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Blunting neuroinflammation with resolvin D1
prevents early pathology in a rat model of
Parkinson’s disease
Paraskevi Krashia 1,2,11, Alberto Cordella1,3,11, Annalisa Nobili1,2,11, Livia La Barbera1,3, Mauro Federici 1,

Alessandro Leuti1,2, Federica Campanelli1, Giuseppina Natale1, Gioia Marino1, Valeria Calabrese 1,

Francescangelo Vedele1,3, Veronica Ghiglieri1,4, Barbara Picconi1, Giulia Di Lazzaro3, Tommaso Schirinzi3,

Giulia Sancesario5, Nicolas Casadei6, Olaf Riess6, Sergio Bernardini7, Antonio Pisani 1,3, Paolo Calabresi1,8,

Maria Teresa Viscomi9, Charles Nicholas Serhan 10, Valerio Chiurchiù1,2,12, Marcello D’Amelio1,2,12 &

Nicola Biagio Mercuri 1,3,12

Neuroinflammation is one of the hallmarks of Parkinson’s disease (PD) and may contribute to

midbrain dopamine (DA) neuron degeneration. Recent studies link chronic inflammation with

failure to resolve early inflammation, a process operated by specialized pro-resolving med-

iators, including resolvins. However, the effects of stimulating the resolution of inflammation

in PD – to modulate disease progression – still remain unexplored. Here we show that rats

overexpressing human α-synuclein (Syn) display altered DA neuron properties, reduced

striatal DA outflow and motor deficits prior to nigral degeneration. These early alterations are

coupled with microglia activation and perturbations of inflammatory and pro-resolving

mediators, namely IFN-γ and resolvin D1 (RvD1). Chronic and early RvD1 administration in

Syn rats prevents central and peripheral inflammation, as well as neuronal dysfunction and

motor deficits. We also show that endogenous RvD1 is decreased in human patients with

early-PD. Our results suggest there is an imbalance between neuroinflammatory and pro-

resolving processes in PD.
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P
arkinson’s disease (PD) is a neurodegenerative disorder
characterized by motor and non-motor symptoms includ-
ing tremor, rigidity, bradykinesia, postural instability, con-

stipation and depression. Although several neuronal populations
are affected in PD, the principal underlying pathophysiology is
determined by degeneration of substantia nigra pars compacta
(SNpc) dopamine (DA) neurons, leading to impaired dopami-
nergic neurotransmission in the dorsolateral striatum1.

Most PD cases are sporadic, featured by neurites expres-
sing α-synuclein (α-syn)-rich Lewy bodies1,2. There is over-
whelming evidence that α-syn mutations are determinant of both
familial and sporadic PD2–4, while overexpression of non-
mutated α-syn can also increase the risk for PD5,6. However,
our understanding of how increased α-syn levels can drive the
events leading to PD is incomplete. Today, there is general
agreement that many other factors, either alone or in combina-
tions, can contribute to the neurodegenerative processes,
including DA metabolism, mitochondrial dysfunction, oxidative
stress, impaired protein degradation and neuroinflammation7–12.

Indeed, neuroinflammation is a well-established feature of
PD12–15 and aggregated α-syn can induce microglia activation
and inflammatory cytokine release much earlier than the occur-
rence of DA cell death16,17. In fact, the SNpc not only shows high
density of microglia18,19 but evidence from experimental models
suggest that DA neurons are highly and selectively vulnerable to
inflammatory attacks19–22, supporting the hypothesis that the
microglia-mediated neuroinflammation contributes to the cas-
cade of events that lead to degeneration and worsening of the
disease12,23. Neuroinflammation could be a consequence of fail-
ure to resolve inflammation and to restore tissue homeostasis, the
resolution of which is mediated by specialized pro-resolving lipid
mediators, a superfamily of pro-resolving lipids that derive
metabolically from ω-3 and ω-6 essential fatty acids24–26. How-
ever, the effect of modulating such neuroinflammatory circuits, in
order to reverse or slow down the disease progression, is yet
unexplored.

To address this question and shed light into the relationship
between α-syn load and inflammation, we used a validated
transgenic rat model of PD that overexpresses the human non-
mutated α-syn (Syn rats)27. Here we show that α-syn over-
expression in Syn rats induces early alterations (i.e. long before
DA neuron degeneration) in DA neuron properties, nigrostriatal
dopaminergic transmission and motor behaviour. We also pro-
vide evidence for a strong link between α-syn overexpression and
neuroinflammation, showing a reduction of resolvin D1 (RvD1),
a specific pro-resolving mediator. Remarkably, early chronic
treatment of Syn rats with RvD1 reduces neuroinflammation,
restores dopaminergic neurotransmission and prevents develop-
ment of neuronal deficits and motor impairment. We also report
a central and peripheral RvD1 impairment in early-PD patients.
Taken together, our findings reveal that boosting the resolution of
inflammation can prevent early α-syn-induced neuroinflamma-
tion, neurophysiological and motor deficits, suggesting that
resolvins could be therapeutically exploited as novel diagnostic
biomarkers and disease-modifying agents.

Results
Early reduction of striatal DA in Syn rats. Given that α-syn
overexpression is pathogenic in PD and other synucleinopathies,
we first characterized the very early effects of α-syn over-
expression on the midbrain DA system, to highlight factors that
contribute to DA neuron dysfunction and ultimately to cell death.
We used a recently developed BAC transgenic rat model (Syn
rats)27 that overexpresses the full-length human α-syn and
recapitulates common PD features such as widespread α-syn

aggregation, progressive DA cell loss, loss of projecting fibres in
the striatum and associated motor symptoms27,28.

To identify the earliest timepoint of motor impairment in Syn
rats, we analysed two different age groups: asymptomatic 2-
month-old animals and 4-month-old rats with early anxiety-like
behaviour. In agreement with earlier reports27,28, 4-month-old
Syn rats showed normal basal locomotor activity in the open field
compared to aged-matched wild-type (WT) animals but per-
formed fewer entries to the centre zone, indicating increased
anxiety-like behaviour as avoidance of the centre (Fig. 1a). This
behaviour was age-dependent since 2-month-old Syn animals
behaved similarly to controls. We then subjected rats to an
accelerating rotarod test, a more complex test requiring motor
coordination and learning, to highlight the subtle motor deficits
observed in young Syn rats27,28. Four-month-old Syn rats showed
significant motor impairment compared to age-matched WT,
which was absent in younger Syn animals (Fig. 1b). These data
are in line with an age-dependent symptom progression and
demonstrate that the 2-4-month age-window is ideal for studying
early effects of α-syn overexpression on the nigrostriatal system.

In line with the motor impairment, 4-month-old Syn rats
showed significant reduction of DA outflow in the dorsal
striatum, while 2-month-old animals showed normal DA levels
(Fig. 1c). The reduced striatal DA was not associated with
changes in the integrity of DA-releasing terminals, measured with
tyrosine hydroxylase (TH) labelling (Fig. 1d), nor was it due to
DA release deficits in the presence of amphetamine (Fig. 1e).
Additionally, stereological cell counts in the SNpc and the
neighbouring ventral tegmental area (VTA) showed similar TH+

neuron numbers between Syn and WT animals (Fig. 1f).
Altogether, these data show that human α-syn overexpression

causes early functional deficits in nigrostriatal neurotransmission.
As in other PD models29, in Syn rats these deficits precede DA
neuron degeneration or striatal denervation and are temporally
associated with motor symptoms.

Altered properties of SNpc DA neurons in Syn rats. Given that
the reduced DA outflow in the striatum was not due to degen-
eration or denervation, we looked for changes in the functional
properties of SNpc DA neurons in Syn rats by performing a
detailed electrophysiological characterization in 2- and 4-month-
old animals.

In 4-month-old Syn rats the DA neuron firing frequency was
reduced, accompanied by reduction in the regularity of firing,
measured as increase in the coefficient of variation of inter-spike
interval (CV-ISI; Fig. 2a). On the contrary, 2-month-old Syn rats
showed normal pacemaker activity (Supplementary Fig. 1a).
Similarly, the number of action potential (APs) in Syn neurons,
generated by depolarizing current steps during current-clamp,
was reduced compared to WT neurons (Fig. 2b), while DA cells
in 2-month-old Syn animals fired APs similarly to WT
(Supplementary Fig. 1b). The reduced excitability of 4-month-
old Syn neurons was not due to differences in membrane
resistance (Rm) or sag (Fig. 2c and Supplementary Fig. 2a), nor
due to changes in cell capacitance (Cm; Fig. 2d) and threshold
potential (Supplementary Fig. 2b). Thus, we next sought to
examine characteristic DA neuron conductances, such as the
hyperpolarization-activated current (Ih)30,31. In agreement with
the fact that the sag was unchanged in Syn neurons, the Ih current
amplitude and activation kinetics were also unchanged (Fig. 2e).
However, the after-hyperpolarization potential reached during
pacemaking was more negative in Syn rats (Supplementary
Fig. 2b, c), suggesting an increase in the after-hyperpolarization
current (AHC). Indeed, depolarization to 0 mV induced a
stronger, faster-deactivating AHC in Syn rats (Fig. 2f), largely
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Fig. 1Motor deficits and reduced striatal DA in 4-month-old Syn rats. a Distance travelled during open field test (2-month-old: 15 WT, 13 Syn; 4-month-old:

7 WT, 10 Syn; two-way ANOVA: genotype × age, F1,41= 0.10, P= 0.748; genotype, F1,41= 6.77, P= 0.013; age, F1,41= 4.70, P= 0.037; P > 0.05 with

Bonferroni’s) and centre zone entries (2-month-old: 15 WT, 13 Syn; 4-month-old: 6 WT, 7 Syn; two-way ANOVA: genotype × age, F1,37= 2.65, P= 0.112;

genotype, F1,37= 9.66, P= 0.004; age, F1,37= 0.06, P= 0.799; WT 4-Syn 4 *P= 0.041 with Bonferroni’s). b Time spent on the accelerating Rotarod (2-

month-old: 9 WT, 8 Syn; 4-month-old: 11 WT, 8 Syn; two-way ANOVA: genotype × age, F1,32= 3.79, P= 0.061; genotype, F1,32= 29.69, P < 1.00 × 10−4;

age, F1,32= 5.91, P= 0.021; WT 2 months-Syn 4 months ***P < 1.00 × 10−4, Syn 2 months-Syn 4 months *P= 0.029, WT 4 months-Syn 4 months ***P <

1.00 × 10−4 with Bonferroni’s). c Example traces (scale: 50 pA, 500ms) and evoked DA in the striatum (2-month-old: 24 WT, 21 Syn slices, 4 rats each; 4-

month-old: 24 WT, 23 Syn slices, 4 rats each; two-way ANOVA: genotype × age, F1,88= 1.72, P= 0.193; genotype, F1,88= 19.95, P < 1.00 × 10−4; age,

F1,88= 22.50, P < 1.00 × 10−4; WT 2-Syn 4 ***P < 1.00 × 10−4, Syn 2-Syn 4 ***P= 4.00 × 10−4, WT 4-Syn 4 ***P= 5.00 × 10−4 with Bonferroni’s). d TH

labelling in the striatum (scale: 200 μm) and TH levels (5 rats each, 4 sections per animal; Mann–Whitney, P= 0.151). e Striatal DA release by

amphetamine (AMPH, 30 µM; scale: 10 pA, 5 min) in 4-month-old rats (8 slices, 4 rats per genotype; Welch’s t-test, P= 0.802). f TH immunoreactivity in

a WT rat (scale: 500 μm) and mean TH+ and TH− cell numbers (±s.e.m.) in 4-month-old WT (4) and Syn (6) rats (SNpc: two-way ANOVA: genotype ×

cell number, F1,16= 2.38, P= 0.143; genotype, F1,16= 1.02, P= 0.327; numbers, F1,16= 57.06, P < 1.00 × 10−4. WT-Syn for TH−: P > 0.05; for TH+: P > 0.05

with Bonferroni’s; VTA: two-way ANOVA: genotype × cell numbers, F1,16= 0.52, P= 0.483; genotype, F1,16= 0.07, P= 0.792; numbers, F1,16= 51.19, P <

1.00 × 10−4. WT-Syn for TH−: P > 0.05; for TH+: P > 0.05 with Bonferroni’s). In this and all other figures, in box-and-whisker plots the centre lines denote

median values, edges are upper and lower quartiles, whiskers show minimum and maximum values and points are individual experiments. Source data are

provided as a Source Data file
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mediated by apamin-sensitive small-conductance Ca2+-activated
K+ (SK) channels (Supplementary Fig. 2d). These differences
between Syn and WT rats were absent from 2-month-old animals
(Supplementary Fig. 1c, d).

