data obtained from BEAT app was tested 
for any false positives. Three replicates of this test were 
done by each volunteer. 

3. Results and Discussion 

The BEAT system was designed to be a convenient tool 
for remote monitoring of patients. Thus, all major parts 
of the system were designed and optimized to fulfill the 
requirements discussed above. The BEAT sensor was 
designed to have the following features: small size, high 
sensitivity and power efficiency. 

Exercises for the target population generally include 
various feet rotations. Typically, small accelerations 
(both lateral and tangential) are required to perform these 
types of motions, so reliable detection of corresponding 
accelerations may be limited by poor accelerometer sen- 
sitivity. Thus, we performed evaluation of sensitivity and 
reliability of the BEAT sensor. Data acquisition accuracy 

Small sensor size was achieved by using small-size 
components. For instance, the accelerometer dimensions 
are 4 mm × 4 mm × 1.45 mm, and the microprocessor 
dimensions are 7.8 mm × 7.2 mm × 2 mm. This allowed 
us to design the PCB layout (and final device) with a size 
(from 20 mm × 28 mm) comparable to that of a quarter 
coin (see Figure 2(b)). 

 

 

Power efficiency was one of our priorities during de- 
sign of the device. Thus, power-efficient parts were cho- 
sen to minimize on-board power consumption (acceler- 
ometer with approx. 0.3 mA operating current and mi- 
croprocessor with 0.6 - 2 mA operating current). The 
most power-consuming part of the sensor is the Blue- 
toothTM module, which consumes up to 25 mA in work- 
ing mode. To reduce power consumption by the Blue- 
toothTM module, data storage/buffering by the micro- 
processor was implemented, to ensure that BluetoothTM 
module runs only when a package of data is acquired and 
ready to be sent, instead of power-inefficient continuous 
datum-by-datum transmission. For small data packages 
less than 30 kB (corresponding to 5000 of recorded 
events, 500 sec @ 10 Hz sampling rate), energy being 
consumed by the BluetoothTM module to transmit a 
package of data is almost independent on the package 
size; thus increase in the buffer size lead to considerable  

Figure 4. BEAT sensor attached to a slipper worn by a 
healthy volunteer. 

 
Table 1. List of exercise sets performed by volunteers in BEAT validity study. 

Exercise set 
Exercise done by 

the volunteer 
Exercise set up to be recognized  

by BEAT app 
Number of one-way 

motions 
Purpose of  
experiment 

1 Ex. 1 Ex. 1 50 Exercise 1 true positives 

2 Ex. 1 Ex. 2 50 Exercise 1 false positives 

3 Ex. 2 Ex. 1 60 Exercise 2 false positives 

4 Ex. 2 Ex. 2 60 Exercise 2 true positives 
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is determined by accelerometer parameters and the de- 
vice design (including device firmware). According to 
the accelerometer specifications, its accuracy is 0.01 g. 
10-bit analog-to-digital (ADC) conversion performed by 
the microprocessor was adjusted to have ADC accuracy 
same as that of the accelerometer (3 mV, equal to 0.01 g). 
Actual accelerometer data can be (and typically are) af-
fected by different noises (most of them are RF-noise 
picked up by the circuit and voltage deviations due to 
irregular power consumption by the BluetoothTM module 
during data transmission). To eliminate this factor we 
implemented multiple acceleration acquisitions for every 
time-point with averaging thus obtained values. Increas- 
ing the number of replicates improves the accuracy but 
reduces the battery life. To determine optimal number of 
replicates, we performed experiments with motionless 
sensors. We found that when the number of replicates 
was 20 or more, signal deviations for x, y and z compo- 
nents of acceleration did not exceed 0.01 g thus corre- 
sponding to the intrinsic accuracy of the accelerometer. 
Further increase of the number of replicates would only 
lead to more power consumption, and therefore 20 was 
chosen as the optimal number of replicates and fixed in 
the firmware for further experiments. 