We next investigated the autoreceptor-mediated inhibition of
DA neurons. DA, via somatodendritic D2 autoreceptors, inhibits
midbrain DA neurons by activating G-protein-coupled inwardly-
rectifying K+ channels (GIRK/Kir3)32,33. DA application (2min,

30 µM) during extracellular recordings caused a lower inhibition of
firing in 4-month-old Syn rat neurons compared to WT (Fig. 3a),
while no differences were observed between 2-month-old rats
across genotypes (Supplementary Fig. 1e). Similarly, DA induced
smaller outward currents in Syn neurons during voltage–clamp
(−60 mV; Fig. 3b). To decipher whether the reduced sensitivity to
DA involved D2 receptors or the downstream GIRK/Kir3
channels, we repeated dose-response experiments using baclofen,
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an agonist of GABAB receptors that, similarly to D2 receptors, are
expressed in SNpc neurons and mediate their action via GIRK/
Kir3 channels33–35. Baclofen currents were smaller in 4-month-old
Syn rats (Fig. 3c), confirming that GIRK/Kir3 channel function in
DA neurons is impaired.

Overall, the alterations in K+ conductances, apamin-sensitive
AHC and cell firing in Syn DA neurons, at an age preceding cell
degeneration, are all indications of cellular dysfunction. Accord-
ingly, microfluorometry measurements of somatic cytoplasmic
[Ca2+] at −60 mV (to prevent firing) resulted in significantly
higher [Ca2+] in DA neurons from 4-month-old Syn rats (Fig. 3d),
whereas no changes were detected in 2-month-old animals
(Supplementary Fig. 1f). Since SK channel opening is particularly
sensitive to cytoplasmic [Ca2+] changes36, the abnormal Ca2+

accumulation in Syn DA neurons can explain the observed rise in
the apamin-sensitive AHC (Fig. 2f)37–40. To investigate the source
of high Ca2+ we performed microfluorometry measurements in the
presence of Ca2+-free extracellular solution, to analyse the
contribution of voltage-gated Ca2+ channels (VGCCs), or in the
presence of isradipine, an antagonist of L-type VGCCs. Ca2+ entry
via somatodendritic L-type VGCCs during pacemaking increases
mitochondrial oxidative stress in vulnerable DA neurons and has
been strongly implicated in PD11,41. The application of Ca2+-free
extracellular solution reduced cytoplasmic [Ca2+] in both WT and
Syn neurons, but at a comparable extent, and the difference in Ca2+

levels between genotypes was still evident following 4min in Ca2+-
free conditions (Fig. 3e). Similar results were obtained after
incubating midbrain slices with isradipine (1 h, 200 nM), which
failed to cancel the difference between WT and Syn neurons
(Fig. 3f), suggesting that at −60 mV the contribution of VGCCs to
the higher [Ca2+] in Syn DA neurons is minimal. To investigate the
contribution of endoplasmic reticulum (ER) Ca2+ stores instead, we
used cyclopiazonic acid (CPA), a potent blocker of the SERCA
Ca2+ pump that refills ER Ca2+ stores. CPA causes a fast depletion
of ER stores due to Ca2+ leakage to the cytoplasm, evident as a
transient increase in cytoplasmic [Ca2+] (Fig. 3g), providing an
estimate of the Ca2+ accumulated in the stores. In Syn DA neurons
bath application of 10 µM CPA resulted in a lower Ca2+ transient
compared to WT neurons (Fig. 3g), suggesting lower Ca2+ content
in CPA-sensitive stores and impaired storing capacity that could
explain the cytosolic Ca2+ accumulation in Syn DA neurons.

These data confirm that α-syn overexpression leads to multiple
functional alterations in SNpc DA neurons that can overall
contribute to the observed age-dependent degeneration in older
animals27.

Central and peripheral inflammation in Syn rats. Given the link
between neuroinflammation and α-syn pathology in PD16,17,42,43,

we next investigated signs of neuroinflammation in 4-month-old
Syn rats. We focused on four different brain areas, the SNpc,
dorsolateral striatum, dorsal hippocampus and pontine nuclei, to
examine whether α-syn overexpression was associated with either
increased numbers or reactivity of astrocytes and microglia.
Analysis of glial fibrillary acidic protein-positive (GFAP+) astro-
cytes in Syn rats did not show differences in either cell number or
morphology compared to WT rats in any of the brain areas
(Fig. 4a, c, d and Supplementary Fig. 3). Instead, we observed an
increase in ionized calcium binding adaptor protein-positive
(Iba1+) microglia numbers in the SNpc, striatum (Fig. 4b) and
dorsal hippocampus of Syn rats, but microglia numbers were
unchanged in the pontine nuclei (Supplementary Fig. 4). The
increase in Iba1+ cell numbers was also accompanied by mor-
phological changes, whereby microglia displayed a higher degree of
complexity, increased number of intersections (Fig. 4e, f), thicker
and more branched processes, longer ramifications and increased
number of nodes compared to WT rats (Supplementary Fig. 4).

We next analysed the levels of several pro-inflammatory
(tumour necrosis factor, TNF-α; interferon-γ, IFN-γ; interleukins
IL-1β and IL-6) and anti-inflammatory (IL-10, IL-4 and IL-13)
cytokines in the cerebrospinal fluid (CSF) and plasma. Although
no detectable cytokines were found in the plasma of either 2- or 4-
month-old animals, we found higher levels of IFN-γ in the CSF of
Syn rats (Fig. 4g). This increase was age-dependent, being higher in
4- compared to 2-month-old Syn rats. Additionally, we observed a
trend for lower CSF levels of the anti-inflammatory IL-10 in Syn
rats (3.02 ± 1.10 pgml−1 in WT vs 0.50 ± 0.50 pgml−1 in 2-
month-old Syn rats, P= 0.143 with Mann–Whitney test; 4.48 ±
0.52 pgml−1 in WT vs 2.43 ± 0.57 pgml−1 in 4-month-old Syn
rats, P= 0.151 with Welch’s t-test).

Since α-syn and microglia via IFN-γ can interact to trigger DA
neuron loss in PD44–46, we tested the acute IFN-γ effect on
striatal DA release in 2-month-old slices, to investigate whether
the combined presence of the two pro-inflammatory triggers (α-
syn overexpression and IFN-γ) would accelerate the appearance
of deficits in 2-month-old animals that otherwise show normal
DA release (Fig. 1c). Incubation of striatal slices with IFN-γ
(100–200 ngml−1, for 3 h) caused a strong reduction in striatal
DA release in 2-month-old Syn rats that was comparable to that
seen in 4-month-old animals (Supplementary Fig. 5a), suggesting
that the cytokine can accelerate the appearance of DA release
deficits in Syn rats. IFN-γ had no effect on WT slices.

To investigate whether also peripheral immune events are
involved, we analysed the numbers of leukocytes in 4-month-old
rats using polychromatic flow cytometry (for gating strategy see
Supplementary Fig. 6a). While the numbers of granulocytes, T and
B lymphocytes remained unchanged between genotypes, mono-
cytes were significantly reduced in Syn rats (Fig. 4h) and showed

Fig. 2 Altered DA neuron electrophysiological properties in 4-month-old Syn rats. a Spontaneous firing in SNpc DA neurons from 4-month-old rats (scale:

2 min, 0.2 mV) and plots showing firing frequency (38 cells from 10 WT, 47 cells from 11 Syn; Mann–Whitney test, ***P < 1.00 × 10−4) and coefficient of

variation of interspike interval (35 cells from 10 WT, 45 cells from 11 Syn; Mann–Whitney test, **P= 0.002). b APs induced by depolarization (scale:

100ms; 20mV, 100 pA) from DA neurons held at −50 mV and mean (±s.e.m.) AP numbers (11 WT, 10 Syn neurons, 3 rats each; two-way repeated-

measures ANOVA: genotype×current, F4,76= 9.36, P < 1.00 × 10−4; current, F4,76= 116.6, P < 1.00 × 10−4; genotype, F1,19= 10.76, P= 0.004. WT vs Syn:

200 pA ***P < 1.00 × 10−4, 150 pA ***P= 4.00 × 10−4, 100 pA *P= 0.036, 50 pA P= 0.221 with Bonferroni’s). c Sub-threshold responses to

hyperpolarization (scale: 100ms; 10mV, 100 pA) and current/voltage plots (±s.e.m.; 11 WT, 10 Syn neurons, 3 rats each; two-way repeated-measures

ANOVA: genotype×current, F4,76= 1.64, P= 0.172; current, F4,76= 362.9, P < 1.00 × 10−4; genotype, F1,19= 1.26, P= 0.276. WT vs Syn: 0 pA P > 0.999,

−50 pA, P > 0.999, −100 pA, P > 0.999, −150 pA, P= 0.496, −200 pA, P= 0.411 with Bonferroni’s). d Cm (23 WT, 29 Syn neurons, 5 rats each: Welch’s

t-test P= 0.638). e Ih currents from DA neurons held at −60 mV and hyperpolarized in 20mV increments (scale: 200ms; 50mV, 200 pA). The activation

phase was fitted to 1–2 exponentials (dash line). The plots show Ih amplitude and weighted activation tau after hyperpolarization to −120 mV (24 WT, 22

Syn neurons, 8 rats each; amplitude: Welch’s t-test P= 0.886; tau: Mann–Whitney test P= 0.342). f AHC (scale: 100ms; 50mV, 50 pA), induced by

depolarization to 0mV. AHC trace area is designated by red dash lines and deactivation is obtained with exponential fits (12 WT, 21 Syn neurons, 4 rats

each; area: Welch’s t-test ***P= 3.00 × 10−4; tau: Mann–Whitney test *P= 0.013). Source data are provided as a Source Data file
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Fig. 3 DA sensitivity and intracellular [Ca2+] are altered in 4-month-old Syn DA neurons. a Extracellular recordings in SNpc DA neurons from 4-month-old

rats and response to 2min application of 30 µM DA (scale: 1 min, 0.2 mV). Expanded traces (scale: 1 s) show firing in control condition and during DA. The

plot shows the firing reduction (% of control) after DA (23 cells from 8 WT, 34 cells from 10 Syn; Mann–Whitney test ***P < 1.00 × 10−4). b DA currents

(30 μM, 2min) during voltage clamp (−60 mV; scale: 2 min, 20 pA) and mean (±s.e.m.) dose–response curves (18 cells from 8 WT, 18 cells from 7 Syn;

two-way ANOVA: genotype × concentration, F3,29= 0.66, P= 0.586; concentration, F3,29= 6.68, P= 0.001; genotype, F1,29= 8.63, P= 0.006; WT vs Syn:

1 µM, P > 0.999, 3 µM P= 0.175, 10 µM, **P= 0.007, 30 µM *P= 0.012 with Bonferroni’s). c Baclofen-mediated currents (10 µM, 3min; −60 mV; scale:
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Bonferroni’s). d Infrared videomicroscopy of a patched DA neuron and a Fura-2 ratiometric image (scale: 10 μm) showing variations in cytosolic [Ca2+].

The plot shows cytoplasmic [Ca2+] in DA neurons at −60 mV (23 WT, 26 Syn cells, 7 rats each; ***P < 1.00 × 10−4, Welch’s t-test). e Somatic Ca2+ at

−60 mV in control conditions and in the presence of Ca2+-free bath solution (scale: 2 min). The plot shows the level of [Ca2+] reduction (11 WT neurons

from 4 rats, 11 Syn neurons from 5 rats; P= 0.338 with Welch’s t-test). f [Ca2+] levels in DA neurons from slices incubated with isradipine (200 nM, 1 h;

10 WT, 6 Syn neurons, 3 rats each; ***P= 1.00 × 10−4 with Welch’s t-test. g Transient rise in fluorescence ratio following CPA application (10 µM; scale:

2 min) and plot showing smaller CPA-induced Ca2+ increase in Syn DA neurons (5 WT, 9 Syn neurons, 3 rats each; ***P= 0.001 with Mann–Whitney

test). Source data are provided as a Source Data file
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higher expression of the activation markers MHC-II and CD68
(Fig. 4i), suggesting a hyperactive, pro-inflammatory profile.

α-syn aggregation in Syn rats. Given that α-syn load induces
microglial activation or proliferation in PD16,17,42,43,47, we next

sought to analyse whether the region-specific inflammation in
Syn rats (microglia changes in the SNpc, striatum and hippo-
campus, but not in the pontine nuclei) could be correlated with
selective local aggregation of α-syn species. We used an antibody
against conformation-specific α-syn aggregates and fibrils (MJFR-
14-6-4-2) to estimate the amount of pathological α-syn in

g

C
S

F
 I
F

N
-γ

 (
p
g
 m

l–
1
)

0

200

400

600

***

Syn
4000

5000

6000

7000

9000
N

u
m

b
e
r 

o
f 
G

F
A

P
 c

e
lls

(S
N

p
c
) 

WT

8000

Syn

N
u
m

b
e
r 

o
f 
G

F
A

P
 c

e
lls

(s
tr

ia
tu

m
)

45,000

40,000

55,000

50,000

WT

a

e f
Striatum

WT

Syn

DAPI/Iba1

SNpc

WT

Syn

TH/Iba1

20 40 600

5

10

15

20

***
***

***

Radial distance 

from soma (µm)

N
u
m

b
e
r 

o
f 
in

te
rs

e
c
ti
o
n
s

6020 400

5

10

15

20

Radial distance 

from soma (µm)

N
u
m

b
e
r 

o
f 
in

te
rs

e
c
ti
o
n
s

***
***

***

c

TH/GFAP

SNpc

WT

Syn

Striatum

DAPI/GFAP

d

6020 400

4

8

12

Radial distance

from soma (µm)

N
u
m

b
e
r 

o
f 
in

te
rs

e
c
ti
o
n
s

20 40 600

4

8

12

Radial distance 

from soma (µm)

N
u
m

b
e
r 

o
f 
in

te
rs

e
c
ti
o
n
s

WT

Syn

*

***

***
***

4 months

Syn WT Syn

2 months

WT

Syn

N
u
m

b
e
r 

o
f 
Ib

a
1
 c

e
lls

(s
tr

ia
tu

m
)

50,000

0

150,000

100,000

WT

***
b

SynWT
4000

5000

6000

7000

9000

8000

N
u
m

b
e
r 

o
f 
Ib

a
1
 c

e
lls

(S
N

p
c
)

*

%
 o

f 
to

ta
l 
c
e
lls

6

8

12

14

10

56

60

64

68

18

20

24

26

22

3

4

6

7

5

WT
Syn

MonocytesGranulocytes T cells B cells

70

75

85

95

80

80

85

95

100

90

90

%
 p

o
s
it
iv

e
 m

o
n
o
c
y
te

s

MHC-II CD68

WT
Syn

h i

* ** **

WT
Syn

WT
Syn

WT
Syn

WT
Syn

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11928-w ARTICLE

NATURE COMMUNICATIONS | (2019) 10:3945 | https://doi.org/10.1038/s41467-019-11928-w |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


homogenates from midbrain, striatum, hippocampus, cortex and
pontine nuclei from 4-month-old animals (Fig. 5a). Pathological
α-syn accumulation was higher in all the examined areas in Syn
rats, apart from the pontine nuclei, a symmetrical picture to the
region-specific microglia response, suggesting that the local
pathological accumulation of α-syn might trigger the microglia
changes in our animal model.

Pro-resolution deficits in Syn rats. We next questioned whether
the early neuroinflammatory changes in Syn rats were also
associated with alterations in the resolution of inflammation, by
assessing the CSF and plasma levels of two major resolvins,
resolvin D1 (RvD1) and D2 (RvD2) (Fig. 6a). Four-month-old
Syn rats displayed higher CSF levels of RvD1 (left in Fig. 6b), but
not RvD2 (left in Fig. 6c), compared to aged-matched controls.
This increase was age-dependent since RvD1 levels were also
higher than 2-month-old Syn rats (left in Fig. 6b). Interestingly,
the RvD1 increase in the CSF of 4-month-old Syn rats was
coupled to marked reduction in the plasma (right in Fig. 6b).
Plasma levels of RvD2 showed no difference compared to WT,
despite an age-dependent increase (right in Fig. 6c). To better
understand how the resolvin changes in Syn rats are correlated
with the disease progression, we also measured RvD1 and RvD2

in 18-month-old rats, showing pronounced α-syn aggregation,
marked DA neuron degeneration, striatal denervation and strong
motor impairments27. RvD1 levels in the CSF and plasma of 18-
month-old Syn rats were much lower compared to aged-matched
WT (Fig. 6d; compare also with Fig. 6b). This time-course of
RvD1 in the CSF (showing normal levels at 2 months, increased
levels at 4 months and low levels in aged animals) suggests that
the boost in 4-month-old animals might account for a first
attempt to counteract the inflammation at its initial stages.
Contrary to RvD1, no differences were detected in RvD2 CSF or
plasma levels in 18-month-old rats (Fig. 6e).

RvD1 prevents inflammation, neuronal and motor deficits. An
efficient pro-resolution mechanism is critical for tissue home-
ostasis and for preventing chronic inflammation24–26. Thus, we
hypothesized that by chronically treating Syn animals with RvD1
(see Fig. 7a for treatment protocol) might limit the observed
deficits and prevent the onset of PD-like features in 4-month-old
rats. The dose and modality of the in-vivo RvD1 administration
was chosen according to literature48,49. Nonetheless, owing to
possible interference of plasma proteins and lipid metabolism, in
a separate animal group we assessed RvD1 bioavailability with
time-course analysis of plasma levels and calculation of

Fig. 4 Early neuroinflammatory responses in 4-month-old Syn rats. a GFAP+ cell numbers in SNpc and striatum (SNpc: 4 rats each, Mann-Whitney test

P= 0.886; striatum: 4 rats each, Welch’s t-test P= 0.837). b Iba1+ cell numbers in SNpc and striatum (SNpc: 4 rats each, Welch’s t-test *P= 0.044;

striatum: 5 rats each, ***P < 1.00 × 10−4 with Welch’s t-test). c, d TH/GFAP staining in SNpc (c) and DAPI/GFAP staining in striatum (d) of 4-month-old

rats (scale: 10 µm) and representative images of 3D-reconstructed astrocytes. The plots show number of intersections (±s.e.m.) in rats (c: 4 rats each; two-

way repeated-measures ANOVA: genotype × radial distance from soma, F6,36= 0.583, P= 0.742; genotype, F1,6= 0.621, P= 0.461; distance, F6,36=

194.8, P < 1.00 × 10−4; WT vs Syn for 0–60 µm: P > 0.05 with Bonferroni’s; d 4 rats each; two-way repeated-measures ANOVA: genotype×distance, F6,36

= 0.368, P= 0.895; genotype, F1,6= 0.039, P= 0.851; distance, F6,36= 253, P < 1.00 × 10−4; WT vs Syn for 0–60 µm: P > 0.05 with Bonferroni’s). See also

Supplementary Fig. 3. e, f TH/Iba1 staining in SNpc (e) and DAPI/Iba1 staining in the striatum (f) of 4-month-old rats (scale: 10 µm) and 3D-reconstructed

microglia. The plots show number of intersections (±s.e.m.) (e: 4 rats each; two-way repeated-measures ANOVA: genotype×distance, F6,36= 16.58, P <

1.00 × 10−4; genotype, F1,6= 17.05, P= 0.006; distance, F6,36= 132.2, P < 1 × 10−4; 10 μm ***P < 1 × 10−4, 20 μm ***P < 1 × 10−4, 30 μm ***P < 8 × 10−4,

with Bonferroni’s; f 4 rats each; two-way repeated-measures ANOVA: genotype×distance, F6,36= 11.99, P < 1 × 10−4; genotype, F1,6= 24.0, P= 0.003;

distance, F6,36= 257.9, P < 1 × 10−4; 10 μm ***P= 1 × 10−4, 20 μm ***P < 1 × 10−4, 30 μm ***P < 1 × 10−4, with Bonferroni’s). See also Supplementary Fig. 4.

g CSF IFN-γ levels in WT and Syn rats at the indicated ages (9 WT and 9 Syn rats per age; two-way ANOVA: genotype × age, F1,32= 1.95, P= 0.172;

genotype, F1,32= 33.44, P < 1.00 × 10−4; age, F1,32= 60.84, P < 1.00 × 10−4; WT 2-Syn 2 *P= 0.024, WT 2-WT 4 ***P= 5.00 × 10−4, WT 2-Syn 4 ***P <

1.00 × 10−4, Syn 2-Syn 4 ***P < 1.00 × 10−4, WT 4-Syn 4 ***P < 1.00 × 10−4 with Bonferroni’s). h Percentage of peripheral blood cells gated on live

leukocytes or on CD11b+ monocytes (5 WT, 4 Syn; granulocytes: P= 0.696; T-lymphocytes: P= 0.827; B-lymphocytes: P= 0.544; monocytes: *P= 0.019,

with Welch’s t-test). i Percentage of peripheral monocytes expressing MHC-II and CD68 (5 WT, 4 Syn; MHC-II: **P= 0.007; CD68: **P= 0.004, with

Welch’s t-test). Source data are provided as a Source Data file
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11928-w

8 NATURE COMMUNICATIONS | (2019) 10:3945 | https://doi.org/10.1038/s41467-019-11928-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


pharmacokinetics parameters. After a single injection (i.p., 0.2 μg
kg−1) the plasma concentration of RvD1 peaked at 1 h, stayed
almost constant at 3 h and returned to baseline after 36 h (Sup-
plementary Fig. 5b), indicating rapid distribution into the
bloodstream and elimination from the vascular compartment due
to metabolism and/or diffusion into the blood–brain barrier.

We then examined the effects of the 2-month RvD1 treatment
on microglia activation and morphology, IFN-γ levels, DA
neuron properties, nigrostriatal transmission and behaviour. Syn
rats treated with RvD1 showed reduced Iba1+ microglia numbers
compared to saline-treated animals both in the SNpc (Fig. 7b)
and striatum (Fig. 7c), whereas RvD1 had no effect on WT rats.
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P= 0.818 with Welch’s t-test). Source data are provided as a Source Data file
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RvD1 treatment could not restore Iba1+ numbers in the dorsal
hippocampus (Supplementary Fig. 8), yet in this area, as well as in
the SNpc and striatum, the microglia of RvD1-treated Syn rats
showed lower numbers of intersections, nodes and endings and
reduced length of processes compared to saline-treated animals
(Fig. 7d, e and Supplementary Figs. 7 and 8). Additionally, RvD1

treatment significantly reduced the CSF levels of IFN-γ in both
Syn and WT rats, cancelling the difference between genotypes
(Fig. 7f, compare with Fig. 4g). These data are supported by the
fact that, following the 2-month treatment, the RvD1 concentra-
tion was not only increased in the plasma but also in the CSF of
RvD1-treated rats (Supplementary Fig. 5c, d), indicating its ability
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to cross the blood–brain barrier. Of note, the treatment restored
peripheral monocyte levels in Syn rats (Fig. 7g), without affecting
the numbers of other cell populations (Supplementary Fig. 6b),
and reduced the expression of MHC-II and CD68 monocyte
activation markers (Fig. 7h), indicating that RvD1 can impact on
peripheral immune responses.

We next tested whether RvD1 could also prevent the functional
alterations in Syn animals. Unlike saline-treated Syn rats, RvD1-
treated animals showed normal DA neuron firing (Fig. 8a),
normal autoreceptor function following bath-applied DA
(Fig. 8b), reduced cytoplasmic Ca2+ levels (Fig. 8c) and improved
evoked DA release in striatal slices (Fig. 8d). These effects were
paralleled by the prevention of appearance of motor deficits.
Indeed, RvD1-treated Syn rats showed normal crossing into the
centre zone during an open field test (Fig. 8e) and improved
performance on the accelerating rotarod compared to saline-
treated Syn animals (Fig. 8f), overall indicating that the
potentiation of the RvD1 pathway can efficiently prevent the
neurophysiological and motor deficits in Syn rats.

Decreased endogenous RvD1 in early-PD patients. Since animal
models reproduce only partially the complexity of the human
pathology, to obtain a relevance of our results in humans we
sought to investigate whether early-PD patients present signs of
inflammation and changes in the pro-resolution pathway. Thus,
we analysed the levels of different cytokines, and of RvD1 and
RvD2 in the CSF and plasma of control subjects and early-PD
patients. Patients were defined as early-PD if they were newly-
diagnosed (symptom duration 13 ± 5 months), untreated (de
novo) and mildly affected (Hoehn and Yahr, H&Y scale 1.38 ±
0.18; see Table 1 and Supplementary Table 1 for more clinical
features). PD patients showed generally higher levels of IFN-γ,
TNF-α, IL-4 and IL-10 in CSF, although being significant only for
IL-4. Some cytokines such as IL-1β, IL-6 and TNF-α could not be
detected in any control subject (Fig. 9a). On the other hand, all
cytokines were detected in the plasma of PD patients and, overall,
PD patients displayed an increase in most of them, with IFN-γ
and IL-10 showing a significant variation compared to control
subjects (Fig. 9b). Importantly, RvD1 levels in both the CSF
and plasma were dramatically reduced in PD patients compared

to control subjects (Fig. 9c), while RvD2 levels were unchanged
(Fig. 9d).

Discussion
We report here that 4-month-old Syn rats—overexpressing the
human α-syn—are characterized by functional alterations in
SNpc DA neurons, reduced striatal DA outflow and subtle
motor deficits. These changes are age-dependent and precede DA
neuron degeneration, striatal denervation or severe motor
impairment. Importantly, they are associated with early neu-
roinflammation and alterations of RvD1, a lipid mediator
responsible for resolution of inflammation. RvD1-based impair-
ments were also seen in early-PD patients. Chronic treatment of
Syn animals with RvD1, starting from a stage preceding the
observed alterations, prevents the onset of PD by attenuating
neuroinflammation.