A rotary shaker plate test with 4 devices was per- 
formed to evaluate reliability of the BEAT sensor. At all 
frequencies used (45, 60 and 75 rpm) sensors in similar 
orientations were found to give almost identical data (see 
Figure 5), and coefficient of variation calculated for all 4 
devices (75 rpm) was found to be 0.8%. It should be 
noted, that observed error can originate from both sensor 
acceleration acquisition error and differences in device 
orientation. Therefore, a second test was carried out with 
devices mounted in different orientations. Acceleration  
 

 

Figure 5. Acceleration data obtained by two sensors during 
shaker plate test (x axes of accelerometers, 45 Hz rotational 
speed). 

values were processed to be comparable (moved into 
similar coordinate system) and coefficient of variation in 
this case was 1.1%. Therefore, reliability testing demon- 
strated that BEAT devices generate consistent accelera- 
tion data with sufficient (0.01 g) accuracy. These ex- 
periments also showed that consistent acceleration data 
can be obtained from BEAT sensors independently of 
their initial orientation. This finding is important because 
initial orientation of the devices during the exercise is 
expected to be variable for different patients and for the 
same patient in different PA sessions. 

It was important to prove that BEAT has sufficient 
sensitivity to detect minute motions corresponding to 
both chosen exercises, so such estimations are provided 
below. 

To recognize exercise 2 BEAT must be able to detect 
vertical rotary motions with desired parameters (−45˚ - 
45˚). To achieve that, the orientation angles of the device 
were calculated in the points corresponding to the maxi- 
mal and minimal z acceleration according to Equation (1): 

arcsinxz

x
a

z
   
 

,                (1) 

where αxz is an angle between z-axis of accelerometer and 
gravity vector projection to xz plane of accelerometer, 
x—x-axis acceleration acquired by accelerometer, g— 
gravity acceleration. Similar equation can be used to de- 
rive yz orientation of the sensor. Here and further—x axis 
was determined as patient “front” direction, y as “left”, 
and z as “vertical” direction 

The amplitude of the motion was then determined 
from difference between the maximal and minimal ac- 
celeration, and averaged over the length of the exercise 
session. Angular resolution (and angular accuracy) for 
the angle range of −45˚ - 45˚ (typical for our exercises) 
assuming 0.01 g accuracy of acceleration is less than one 
degree (ranged from 0.57˚ to 0.81˚) accordingly to (1). 
Acceleration diapason size for exercise with angular am- 
plitude of 60˚ is expected to be ~0.9 g so it is signifi- 
cantly higher that accelerometer accuracy. The Equation 
(1) is only accurate when sensor movement acceleration 
is small in comparison with gravity, and it was found to 
be the case for foot movements during exercises de- 
scribed above, so this approach allows us to determine 
vertical rotations of patients feet with high accuracy in 
case of small accelerations and moreover, determine ab- 
solute orientations of feet during the exercises. Similar 
results could be achieved by using a gyroscope instead of 
accelrometer; however, use of a gyroscope would sig-
nificantly reduce battery lifetime (typical current needed 
to supply a gyroscope exceeds 3.5 mA while entire 
BEAT sensor consumes only 1 - 1.5 mA to supply both 
the microprocessor and accelerometer). 

To ensure that accelerometer sensitivity enables it to 
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pick up minute accelerations produced by foot motion, 
we performed the test in which healthy volunteers were 
asked to perform Exercise 1 relatively slowly. Accelera- 
tions recorded in this test ranged from −0.25 g to +0.25 g 
giving signal-to-noise ratio of ~25. 

Thus calculations, simulations and tests performed 
shows that accelerations produced during both types of 
foot exercises are well within the range of the BEAT 
susceptibility. 

A smartphone application (BEAT app) was developed 
to collect and analyze the data from BEAT sensors (Fig- 
ure 3). It allows a user to connect smartphone to the 
BEAT sensor via Bluetooth. Then patient is then pro- 
mpted to choose the exercise they will do (according to 
the schedule prescribed by their care provider and stored 
by the BEAT app). After pressing the “Start” button, 
BEAT app begins acquisition and analysis of the data 
from the BEAT sensor. Results of the data analysis 
(number of exercises and confirmed session duration) are 
displayed on the smartphone screen so that the patient 
could monitor their progress in real-time and adjust their 
exercise technique if the BEAT app determines that the 
exercise is performed incorrectly. After pressing the 
“Stop” button the BEAT app discontinues data acquisi- 
tion, calculates combined session outcomes, displays them 
to the user and attempts to send them to the secure server. 
If this attempt is unsuccessful, BEAT app stores the ses- 
sion outcomes in the smartphone memory until connec- 
tion is available and the data are successfully transmitted. 

The developed BEAT system (BEAT sensor + BEAT 
app) is able to perform adherence measurements for 
minimally ambulatory patients in real-time and thus dif- 
fers from the majority of traditional commercially avail- 
able accelerometers. In typical accelerometer designs, 
epochs (with typical values of 30 - 60 seconds) are estab- 
lished that represent time-intervals of information. The 
realtime approach implemented in the BEAT system is 
expected to be more efficient by providing immediate 
feedback to the patient and providing the capability of 
automated encouraging messages from the centralized 
server as the PA therapy progresses. 