Our data confirm the hypothesis that human α-syn over-
expression leads to multiple functional alterations that can con-
tribute to SNpc DA neuron vulnerability and eventually lead to
progressive degeneration and overt motor deficits in older Syn
animals27 and in humans1. These functional deficits include
reduced neuronal excitability, alterations in K+ conductances
and increased apamin-sensitive AHC linked to higher somatic
[Ca2+]37–40 at a holding potential that prevented somatic spike
firing. Given the appealing hypothesis that links altered Ca2+

homeostasis with mitochondrial dysfunction and increased sus-
ceptibility of DA neurons in PD11,41,50, our data are of particular
relevance. At −60 mV we could not detect effects of isradipine on
the cytoplasmic [Ca2+] but this could be due to the fact that
L-type channels are mostly shut at near-resting conditions51. Of
note, our technique, combining somatic patch-clamp with
microfluorometry, does not permit to detect dendritic [Ca2+]
changes via L-type and other VGCCs, but this does not exclude
that Ca2+ entry from dendritic VGCCs during pacemaking52,53

might contribute to DA neuron dysfunction in Syn rats. None-
theless, our experiments highlight a reduced storing capacity of
the CPA-sensitive ER, likely being the reason for the high cyto-
plasmic [Ca2+] in 4-month-old Syn DA neurons. The reduced
storing capacity in Syn rats could be due to reduced SERCA
functioning and/or due to increased ER Ca2+ channel opening,
allowing Ca2+ to flow back to the cytoplasm. A more detailed

Fig. 7 RvD1 resolves neuroinflammation in 4-month-old Syn rats. a RvD1 treatment scheme (0.2 μg kg−1). Injections were performed twice a week for

2 months, starting from 2- and until 4 months of age. b, c Iba1+ numbers in SNpc (b) and striatum (c). (b: 6 WT/saline, 4 WT/RvD1; 6 Syn/saline, 4 Syn/

RvD1; ANOVA: genotype × treatment, F1,17= 5.25, P= 0.035; treatment, F1,17= 5.33, P= 0.034; genotype, F1,17= 2.69, P= 0.119; WT/saline-Syn/saline

*P= 0.047, Syn/saline-Syn/RvD1 *P= 0.022 with Bonferroni’s; c: 4 WT/saline, 4 WT/RvD1; 4 Syn/saline, 6 Syn/RvD1; ANOVA: genotype × treatment,

F1,14= 9.36, P= 0.009; treatment, F1,14= 4.59, P= 0.050; genotype, F1,14= 12.72, P= 0.003; WT/saline-Syn/saline **P= 0.003, WT/RvD1-Syn/saline

*P= 0.010, Syn/saline-Syn/RvD1 *P= 0.010 with Bonferroni’s). d, e TH/Iba1 staining in SNpc (d) and DAPI/Iba1 staining in striatum (e; scale, 10 µm)

and 3D-reconstructed microglia. Number of intersections (±s.e.m.) in SNpc (d: 4 rats each; repeated-measures ANOVA for WT: treatment×distance,

F6,36= 0.36, P= 0.898; treatment, F1,6= 0.71, P= 0.431; distance, F6,36= 283.9, P < 1.00 × 10−4; 0–60 μm P > 0.05 with Bonferroni’s; for Syn: treatment ×

distance, F6,36= 18.9, P < 1.00 × 10−4; treatment, F1,6= 27.1, P= 0.002; distance, F6,36= 130.7, P < 1.00 × 10−4; 10 μm ***P < 1.00 × 10−4, 20 μm ***P <

1.00 × 10−4, 30 μm **P= 0.003, with Bonferroni’s) and striatum (e: 4 rats each; repeated-measures ANOVA for WT: treatment × distance, F6,36= 0.26, P

= 0.951; treatment, F1,6= 0.21, P= 0.667; distance, F6,36= 94.82, P < 1.00 × 10−4; 0–60 μm P > 0.05 with Bonferroni’s; for Syn: treatment× distance, F6,36

= 5.72, P= 3.00 × 10−4; treatment, F1,6= 6.94, P= 0.039; distance, F6,36= 180.9, P < 1.00 × 10−4; 10 μm **P= 0.006, 20 μm ***P < 1.00 × 10−4, with

Bonferroni’s). See also Supplementary Fig. 7. f CSF IFN-γ levels (7 rats each; ANOVA: genotype×treatment, F1,24= 26.81, P < 1.00 × 10−4; treatment, F1,24

= 177.2, P < 1.00 × 10−4; genotype, F1,24= 58.79, P < 1.00 × 10−4; WT/saline-WT/RvD1 ***P < 1.00 × 10−4, WT/saline-Syn/saline ***P < 1.00 × 10−4, WT/

saline-Syn/RvD1 **P= 0.003, WT/RvD1-Syn/saline ***P < 1.00 × 10−4, Syn/saline-Syn/RvD1 ***P < 1.00 × 10−4 with Bonferroni’s). g Monocyte (% of

total blood cells) following treatment (4 WT/saline, 4 WT/RvD1; 3 Syn/saline, 3 Syn/RvD1; ANOVA: genotype×treatment, F1,10= 8.58, P= 0.015;

genotype, F1,10= 3.65, P= 0.085; treatment, F1,10= 4.69, P= 0.056; WT/saline-Syn/saline *P= 0.039, Syn/saline-Syn/RvD1 *P= 0.043 with

Bonferroni’s). h Percentage of MHC-II and CD68-expressing monocytes (4 WT/saline, 4 WT/RvD1; 3 Syn/saline, 3 Syn/RvD1; MHC-II: ANOVA:

genotype × treatment, F1,10= 6.20, P= 0.032; genotype, F1,10= 18.69, P= 0.002; treatment, F1,10= 9.653, P= 0.011; WT/saline-Syn/saline **P= 0.004,

WT/RvD1-Syn/saline **P= 0.002, Syn/saline-Syn/RvD1 *P= 0.025 with Bonferroni’s; CD68: ANOVA for genotype × treatment, F1,10= 7.05, P= 0.024;

genotype, F1,10= 4.51, P= 0.060; treatment, F1,10= 9.651, P= 0.011; WT/saline-Syn/saline *P= 0.042, WT/RvD1-Syn/saline *P= 0.025, Syn/saline-Syn/

RvD1 *P= 0.021 with Bonferroni’s). Source data are provided as a Source Data file
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investigation of the interplay between α-syn, Ca2+ buffering and
mitochondrial function in these animals would be of great
interest, particularly since α-syn can interfere with SERCA
function, resulting in dysregulation of cytosolic Ca2+ levels54.

The deficits in Syn rats appear at 2–4 months of age, meaning
that this time-window is ideal for studying the earliest effects of
α-syn overexpression. In fact, unlike many classic toxin-based PD
models that fail to effectively mimic the entirety of the human

disease55, the Syn model is particularly promising as it recapi-
tulates most PD features27,28, including early inflammation.
Indeed, our study extends previous findings on a link between
α-syn, microglia activation and cytokine production in other PD
models42–47, showing also that these processes occur at early
disease stages and are linked to alterations in the RvD1-mediated
mechanism of resolution of inflammation. This is in line with
evidence that α-syn-overexpressing neurons show altered
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polyunsaturated fatty-acid composition and that this process
modifies cell membrane fluidity56, that can affect the positioning
and mobility of membrane proteins and diverse cellular functions
such as receptor signalling, transporter function, channel con-
ductance and neurotransmitter release. Indeed, a reduction in
dopaminergic synaptic vesicle number and of DA levels can be
observed in the frontal cortex of rats fed with a diet deficient in
omega-3 fatty acids, especially in docosahexaenoic acid (DHA)57,
the precursor of RvD1 (Fig. 5a).

In our model the microglia response is precocious, region-
specific and involves morphological changes. Indeed, the activa-
tion of microglia in the midbrain, striatum and hippocampus of
Syn rats is strictly related to the pathological accumulation of α-
syn fibrils analysed with a conformation-specific antibody. Con-
versely, microglia remained unchanged/inactivated in the pontine
nuclei, a brain area showing lack of α-syn aggregation. These data
are in line with many other works showing that pathological α-
syn aggregation can trigger microglia activation in PD42,43,46,47.
However, given that a dot blot cannot discriminate between
intracellular or extracellular α-syn aggregation, our data are
insufficient to directly answer the question of whether the
microglia activation is due to extracellular α-syn aggregates

directly, or due to indirect effects such as neuronal dysfunction
following intracellular α-syn aggregation. Of note, although the
precise relationship between microglia morphological changes
and their pro-inflammatory status is controversial58, our results
indicate that α-syn overexpression induces a more hyper-ramified
phenotype that is typically associated with a pro-inflammatory
state, characterized by secretion of pro-inflammatory cytokines,
nitric oxide and chemokines59. Although our experiments do not
prove that IFN-γ is directly secreted from microglia, the parallel
trend between microglia responses and IFN-γ increase in Syn
animals suggests that α-syn overexpression is associated with a
microglial pro-inflammatory phenotype. Additionally, while IFN-
γ had no effect on WT slices, the combined presence of IFN-γ
with the overexpressed α-syn in Syn slices could accelerate the
appearance of deficits in striatal DA release at an age when, in the
absence of IFN-γ, DA release is normal. It could be that α-syn
accumulation is the trigger for IFN-γ–mediated inflammation.
However, further studies are needed to understand the precise
role of α-syn overexpression in microglia dysregulation.

The reduced numbers and more active state of monocytes in
Syn rats, which are among the main producers of resolvins, and
their full recovery following RvD1 treatment, suggest a role for
these peripheral cells in the pathogenesis of PD. Our data are in
line with other studies reporting peripheral inflammation in PD,
including changes in patients’ blood immune cells60–62. Of note,
the reduction of peripheral monocytes in Syn rats might explain
the increased Iba1+ cell numbers in SNpc, striatum and hippo-
campus, given that both resident microglia and infiltrated
monocyte-derived macrophages can express Iba1, in line with
recent evidence of monocyte, T- or B-cell infiltration in α-syn
based models63–66. Nonetheless, we cannot exclude other possible
explanations for blood monocyte reduction in Syn rats, including
cell death following inflammatory activation or re-mobilization
from primary/secondary lymphoid organs, including bone mar-
row and spleen, where they are recruited for clearance. Impor-
tantly, although no changes were observed in the numbers of
other peripheral immune cells, their role cannot be excluded
inasmuch as their involvement might entail functional rather
than numerical changes. Lack of apparent functional changes in
Syn rats could be due to selective variation of specific sub-
populations or simply due to the fact that they were analysed at
an early disease stage, when changes might not have occurred yet.

Fig. 8 RvD1 treatment prevents neuronal and motor deficits in 4-month-old Syn rats. a DA neuron firing in treated rats (scale: 2 s, 0.2 mV) and firing

frequency plots (14 WT/saline, 14 WT/RvD1 cells from 3 rats; 27 Syn/saline and 27 Syn/RvD1 cells from 4 rats; ANOVA for genotype × treatment, F1,78=

16.34, P= 1.00 × 10−4; genotype, F1,78= 10.04, P= 0.002; treatment, F1,78= 7.43, P= 0.008; WT/saline-Syn/saline ***P < 1.00 × 10−4, WT/RvD1-Syn/

saline ***P= 5.00 × 10−4, Syn/saline−Syn/RvD1 ***P < 1.00 × 10−4, with Bonferroni’s) and CV-ISI (14 WT/saline, 14 WT/RvD1 cells from 3 rats; 29 Syn/

saline and 27 Syn/RvD1 cells from 4 rats; ANOVA for genotype × treatment, F1,80= 12.58, P= 7.00 × 10−4; genotype, F1,80= 10.10, P= 0.002; treatment,

F1,80= 8.40, P= 0.005; WT/saline-Syn/saline *** P < 1.00 × 10−4, WT/RvD1-Syn/saline ***P= 3.00 × 10−4, Syn/saline-Syn/RvD1 ***P < 1.00 × 10−4,

with Bonferroni’s). b DA neuron firing (scale: 1 s, 0.2 mV) from treated rats before (CTRL) and during DA (30 µM, 2min) and plot showing % inhibition by

DA (14 WT/saline, 14 WT/RvD1 cells from 3 rats; 22 Syn/saline and 26 Syn/RvD1 cells from 4 rats; ANOVA for genotype × treatment, F1,72= 5.06, P=

0.028; genotype, F1,72= 4.38, P= 0.040; treatment, F1,72= 3.93, P= 0.051; WT/saline-Syn/saline *P= 0.021, WT/RvD1-Syn/saline *P= 0.035, Syn/

saline-Syn/RvD1 **P= 0.005, with Bonferroni’s). c Cytoplasmic [Ca2+] in DA neurons at −60 mV (11 WT/saline, 6 WT/RvD1 cells from 3 rats; 10 Syn/

saline, 7 Syn/RvD1 cells from 4 rats; ANOVA: genotype×treatment, F1,30= 21.5, P < 1.00 × 10−4; genotype, F1,30= 12.82, P= 0.001; treatment, F1,30=

19.08, P= 1.00 × 10−4; WT/saline-Syn/saline ***P < 1.00 × 10−4, WT/RvD1-Syn/saline ***P < 1.00 × 10−4, Syn/saline-Syn/RvD1 ***P < 1.00 × 10−4, with

Bonferroni’s). d Amperometric traces (scale: 500ms, 50 pA) and striatal DA release (49 WT/saline, 71 WT/RvD1 slices from 4 rats; 49 Syn/saline, 77

Syn/RvD1 slices from 4 rats; ANOVA: genotype×treatment, F1,242= 36.43, P < 1.00 × 10−4; genotype, F1,242= 90.56, P < 1.00 × 10−4; treatment, F1,242=

35.29, P < 1.00 × 10−4; WT/saline-Syn/saline ***P < 1.00 × 10−4, WT/RvD1-Syn/saline ***P < 1.00 × 10−4, Syn/saline-Syn/RvD1 ***P < 1.00 × 10−4, WT/

RvD1-Syn/RvD1 *P= 0.038 with Bonferroni’s). e Entries in centre zone during open field test in treated rats (16 WT/saline, 7 WT/RvD1, 15 Syn/saline and

7 Syn/RvD1 rats; two-way ANOVA for genotype×treatment, F1,41= 4.75, P= 0.035; genotype, F1,41= 0.85, P= 0.362; treatment, F1,41= 4.59, P= 0.038;

WT/saline-Syn/saline *P= 0.048, Syn/saline-Syn/RvD1 *P= 0.025, with Bonferroni’s). f Time performance in the accelerating rotarod (11 WT/saline, 9

WT/RvD1, 12 Syn/saline, 9 Syn/RvD1 rats; ANOVA: genotype × treatment, F1,37= 4.34, P= 0.044; genotype, F1,37= 43.04, P < 1.00 × 10−4; treatment,

F1,37= 3.64, P= 0.064; WT/saline-Syn/saline ***P < 1.00 × 10−4, WT/saline-Syn/RvD1 *P= 0.014, WT/RvD1-Syn/saline ***P < 1.00 × 10−4, WT/RvD1-

Syn/RvD1 *P= 0.030, Syn/saline-Syn/RvD1 *P= 0.043). Source data are provided as a Source Data file

Table 1 Clinical features of PD patients and control (CTRL)

subjects

PD CTRL

N 8 8

Age (± s.e.m.) 62.7 ± 2.6 62.6 ± 4.6

Sex (M/F) 6/2 5/3

Symptom duration at time of hospital

admission (months ± s.e.m.)