A motion recognition algorithm was developed for 
BEAT app to distinguish between different exercises, to 
make sure correct exercise is performed and to determine 
cumulative outcomes, including the number of exercises 
done, average frequency, total duration, and motion am- 
plitudes. The algorithm first adjusts the coordinate sys- 
tem and eliminates errors introduced by variability of the 
BEAT sensor orientation (sensor displacement correc- 
tion). In the next step, BEAT app analyzes acceleration 
patterns and matches their parameters with the prere- 
corded ones for currently selected exercise. If they 
matched, program records exercise parameter and keeps 
monitoring until next exercise is observed or user fin- 

ishes the session. The following recognition parameters 
are used for analysis: threshold intensities, maximally 
acceptable noise/incorrect signal ratios, exercise interval/ 
frequency limits (both minimal and maximal). In case of 
incorrect exercise (e.g. patient performs exercise 2 in- 
stead of exercise 1 set in the app) acceleration pattern 
parameters do not match, and no exercise is recorded, 
even though acceleration extremas are observed and 
found. Using the same algorithm, BEAT app is able to 
recognize pauses during the exercise and exclude them 
from the total exercise duration. 

A pilot validation of the BEAT system was performed 
with two healthy volunteers as described in the Methods 
section. No false positives were recorded in resting vol- 
unteers. Exercise sets were designed assess accuracy of 
recognition by BEAT software. The outcomes reported 
by BEAT app were compared to those determined from 
reviewing the video records. Notably, acceleration pat-
terns from different volunteers doing the same exercise 
were very similar (Figure 6). It is possible however, that 
variability will be much larger in a larger scale study 
with deconditioned patients. Should that happen, we plan 
to perform orientation session with the participants prior 
to the beginning of the study. In these sessions, we will: 
1) Teach the participants to perform the prescribed exer- 
cises correctly, and 2) Individually adjust the parameters 
in the recognition software (acceleration thresholds and 
target exercise frequencies/durations) for each of the par- 
ticipants to recognize patient-specific patterns for each of 
the exercises. 

The results of the validation study are presented in Ta- 
ble 2. It can be clearly seen, that developed BEAT system 
showed high accuracy of distinguishing between differ- 
ent exercises for each of the subjects. If needed, accuracy 
can be further improved by application of individually 
adjusted filters for each of the subjects. Number of false 
positives was found to be below 3% for exercise 1, and 
below 1% for exercise 2. Detailed analysis of the accel- 
eration components showed that these false positives 
originate from incorrect foot orientation during the exer- 
cise and in some cases because of misalignment of the 
sensor on the slipper. If number of false positives in- 
creases in a larger scale study, it can also be improved by 
individual adjustment of parameters in the recognition 
software. 

Testing also showed that the data were uploaded to the 
server almost instantly after the end of each session if the 
smartphone had a regular 3G or Wi-Fi Internet connec- 
tion indicating that the BEAT system is applicable for 
real-time monitoring of the subjects. 

4. Conclusion 

To conclude, we developed and manufactured a prototype  
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(a) 

 
(b) 

Figure 6. Exercise accelerations recorded for two healthy 
volunteers, exercise 1 (a) and exercise 2 (b) patterns (scale is 
similar for both volunteers). 
 
Table 2. Results of the validation study. Positive recognition 
—percentage of recognized exercises when BEAT app was 
recognizing exercise of same type as user was actually doing; 
False positive recognition—percentage of exercises errone- 
ously recognized as correct while user was doing incorrect 
exercises. Actual number of exercises was determined using 
video recording. 

Average for two volunteers 
 

Exercise 1 Exercise 2 

True positives, counts 309/300 363/360 

False positive, counts 7/360 1/ 300 

 
mHealth system for remote monitoring and stimulation 
of adherence to PA in deconditioned patients. The system 
consists of a miniature accelerometer-based sensor, smart-  

phone application, and network service. Validation test- 
ing showed high reliability and reproducibility of the 
BEAT sensors. Pilot study with human subjects demon- 
strated high accuracy of the BEAT system in recognition 
of different exercises and calculating overall outcomes of 
PA. Taken together, these results indicate that BEAT 
system could become a valuable tool for real-time moni-
toring of PA in deconditioned patients. 
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