13 ± 5 Not applicable

MMSE score (±s.e.m.) 27 ± 0.60 27 ± 0.39

UPDRS III score (±s.e.m.) 24 ± 1.84 Not applicable

H&Y scale (±s.e.m.) 1.38 ± 0.18 Not applicable

TAU (pg ml−1 ± s.e.m.) 149.63 ± 5.70 197 ± 22.22

pTAU (pg ml−1 ± s.e.m.) 39.25 ± 1.58 50.00 ± 4.02

β40 (pg ml−1 ± s.e.m.) 1118 ± 48 1137 ± 52

β42 (pg ml−1 ± s.e.m.) 9338 ± 572 9441 ± 374

β40/β42 0.12 ± 0.00 0.13 ± 0.00

See Supplementary Table 1 for additional details
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Fig. 9 CSF and plasma cytokines and resolvins in PD patients and control subjects. a Quantification with ELISA of CSF levels of pro- and anti-inflammatory

cytokines in control subjects (CTRL) and PD patients (IFN-γ: 8 CTRL and 7 PD, P = 0.183; IL-1β: 6 CTRL and 7 PD, P > 0.999; IL-6: 8 CTRL and 7 PD, P =

0.467; TNF-α: 8 CTRL and 7 PD, P = 0.200; IL-4: 8 CTRL and 7 PD, **P = 0. 004; IL-10: 8 CTRL and 7 PD, P = 0. 294; IL-13: 8 CTRL and 7 PD, P = 0.436,

all with Mann–Whitney test). b Quantification with ELISA of plasma levels of cytokines in CTRL and PD patients (IFN-γ: 8 CTRL and 7 PD, *P = 0.013; IL-1β:

6 CTRL and 7 PD, P = 0.169; IL-6: 8 CTRL and 7 PD, P > 0.999; TNF-α: 8 CTRL and 7 PD, P = 0.200; IL-4: 8 CTRL and 7 PD, P = 0.121; IL-10: 8 CTRL and 7

PD, *P = 0. 013; IL-13: 8 CTRL and 7 PD, P = 0.515, all with Mann–Whitney test). c Quantification of CSF and plasma levels of RvD1 in CTRL and PD

patients (7 CTRL and 6 PD patients; CSF: *P = 0.049; Plasma: **P = 0.007, with two-tailed Welch’s t-test). d Quantification of CSF and plasma levels of

RvD2 in PD and CTRL patients. No differences were detected between the two groups (CSF: 8 CTRL and 8 PD patients; P = 0.936; Plasma: 8 CTRL and 7

PD patients P = 0.667, with two-tailed Welch’s t-test). Source data are provided as a Source Data file
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To conclude, the fact that RvD1 changes and immune cell var-
iations occur both in the blood and in the brain suggests that they
could be the result of synergistic peripheral and central immune
responses, or a yet-to-be demonstrated effect-and-cause rela-
tionship between the two phenomena.

Although candidate drugs targeting inflammation in PD can
attenuate behaviour deficits and/or DA neuron loss in animal
models, in clinical studies they only show moderate effects47. In
this context, our observation that RvD1 is altered in both Syn rats
and PD patients pinpoint the RvD1-mediated pathway as a novel
candidate to be investigated. The time-course of changes in RvD1
CSF levels in Syn rats (normal levels at 2 months, increased levels
at 4 months and low levels in aged animals) suggests that the
RvD1 boost in the CSF of 4-month-old rats could reflect an
attempt to fight inflammation at its initial stages, being a mole-
cule of early intervention against inflammation24–26. Our
experiments do not permit to discern why RvD1 levels drop so
drastically in older animals. This might be due to α-syn over-
expression interfering with RvD1 synthesis. For instance, α-syn
can interact with DHA and other polyunsaturated fatty acids,
dynamically altering their structural conformation67–69. Alter-
natively, the drop of RvD1 might be due to overall failure of the
immune system to chronically sustain high RvD1 levels. None-
theless, the reduction in plasma RvD1 levels led us to assume that
an early-starting administration of RvD1 could resolve the neu-
roinflammatory and behavioural alterations in 4-month-old rats.
Interestingly, RvD1 not only prevented changes in IFN-γ levels,
microglia activation and peripheral monocyte levels, but also
prevented functional deficits and motor impairments. The ability
of RvD1 to prevent α-syn-induced deficits is in line with the only
two other studies available in the literature, reporting a beneficial
effect of RvD1 and RvD2 in inhibiting inflammation and beha-
vioural effects in an MPP+-induced in vitro PD model and in a
lipopolysaccharide-induced rat model of PD, respectively70,71.

The RvD1 effects are likely mediated via the ALX/FPR2
receptor, expressed in both glial cells and neurons. This receptor’s
expression is heterogeneous and varies according to cell type,
brain area and even the pathologic state of the brain
tissue26,49,72,73, suggesting that both neurons and microglia could
mediate the protective effects of RvD1 either directly or indirectly
via release of soluble factors. Our previous finding of a RvD1-
mediated mechanism for halting neuroinflammation via activa-
tion of ALX/FPR2 receptor-regulated miRNAs49 suggests that
this circuit might also be involved in Syn rats. Although further
studies are needed to unravel such mechanisms and to evaluate
the long-term role of RvD1 in Syn rats, by examining its efficacy
at an older age when degeneration is detectable27, our study
suggests that early potentiation of the pro-resolving pathway
might represent a novel disease-modifying treatment, able to
delay or prevent neurophysiological and behavioural deficits.

Of note, the evidence that PD patients show peripheral and
central reduction in RvD1 levels allows to make a valuable
comparison between a common dysregulated inflammatory
pathway in rats and humans, where only RvD1 is altered in both
species. Indeed, the reduction of RvD1 in the blood and CSF of
PD patients is an almost symmetrical picture to what we observed
in 18-month-old Syn rats, but differs from the early increase of
CSF RvD1 observed in 4-month-old Syn animals. This highlights
the usefulness of the rat model, that allows for characterization of
earlier changes in RvD1 levels that would not be possible in
patients. Nonetheless, due to the complexity of the human dis-
ease, direct comparison of data from humans and rats should be
done cautiously. Importantly, the finding of RvD1 reduction in
PD patients strengthens our findings in the animal model, pro-
viding a translational significance. To the best of our knowledge,
ours is the first evidence of impairment in a specific pro-resolving

mediator in PD patients, that supports the notion that neuroin-
flammation in PD could be a consequence of disruption of the
resolution process. Indeed, other conditions characterized by
persistent or unresolved inflammation, including atherosclerosis,
chronic obstructive pulmonary disease, diabetes, rheumatoid
arthritis, Alzheimer’s and amyotrophic lateral sclerosis, are
associated with altered metabolism and function of pro-resolving
mediators26.

In conclusion, our study provides further proof of the critical
involvement of inflammation in PD but also sets the basis for
using RvD1 as a clinical biomarker of inflammation, also high-
lighting the translational potential of endogenous pro-resolving
mediators.

Methods
Animals and pharmacological treatment. Male homozygous BAC transgenic rats
(Sprague-Dawley background) overexpressing the full-length human SNCA locus
under the control of the endogenous human regulatory elements (Syn rats)27 and WT
Sprague-Dawley were used at different ages, as specified in the text. Experimental
animals were obtained by crossing heterozygous males with heterozygous female rats,
and were confirmed as WT or Syn following genotyping with quantitative PCR using
DNA from ear biopsies and the primers for copy numbers of the α-syn transgene:
SynProm-F: 5′-ccgctcgagcggtaggaccgcttgttttagac-3′ and LC-SynPromR: 5′-cctctttc
cacgccactatc-3′, normalized to the rat β-actin reference gene with primers: β-actin-F:
5′-agccatgtacgtagccatcca-3′ and β-actin-R: 5′-tctccggagtccatcacaatg-3′.

All experiments were carried out in line with the ethical guidelines of the
European Council Directive (2010/63/EU) and experimental approval was obtained
from the Italian Ministry of Health (protocol #528/2017PR).

For in vivo pharmacological treatment, animals were injected intraperitoneally
(i.p.) with either 17(S)-Resolvin D1 (RvD1; Cayman Chemicals; 0.2 μg kg−1)
dissolved in ethanol, or with 0.9% saline alone, twice a week for 8 consecutive
weeks, starting at 2 months of age. For RvD1 pharmacokinetics analysis, rats were
injected with a single dose of RvD1 (0.2 μg kg−1) and plasma was collected at
different time points post injection (0, 1, 3, 6, 24 and 36 h). RvD1 concentration
was measured as described below and different pharmacokinetics parameters were
calculated from the obtained Pearson’s correlation logarithmic curve.

Open field test. General motor activity (horizontal and vertical locomotor activity)
was evaluated in an open field (60 × 60 cm arena with a black floor and transparent
Plexiglass walls). Animals were habituated for 1 h to the testing room before the
beginning of the test. During the test, each animal was placed in the centre of the
arena and freely allowed to explore the apparatus for 10 min. Experiments were
recorded with a video camera suspended above the arena and data were analysed
with Smart PanLab (Harvard Apparatus). The parameters we evaluated were the
distance travelled and the entries in the central zone. The open field arena was
cleaned with 70% ethanol between sessions.

Rotarod test. Motor coordination and balance were tested using an accelerating
Rotarod (TSE Systems GmbH, Germany). The apparatus consisted of a rod sus-
pended horizontally at a height of 14 cm from the floor. During training, the rats
were accustomed by being placed on the rod rotating at low speed for at least 60 s.
During the test, the rod (6 cm in diameter) was accelerated from 4 to 40 rpm in
300 s and the latency to fall from the rod was measured with a cutoff time of 600 s.

Brain slice preparation. Acute brain slices were obtained following halothane
anaesthesia and decapitation. The brain was quickly removed and 250–300 µm
thick coronal slices containing the striatum or horizontal slices containing the
midbrain were cut with a Leica vibratome (VT1200S) using chilled bubbled (95%
O2, 5% CO2) ‘sucrose-based’ artificial CSF (aCSF) solution containing (in mM):
KCl3, NaH2PO4 1.25, NaHCO3 26, MgSO4 10, CaCl2 0.5, glucose 25, sucrose 185;
~300 mOsm, pH 7.4). Slices were used after a minimum 40 min recovery period in
normal aCSF solution containing (in mM): NaCl 126, KCl 2.5, NaH2PO4 1.2,
NaHCO3 24, MgCl2 1.3, CaCl2 2.4, glucose 10 (~290 mOsm, pH 7.4) at 32 °C.

Constant potential amperometry. Amperometric detection of electrically evoked
DA release was performed in acute brain slices containing the dorsal striatum.
Briefly, the DA-recording carbon fibre electrode (diameter 30 μm, length 100 μm,
World Precision Instruments) was positioned near a bipolar Ni/Cr stimulating
electrode, to a depth of 50–150 μm into the coronal slice. The imposed voltage
(MicroC potentiostat, World Precision Instruments) between the carbon fibre
electrode and the Ag/AgCl pellet was 0.55 V. For stimulation, a single rectangular
electrical pulse was applied using a DS3 Stimulator (Digitimer) every 5 min along a
range of stimulation intensities (20–1000 μA, 20–40 μs duration). In response to a
protocol of increasing stimulation74, a plateau of DA release was reached at
maximal stimulation (1000 μA, 40 μs). Signals were digitized with Digidata 1440 A
coupled to a computer running pClamp 10 (Molecular Devices). Electrode
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calibration was performed at the end of each experiment by bath-perfused DA
(0.3–10 μM).

For testing the acute effects of IFN-γ, striatal slices were incubated with
recombinant mouse IFN-γ (100–200 ng ml−1; R&D Systems) or aCSF for 3 h
before amperometric recordings.

The evoked release of DA by amphetamine was evaluated following bath
perfusion of 30 μM amphetamine dissolved in aCSF.

Electrophysiology and Ca2+ microfluorometry. A single horizontal midbrain
slice containing the SNpc was transferred in a recording chamber (volume ~0.6 ml)
on the stage of an upright microscope (Axioscop 2FS; Carl Zeiss, Germany) and
perfused with aCSF (2.5–4.0 ml min−1, 32 °C). Whole-cell patch-clamp and con-
ventional single-unit extracellular recordings were conducted on DA neurons in
the SNpc75. Briefly, for single-unit extracellular recordings, to evaluate the DA
neuron spontaneous firing activity, the SNpc DA neurons were identified using the
following criteria: (a) location along the ventral border of the medial lemniscus and
laterally to the medial terminal nucleus of the accessory optic tract; (b) slow
spontaneous firing; (c) long spike duration; d) transient inhibitory response to bath
application of DA (30 μM, 2min). Recordings were performed by slowly moving
an aCSF-filled recording electrode in the slice until firing was detected. Electrodes
were pulled from thin-wall filamented glass (TW150F4; World Precision Instru-
ments). Spikes were recorded using the I= 0 mode of a MultiClamp 700B amplifier
with high-pass (0.5 Hz) and low-pass filtering (1 kHz), digitized at 20 kHz sampling
rate with Digidata 1322 A and computer saved using pClamp9 (Molecular Devi-
ces). The instantaneous firing frequency from extracellular recordings was obtained
using the threshold method (pClamp9). The coefficient of variation was calculated
as the ratio of standard deviation/mean inter-spike interval (ISI), for each
recording. The sensitivity to DA in extracellular recordings was calculated as
percentage of mean instantaneous firing frequency reduction compared to the
control firing (before the start of DA application).

Patch-clamp recordings were performed with thin-wall pipettes (4–6 MΩ) filled
with a solution containing (in mM): 120 K-gluconate, 20 KCl, 10 HEPES, 2 MgCl2,
4 ATP-Mg2, 0.3 GTP-Na3, 0.2 EGTA (pH 7.2, ~280 mOsm). Whole-cell currents
(−60 mV, with MultiClamp 700B) were filtered at 3–4 kHz using the amplifier’s in-
built low-pass filter, digitized with Digidata 1322 A and computer-saved at a
sampling rate of four times the filter frequency. Upon membrane rupture, the cell’s
Cm was taken online from the membrane seal test function of pClamp 9 (−5 mV
step, 15 ms). Ih currents were induced by hyperpolarizing voltage steps (from −60
to −120 mV at −20 mV intervals, 1 s duration). After-hyperpolarization currents
(AHC) were recorded using a single depolarizing voltage step (from −60 to 0 mV,
100 ms) and measuring the area under the outward current. The activation (for Ih)
and deactivation kinetics (for AHC) were analysed with exponential fits. Currents
mediated by DA (1, 10, and 30 μM, 2 min bath application) or Baclofen (1 and
10 μM, 3 min) were analysed for peak amplitude.

In current-clamp mode, stepped current injections (600 ms, 50 pA increments,
from 200 to −200 pA) were used for obtaining action potential (AP) numbers at
supra-threshold responses and current/voltage plots at sub-threshold responses.
The threshold potential was taken from the maximum of the second derivative of
membrane potential by time, corresponding to the inflection point at the start of
the AP. Membrane resistance (Rm) was calculated from the slope after linear
regression of current/voltage curves. Sag ratio was the ratio of the steady-state
versus peak potential during sub-threshold responses to −200 pA current
injections. Current clamp recordings of current-induced spiking were obtained
from a resting membrane potential kept to −50 mV by current injection.

During all experiments, the membrane access resistance was repeatedly
monitored and recordings in which it exceeded over 25% were discarded. No liquid
junction potential correction was applied.

Measurements of intracellular free Ca2+ concentration were performed in
whole cell using pipettes (2–5 MΩ) filled with (mM): 145 K-gluconate, 0.1 CaCl2,
2 MgCl2, 10 HEPES, 0.75 mM EGTA, 0.25 Fura-2 K+ salt (ab142777, Abcam),
2 ATP-Mg2+ and 0.3 GTP-Na+ (pH 7.3, 280 mOsm). Cells were illuminated using
a monochromator-based system (Till Photonics), which provided 340 and 380 nm
excitation wave-lengths. Fluorescence ratios (R) were calculated by the specific
fluorescence values F340 and F380 emitted by ROI and background (BK) at 340 and
380 nm excitation wavelengths with the relationship:

R ¼ ðF340ROI� F340BKÞ=ðF380ROI� F380BKÞ ð1Þ

and were then converted to intracellular free Ca2+ concentration using the
relationship:

Ca2þ
� �

¼ KD ´ β ´ R� Rminð Þ= Rmax � Rð Þ ð2Þ

where KD is the effective Fura-2 dissociation constant (225 nM), β is the ratio of
380 nm excitation florescence at zero and saturating Ca2+ levels, Rmin and Rmax

values were obtained in situ by exposing perforated cells (1 μM ionomycin) to
Ca2+-free (0 mM Ca2+, 1 mM EGTA) and 3 mM Ca2+-containing bath solutions.

For experiments examining the basis of Ca2+ increase in Syn DA neurons, cells
were first bathed with normal aCSF to obtain the control levels of Ca2+ at −60 mV
and were then exposed to either Ca2+-free aCSF (to examine contribution of
VGCCs) or to 10 µM CPA (to examine ER stores) for at least 2 min. Experiments

with isradipine were performed in separate slices that were incubated for 1 h with
200 nM isradipine, to allow its diffusion within the lipid bilayer52.

Immunohistochemistry and immunofluorescence. Rats were deeply anesthetized
by i.p. injections of xylazine (Rompun; 20 mgml−1, 0.5 ml kg−1 Bayer) and tile-
tamine/zolazepam (Zoletil; 100 mgml−1, 0.5 ml kg−1; Virbac) and perfused
transcardially with 4% paraformaldehyde in phosphate buffer (PB; 0.1 M, pH 7.4).
The brains were removed and postfixed in paraformaldehyde at 4 °C and then
immersed in 30% sucrose solution at 4 °C until sinking. The brains were then cut
into 30-μm-thick coronal sections using a freezing microtome, to be used for
immunohistochemistry and immunofluorescence76,77.

Brain sections for immunohistochemistry were incubated at 4 °C with the
primary anti-TH antibody diluted in PB containing 0.3% Triton X-100. After
washing, sections were incubated with a biotinylated secondary antibody (Jackson
Immunoresearch Laboratories) followed by the avidin–biotin–peroxidase method
(Vectastain, ABC kit; Vector) and using chromogen 3,30-diaminobenzidine
(Sigma). Sections were counterstained with Nissl, dehydrated and coverslipped
with Entellan (Sigma). These sections were subsequently used for quantification of
TH+ and TH− neurons in the midbrain (see stereological cell count below).

For immunofluorescence (TH/GFAP, TH/Iba1, DAPI/GFAP, DAPI/Iba1),
brain sections were incubated overnight with primary antibodies in PB containing
0.3% Triton X-100 and then incubated for 2 h at room temperature with secondary
antibodies. For 3D reconstruction of Iba1 or GFAP cell, images were taken as Z-
stacks and these Z-stack images were then processed by maximum intensity
projection. All samples were acquired with the same laser settings. TH levels in the
dorsolateral striatum were quantified with ImageJ (http://imagej.nih.gov/ij/) as
mean fluorescence intensity (F) on a defined area (A).

Primary antibodies: TH (1:700, Millipore; MAB318; RRID: AB_2201528),
GFAP (1:200, DAKO, Z0334; RRID: AB_2314535), Iba1 (1:400, Wako #019-19741;
RRID: AB_839504). Secondary antibodies: Alexa Fluor 488 donkey anti-mouse IgG
(1:200; Thermo Fisher Scientific Cat# R37114, RRID: AB_2556542) and Alexa
Fluor 555 donkey anti-rabbit IgG (1:200; Thermo Fisher Scientific Cat# A-31572,
RRID: AB_162543). The sections were counterstained with DAPI and examined
under a confocal laser-scanning microscope (LSM700, Zeiss). The specificity of the
immunofluorescence labelling was confirmed by the omission of primary
antibodies and the use of normal serum instead (negative controls).

Sholl analysis. We analysed Iba1+ cells (microglia) and GFAP+ cells (astrocytes)
in the SNpc, striatum, dorsal hippocampus and pontine nuclei49. Cells were imaged
with an optical microscope (DMLB; Leica) equipped with a motorized stage and a
camera connected to Neurolucida 7.5 software (MicroBright-Field) that allowed for
quantitative 3D analysis of the entire cell compartment. Only cells that showed
intact processes unobscured by background labelling or other cells were included in
cell reconstructions. We evaluated the cell body area and perimeter, number of
intersections, number of nodes (branch points) and endings and total length of
processes. To account for changes in the cell’s complexity in relation to distance
from the soma, concentric circles (radii) were spaced 10 µm apart, originating from
the soma and the number of branch points and endings, processes that intersected
the radii and process length were measured as a function of the distance from the
cell soma for each radius. Overall, fifteen cells per animal were selected randomly
for analysis, and all data were subsequently averaged for each rat. Subsequently all
animals were averaged per experimental group (for the plots showing relationship
to radial distance from soma) or shown as individual points (for plots of soma area
and perimeter).

Dot blot. Animals were anaesthetized, decapitated and the brains regions of
interest were dissected and collected. Thus, sequential extraction of α-syn was
performed. Each sample was weighed and homogenized in freshly prepared, ice-
cold TBS consisting of 20 mM Tris-HCl, 150 mM NaCl, pH 7.4 and protease
inhibitor cocktail at 5:1 (TBS volume/brain wet weight) and homogenized. The
homogenate was spun at 175,000 × g in a TLA100.2 rotor on a Beckman TL
100 centrifuge. The supernatant (TBS extract) was stored at −80 °C.

For dot blot quantification of α-syn aggregates, 1 μg of tissue homogenate from
the specified regions and fractions was spotted in 1 μl volume onto 0.45 μm
nitrocellulose membranes. Immunoblotting analysis was performed using a
chemiluminescence detection kit. The relative levels of immunoreactivity were
determined by densitometry using the ImageJ software. Primary antibodies: anti-
Alpha-synuclein filament antibody [MJFR-14-6-4-2] (1:1,000, Abcam, ab209538;
RRID:AB_2714215); anti-Actin (1:60,000, Sigma-Aldrich, A5060; RRID:
AB_476738). For a full blot, see also the Sounce data file.

Stereological cell count. Stereological cell counting was performed for unbiased
estimates of total number of TH+ and TH− neurons in the SNpc and VTA78, as
well as for numbers of Iba1+ cells (microglia) and GFAP+ cells (astrocytes) in the
SNpc, striatum, dorsal hippocampus and pontine nuclei. Midbrain sections pro-
cessed for TH immunohistochemistry were used for bilateral cell counting or TH−

and TH+ neurons in the SNpc and VTA. The boundaries of these areas in the rat
brain were defined by TH staining and area distinction was performed according to
a rat brain atlas. Cell counting for GFAP+ or Iba1+ cells was done on slices
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processed by immunofluorescence (TH/GFAP, TH/Iba1, DAPI/GFAP, DAPI/Iba1;
see above).

Cell counting was performed by an optical fractionator stereological design
using the Stereo Investigator System (MicroBrightField Europe e.K.). A stack of
MAC 5000 controller modules (Ludl Electronic Products, Ltd) was interfaced with
an Olympus BX50 microscope with a motorized stage and a HV-C20 Hitachi
digital camera with a Pentium II PC workstation. A 3D optical fractionator
counting probe (x, y, z dimension of 50 × 50 × 25 μm) was applied. The brain areas
of VTA, SNpc, dorsolateral striatum, dorsal hippocampus or pontine nuclei were
outlined with a 5x objective and neurons were marked with a ×100 oil-immersion
objective. Neurons were considered positive for the cell marker if they showed
cytoplasmatic immunoreactivity. The total cell number for each brain area was
estimated according to the formula:

N ¼ SQ ´

1

ssf
´

1

asf
´

1

tsf
ð3Þ

where SQ is the number of neurons counted in all optically sampled fields of the
area of interest, ssf is the section sampling fraction, asf is the area sampling fraction
and tsf is the thickness sampling fraction.

Collection of rat CSF and plasma and flow cytometry. CSF (about 0.5 ml) and
blood (about 0.5 ml) sampling from rats was performed during deep anaesthesia
(200 mg kg−1 Rompun and 800 mg kg−1 Zoletil, i.p.) while the animal was posi-
tioned in a stereotaxic apparatus. A 23 G needle was inserted into the cisterna
magna for CSF collection without making any incision at this region. The non-
contaminated sample was drawn into the syringe by simple aspiration. Arterial
blood was sampled from the heart of the same animal. CSF and plasma samples
were stored at −80 °C until use.

For RvD1- or saline-treated rats, collection of CSF and plasma was performed
24 h after the last injection. For analysis of peripheral blood, cells were lysed with
1× red blood cell lysis buffer for 10 min at room temperature and then stained for
30 min at 4 °C with fluorochrome-conjugated antibodies: anti-granulocytes-FITC
(1:100, REA535, Miltenyi Biotec Cat# 130-108-119; RRID: AB_2651885), CD3-PE-
Vio770 (1:100, REA223, Miltenyi Biotec Cat# 130-103-772; RRID: AB_2657102),
CD45RA-PE (1:100, OX-33, Biolegend Cat# 202307; RRID: AB_314010), CD11b/
c-APC (1:100, clone REA325, Miltenyi Biotec Cat# 130-120-214; RRID:
AB_2752041), MHC-II-VioBlue (1:100, REA510, Miltenyi Biotec Cat# 130-107-
818; RRID: AB_2652891), CD68-APC-Vio770 (1:100, REA237, Miltenyi Biotec
Cat# 130-103-366; RRID: AB_2659019). All samples were re-suspended in running
buffer and 50,000 events were acquired on the Cytoflex (Beckman Coulter) flow
cytometer. Immune cell populations were gated as follows: granulocytes (anti-
granulocytes+), T cells (CD3+/CD45RA−), B cells (CD45RA+/CD3−) and
monocytes (CD11b/c+). The percentage of expression of MHC-II and CD68 was
then evaluated on CD11b/c+monocytes. Flow cytometry analysis was performed
using FMO for compensation for all fluorochromes and also with the respective
isotypes of the antibodies used and using Flowjo V8 software. Data are expressed as
% of cells positive for the given fluorochrome-conjugated antibodies within total
cells or within CD11b negative or CD11b positive cells.

Collection of human CSF and plasma. For collection of human CSF and plasma,
16 subjects (8 PD patients and 8 age-matched healthy controls) were consecutively
recruited at the Neurology Department of the Tor Vergata University Hospital
(Rome, Italy). PD was diagnosed according to the British Parkinson’s Disease
Society Brain Bank (UK-PDSBB) criteria. All PD patients were at early disease
stage and were also untreated (de novo, not taking levodopa, monoamine oxidase
inhibitors or DA receptor agonists). The control group included age-matched
subjects without degenerative and inflammatory diseases, not presenting motor or
cognitive disturbances (e.g. patients with psychogenic disorders). Exclusion criteria
for this study were: age younger than 50 or older than 80, dementia (Mini-Mental
State Examination, MMSE score < 24), treatment with anti-inflammatory drugs in
the last month, history of autoimmune/inflammatory diseases, cancer, thyroid
disorders, diabetes or any other acute condition. Ethical approval and guidelines
for the study protocol were obtained by the Tor Vergata University Hospital. All
enroled subjects, after signing an informed consent, underwent a diagnostic and
experimental study protocol including laboratory tests, full neurological exam-
ination, standard neuropsychological evaluation by MMSE, brain magnetic reso-
nance imaging and lumbar puncture for CSF analysis. PD patients were further
evaluated with the Unified Parkinson’s Disease Rating Scale (UPDRS) part III and
Hoehn and Yahr (H&Y) scale for motor signs.

Lumbar puncture was performed in the morning following standard procedures
and CSF (6–8 ml) samples was taken in polypropylene tubes without preservatives,
gently mixed, and immediately carried in ice to the central lab. The CSF samples
used for analysis were centrifuged at 2,000 rpm at 4 °C for 10 min, aliquoted in
polypropylene vials and stored at −80 °C until use. CSF samples containing >500
erythrocytes μl−1 were excluded. Blood samples were taken at the same time, to
evaluate the CSF/blood albumin ratio and blood–brain barrier integrity. Plasma
samples were collected in BD Vacutainer tubes (Becton Dickinson) using EDTA as
anti-aggregant, centrifuged at 3500 rpm for 5 min, transferred in vials and stored at
−80 °C until use. Levels of neurodegeneration biomarkers (Table 1), in particular
β-amyloid 1-42 and β-amyloid 1-40, total and phosphorylated tau were measured

in the CSF using commercially available kits (INNOTEST hTau, INNOTEST
phospho-tau for 181p, INNOTEST β-amyloid 1-40, Lumipulse G β-amyloid 1-42).

Detection of cytokines. The levels of cytokines in CSF and plasma from rats and
human subjects were measured by standard sandwich ELISA through custom-
made magnetic Luminex multiple assays (R&D Systems), according to the man-
ufacturer’s instructions and read on a Luminex200 (Life Technologies).

Detection of resolvins. The levels of RvD1 and RvD2 in CSF and plasma from rats
and human subjects were measured with quantitative competitive ELISA kits and
validated in Cayman’s EIA Buffer, based on the competition between free RvD1
Tracer and RvD1-specific rabbit antiserum binding sites49. The amount of RvD1or
RvD2 Tracers that were able to bind to the rabbit antiserums was inversely pro-
portional to the concentration of free RvD1 or RvD2 in the wells. The detection of
the rabbit antiserum-RvD1 or RvD2 was based on a modified sandwich ELISA and
the absorbance read between 405 and 420 nm of a VarioScan FLASH (Thermo
Scientific; assay sensitivity 15 pg ml−1).

Sample size, randomization and blinding. The number of samples in each group
and for each experiment was determined based on published studies. All rando-
mization was performed by assigning a random number to each animal and using a
random number table. All data were collected by researchers that were blind to the
genotype or pharmacological treatment of each animal.

Statistical analysis. All statistical analysis was performed with GraphPad Prism
(v7.00). Data comparing the two different age groups (behaviour, amperometry, IFN-
γ, RvD1 and RvD2 levels) were analysed by ordinary two-way analysis of variances
(ANOVA) with genotype (WT versus Syn) and age (2 versus 4 months) as inde-
pendent factors. Ordinary two-way ANOVA was also used for: TH+ and TH− cell
numbers in the SNpc and VTA (analysed for cell-type and genotype); amperometry
data with IFN-γ (analysed for genotype and slice treatment); dose response curves to
DA and Baclofen (analysed for genotype and drug concentration); all other data
following sub-chronic RvD1 treatment (analysed for genotype and treatment).

Two-way repeated measures ANOVA was used for: neuron excitability data
(AP plots, analysed for genotype and drive current) and current–voltage plots
(analysed for genotype and drive current); cell parameters obtained from Sholl
analysis (analysed for genotype and radial distance from soma for naïve animals, or
for treatment and radial distance for treated rats).

All post hoc comparisons following ANOVAs were assessed with
Bonferroni’s test.

The rest of the data (WT versus Syn rats or control versus PD patients) were
checked for normality using the Shapiro-Wilk and D’Agostino & Pearson
normality tests and analysed accordingly with two-tailed parametric or non-
parametric tests (Welch’s t-test or Mann–Whitney test, respectively). See figure
legends for more details. Values of P ≤ 0.05 were considered to be statistically
significant (shown in Figures as *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001). In figures,
in box-and-whisker plots the centre lines denote median values, edges are upper
and lower quartiles, whiskers show minimum and maximum values and points are
individual experiments. All other data are presented as mean ± s.e.m.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and analysed during the current study are available in the Source

Data file accompanying the paper; raw data can be obtained from the corresponding

author on request.

Received: 3 September 2018 Accepted: 12 August 2019
Published online: 02 September 2019

References
1. Schapira, A. H. V. & Tolosa, E. Molecular and clinical prodrome of

Parkinson disease: implications for treatment. Nat. Rev. Neurol. 6, 309–317
(2010).

2. Lee, V. M.-Y. & Trojanowski, J. Q. Mechanisms of Parkinson’s disease linked
to pathological alpha-synuclein: new targets for drug discovery. Neuron 52,
33–38 (2006).

3. Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene identified
in families with Parkinson’s disease. Science 276, 2045–2047 (1997).

4. Spillantini, M. G. et al. Alpha-synuclein in Lewy bodies. Nature 388, 839–840
(1997).

5. Singleton, A. B. et al. alpha-Synuclein locus triplication causes Parkinson’s
disease. Science 302, 841 (2003).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11928-w ARTICLE

NATURE COMMUNICATIONS | (2019) 10:3945 | https://doi.org/10.1038/s41467-019-11928-w |www.nature.com/naturecommunications 17

www.nature.com/naturecommunications
www.nature.com/naturecommunications


6. Chartier-Harlin, M.-C. et al. Alpha-synuclein locus duplication as a cause of
familial Parkinson’s disease. Lancet 364, 1167–1169 (2004).

7. Burbulla, L. F. et al. Dopamine oxidation mediates mitochondrial and
lysosomal dysfunction in Parkinson’s disease. Science 357, 1255–1261 (2017).

8. Liss, B. et al. K-ATP channels promote the differential degeneration of
dopaminergic midbrain neurons. Nat. Neurosci. 8, 1742–1751 (2005).

9. Mor, D. E. et al. Dopamine induces soluble α-synuclein oligomers and
nigrostriatal degeneration. Nat. Neurosci. 20, 1560–1568 (2017).

10. Sulzer, D. Multiple hit hypotheses for dopamine neuron loss in Parkinson’s
disease. Trends Neurosci. 30, 244–250 (2007).

11. Surmeier, D. J. Calcium, ageing, and neuronal vulnerability in Parkinson’s
disease. Lancet Neurol. 6, 933–938 (2007).

12. Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson’s disease: a target
for neuroprotection? Lancet Neurol. 8, 382–397 (2009).

13. McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are
positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s
disease brains. Neurology 38, 1285–1291 (1988).

14. Blum-Degen, D. et al. Interleukin-1 beta and interleukin-6 are elevated in the
cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients.
Neurosci. Lett. 202, 17–20 (1995).

15. Mogi, M. et al. Tumor necrosis factor-alpha (TNF-alpha) increases both in the
brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett.
165, 208–210 (1994).

16. Zhang, W. et al. Aggregated alpha-synuclein activates microglia: a process
leading to disease progression in Parkinson’s disease. FASEB J. 19, 533–542
(2005).

17. Béraud, D. et al. Microglial activation and antioxidant responses induced by
the Parkinson’s disease protein α-synuclein. J. Neuroimmune Pharm. 8,
94–117 (2013).

18. Lawson, L. J., Perry, V. H., Dri, P. & Gordon, S. Heterogeneity in the
distribution and morphology of microglia in the normal adult mouse brain.
Neuroscience 39, 151–170 (1990).

19. Kim, W. G. et al. Regional difference in susceptibility to lipopolysaccharide-
induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. 20,
6309–6316 (2000).

20. Maatouk, L. et al. TLR9 activation via microglial glucocorticoid receptors
contributes to degeneration of midbrain dopamine neurons. Nat. Commun. 9,
2450 (2018).

21. Ros-Bernal, F. et al. Microglial glucocorticoid receptors play a pivotal role in
regulating dopaminergic neurodegeneration in parkinsonism. Proc. Natl Acad.
Sci. USA 108, 6632–6637 (2011).

22. Marinova-Mutafchieva, L. et al. Relationship between microglial activation
and dopaminergic neuronal loss in the substantia nigra: a time course study in
a 6-hydroxydopamine model of Parkinson’s disease. J. Neurochem. 110,
966–975 (2009).

23. Gao, H.-M. et al. Neuroinflammation and oxidation/nitration of alpha-
synuclein linked to dopaminergic neurodegeneration. J. Neurosci. 28,
7687–7698 (2008).

24. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution
physiology. Nature 510, 92–101 (2014).

25. Serhan, C. N. et al. Novel functional sets of lipid-derived mediators with
antiinflammatory actions generated from omega-3 fatty acids via
cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular
processing. J. Exp. Med. 192, 1197–1204 (2000).

26. Chiurchiù, V., Leuti, A. & Maccarrone, M. Bioactive lipids and chronic
inflammation: managing the fire within. Front. Immunol. 9, 38 (2018).

27. Nuber, S. et al. A progressive dopaminergic phenotype associated with
neurotoxic conversion of α-synuclein in BAC-transgenic rats. Brain J. Neurol.
136, 412–432 (2013).

28. Kohl, Z. et al. Severely impaired hippocampal neurogenesis associates with an
early serotonergic deficit in a BAC α-synuclein transgenic rat model of
Parkinson’s disease. Neurobiol. Dis. 85, 206–217 (2016).

29. Janezic, S. et al. Deficits in dopaminergic transmission precede neuron loss
and dysfunction in a new Parkinson model. Proc. Natl Acad. Sci. USA 110,
E4016–4025 (2013).

30. Seutin, V., Massotte, L., Renette, M. F. & Dresse, A. Evidence for a modulatory
role of Ih on the firing of a subgroup of midbrain dopamine neurons.
Neuroreport 12, 255–258 (2001).

31. Neuhoff, H., Neu, A., Liss, B. & Roeper, J. I(h) channels contribute to the
different functional properties of identified dopaminergic subpopulations in
the midbrain. J. Neurosci. 22, 1290–1302 (2002).

32. Lacey, M. G., Mercuri, N. B. & North, R. A. On the potassium conductance
increase activated by GABAB and dopamine D2 receptors in rat substantia
nigra neurones. J. Physiol. 401, 437–453 (1988).

33. Beckstead, M. J., Grandy, D. K., Wickman, K. & Williams, J. T. Vesicular
dopamine release elicits an inhibitory postsynaptic current in midbrain
dopamine neurons. Neuron 42, 939–946 (2004).

34. Cruz, H. G. et al. Bi-directional effects of GABA(B) receptor agonists on the
mesolimbic dopamine system. Nat. Neurosci. 7, 153–159 (2004).

35. Lacey, M. G., Mercuri, N. B. & North, R. A. Two cell types in rat substantia
nigra zona compacta distinguished by membrane properties and the actions of
dopamine and opioids. J. Neurosci. 9, 1233–1241 (1989).

36. Xia, X. M. et al. Mechanism of calcium gating in small-conductance calcium-
activated potassium channels. Nature 395, 503–507 (1998).

37. Wolfart, J. & Roeper, J. Selective coupling of T-type calcium channels to SK
potassium channels prevents intrinsic bursting in dopaminergic midbrain
neurons. J. Neurosci. 22, 3404–3413 (2002).

38. Seutin, V., Mkahli, F., Massotte, L. & Dresse, A. Calcium release from internal
stores is required for the generation of spontaneous hyperpolarizations in
dopaminergic neurons of neonatal rats. J. Neurophysiol. 83, 192–197 (2000).

39. Yoshizaki, K. et al. Ca(2+)-induced Ca2+ release and its activation in
response to a single action potential in rabbit otic ganglion cells. J. Physiol.
486, 177–187 (1995).

40. Fiorillo, C. D. & Williams, J. T. Glutamate mediates an inhibitory postsynaptic
potential in dopamine neurons. Nature 394, 78–82 (1998).

41. Guzman, J. N. et al. Oxidant stress evoked by pacemaking in dopaminergic
neurons is attenuated by DJ-1. Nature 468, 696–700 (2010).

42. Su, X. et al. Synuclein activates microglia in a model of Parkinson’s disease.
Neurobiol. Aging 29, 1690–1701 (2008).

43. Kim, C. et al. Neuron-released oligomeric α-synuclein is an endogenous
agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4, 1562
(2013).

44. Mount, M. P. et al. Involvement of interferon-gamma in microglial-mediated
loss of dopaminergic neurons. J. Neurosci. 27, 3328–3337 (2007).

45. Main, B. S. et al. Type-1 interferons contribute to the neuroinflammatory
response and disease progression of the MPTP mouse model of Parkinson’s
disease. Glia 64, 1590–1604 (2016).

46. Austin, S. A., Floden, A. M., Murphy, E. J. & Combs, C. K. Alpha-synuclein
expression modulates microglial activation phenotype. J. Neurosci. 26,
10558–10563 (2006).

47. Sanchez-Guajardo, V., Tentillier, N. & Romero-Ramos, M. The relation
between α-synuclein and microglia in Parkinson’s disease: recent
developments. Neuroscience 302, 47–58 (2015).

48. Chiurchiù, V. et al. Proresolving lipid mediators resolvin D1, resolvin D2, and
maresin 1 are critical in modulating T cell responses. Sci. Transl. Med. 8,
353ra111 (2016).

49. Bisicchia, E. et al. Resolvin D1 halts remote neuroinflammation and improves
functional recovery after focal brain damage via ALX/FPR2 receptor-regulated
microRNAs. Mol. Neurobiol. 55, 6894–6905 (2018).

50. Mosharov, E. V. et al. Interplay between cytosolic dopamine, calcium, and
alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62,
218–229 (2009).

51. Philippart, F. et al. Differential somatic Ca2+ channel profile in midbrain
dopaminergic neurons. J. Neurosci. 36, 7234–7245 (2016).

52. Guzman, J. N., Sánchez-Padilla, J., Chan, C. S. & Surmeier, D. J. Robust
pacemaking in substantia nigra dopaminergic neurons. J. Neurosci. 29,
11011–11019 (2009).

53. Khaliq, Z. M. & Bean, B. P. Pacemaking in dopaminergic ventral tegmental
area neurons: depolarizing drive from background and voltage-dependent
sodium conductances. J. Neurosci. 30, 7401–7413 (2010).

54. Betzer, C. et al. Alpha-synuclein aggregates activate calcium pump SERCA
leading to calcium dysregulation. EMBO Rep. 19, e44617 (2018).

55. Beal, M. F. Parkinson’s disease: a model dilemma. Nature 466, S8–10 (2010).
56. Sharon, R., Bar-Joseph, I., Mirick, G. E., Serhan, C. N. & Selkoe, D. J. Altered

fatty acid composition of dopaminergic neurons expressing alpha-synuclein
and human brains with alpha-synucleinopathies. J. Biol. Chem. 278,
49874–49881 (2003).

57. Zimmer, L., Durand, G., Guilloteau, D. & Chalon, S. n-3 polyunsaturated fatty
acid deficiency and dopamine metabolism in the rat frontal cortex. Lipids 34,
S251 (1999).

58. Nayak, D., Roth, T. L. & McGavern, D. B. Microglia development and
function. Annu. Rev. Immunol. 32, 367–402 (2014).

59. Benarroch, E. E. Microglia: multiple roles in surveillance, circuit shaping, and
response to injury. Neurology 81, 1079–1088 (2013).

60. Smith, A. M. et al. Mitochondrial dysfunction and increased glycolysis in
prodromal and early Parkinson’s blood cells. Mov. Disord. 33, 1580–1590
(2018).

61. Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize α-
synuclein peptides. Nature 546, 656–661 (2017).

62. Kobo, H. et al. Down-regulation of B cell-related genes in peripheral blood
leukocytes of Parkinson’s disease patients with and without GBA mutations.
Mol. Genet. Metab. 117, 179–185 (2016).

63. Harms, A. S. et al. α-Synuclein fibrils recruit peripheral immune cells in the rat
brain prior to neurodegeneration. Acta Neuropathol. Commun. 5, 85 (2017).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11928-w

18 NATURE COMMUNICATIONS | (2019) 10:3945 | https://doi.org/10.1038/s41467-019-11928-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


64. Harms, A. S. et al. Peripheral monocyte entry is required for alpha-Synuclein
induced inflammation and neurodegeneration in a model of Parkinson
disease. Exp. Neurol. 300, 179–187 (2018).

65. Peralta Ramos, J. M. et al. Peripheral inflammation regulates CNS immune
surveillance through the recruitment of inflammatory monocytes upon
systemic α-Synuclein administration. Front. Immunol. 10, 80 (2019).

66. Theodore, S., Cao, S., McLean, P. J. & Standaert, D. G. Targeted
overexpression of human alpha-synuclein triggers microglial activation and an
adaptive immune response in a mouse model of Parkinson disease. J.
Neuropathol. Exp. Neurol. 67, 1149–1158 (2008).

67. De Franceschi, G. et al. Structural and morphological characterization of
aggregated species of α-synuclein induced by docosahexaenoic acid. J. Biol.
Chem. 286, 22262–22274 (2011).

68. Perrin, R. J., Woods, W. S., Clayton, D. F. & George, J. M. Interaction of
human alpha-Synuclein and Parkinson’s disease variants with phospholipids.
Structural analysis using site-directed mutagenesis. J. Biol. Chem. 275,
34393–34398 (2000).

69. Sharon, R. et al. The formation of highly soluble oligomers of alpha-synuclein
is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37,
583–595 (2003).

70. Tian, Y., Zhang, Y., Zhang, R., Qiao, S. & Fan, J. Resolvin D2 recovers neural
injury by suppressing inflammatory mediators expression in
lipopolysaccharide-induced Parkinson’s disease rat model. Biochem. Biophys.
Res. Commun. 460, 799–805 (2015).

71. Xu, J., Gao, X., Yang, C., Chen, L. & Chen, Z. Resolvin D1 attenuates Mpp+
-induced Parkinson disease via inhibiting inflammation in PC12 cells. Med.
Sci. Monit. 23, 2684–2691 (2017).

72. Wang, G. et al. Formylpeptide receptors promote the migration and
differentiation of rat neural stem cells. Sci. Rep. 6, 25946 (2016).

73. Zhang, L. et al. Formyl peptide receptors promotes neural differentiation in
mouse neural stem cells by ROS generation and regulation of PI3K-AKT
signaling. Sci. Rep. 7, 206 (2017).

74. Federici, M. et al. Paradoxical abatement of striatal dopaminergic transmission
by cocaine and methylphenidate. J. Biol. Chem. 289, 264–274 (2014).

75. Krashia, P. et al. On the properties of identified dopaminergic neurons in the
mouse substantia nigra and ventral tegmental area. Eur. J. Neurosci. 45,
92–105 (2017).

76. Nobili, A. et al. Ambra1 shapes hippocampal inhibition/excitation balance:
role in neurodevelopmental disorders. Mol. Neurobiol. 55, 7921–7940 (2018).

77. Cordella, A. et al. Dopamine loss alters the hippocampus-nucleus accumbens
synaptic transmission in the Tg2576 mouse model of Alzheimer’s disease.
Neurobiol. Dis. 116, 142–154 (2018).

78. Nobili, A. et al. Dopamine neuronal loss contributes to memory and reward
dysfunction in a model of Alzheimer’s disease. Nat. Commun. 8, 14727 (2017).

Acknowledgements
N.B.M. was supported by the Italian Ministry of Health (Research Grant: RF-2018-

12365509) and by the ONLUS Foundations ‘Fondazione Baroni’ and ‘Fondazione il

Fulcro’. M.D.A. was supported by grants from the Italian Ministry of Health (Young

Investigator’s Award: GR-2011-02351457; Research Grant: RF-2018-12365527) and from

the Alzheimer’s Association (Grant: AARG-18-566270). V.C. was supported by the

Italian Multiple Sclerosis Foundation (Grant: FISM 2017/R/8) and by the Italian

Ministry of Health (Young Investigator’s Award: GR-2016-02362380). C.N.S. was

supported by the National Institutes of Health (Grant: R01GM38765). A.N. and P.K.

were supported by Post-doctoral Fellowships by the Collegio Ghislieri and the Veronesi

Foundation, respectively. We thank Drs Riviello and Wirz for their assistance with

animal caring.

Author contributions
A.C., P.K., V.C., M.D.A. and N.B.M. conceived and designed the study; L.L.B., A.N. and

M.T.V. designed and carried out the immunohistochemistry, immunofluorescence, dot

blots, DA neuron counting and Sholl analysis experiments; M.D.A. and M.T.V. super-

vised these experiments; M.T.V. and A.L. carried out CSF and blood collection from rats;

A.C., M.F., P.K. and F.V. designed and performed electrophysiological/amperometric

recordings; N.B.M. supervised the electrophysiology experiments; B.P., V.G., F.C., G.A.,

G.M. and G.N., V.Cal. designed and performed the behavioural experiments; P.C.

supervised the behavioural experiments; N.C. and O.R. provided the rats; V.C. and A.L.

designed and performed detection of cytokines and resolvins, performed the pharma-

cokinetics analysis and immunological phenotyping, analysed and interpreted the

immunological data; G.D.L., T.S., G.S.C., S.B. and A.P. recruited patients, performed

medical examinations and diagnosis, and CSF and blood collection. P.K., A.C., V.C.,

M.D.A. and N.B.M. wrote the manuscript. C.N.S. provided scientific suggestions and

revised the manuscript. All authors discussed results and commented on the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-

019-11928-w.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

Peer review information: Nature Communications thanks Marina Romero-Ramos,

David Standaert and other anonymous reviewer(s) for their contribution to the peer

review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11928-w ARTICLE

NATURE COMMUNICATIONS | (2019) 10:3945 | https://doi.org/10.1038/s41467-019-11928-w |www.nature.com/naturecommunications 19

https://doi.org/10.1038/s41467-019-11928-w
https://doi.org/10.1038/s41467-019-11928-w
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson’s disease
	Results
	Early reduction of striatal DA in Syn rats
	Altered properties of SNpc DA neurons in Syn rats
	Central and peripheral inflammation in Syn rats
	α-syn aggregation in Syn rats
	Pro-resolution deficits in Syn rats
	RvD1 prevents inflammation, neuronal and motor deficits
	Decreased endogenous RvD1 in early-PD patients

	Discussion
	Methods
	Animals and pharmacological treatment
	Open field test
	Rotarod test
	Brain slice preparation
	Constant potential amperometry
	Electrophysiology and Ca2+ microfluorometry
	Immunohistochemistry and immunofluorescence
	Sholl analysis
	Dot blot
	Stereological cell count
	Collection of rat CSF and plasma and flow cytometry
	Collection of human CSF and plasma
	Detection of cytokines
	Detection of resolvins
	Sample size, randomization and blinding
	Statistical analysis
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Additional information


