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BLUR IDENTIFICATION BASED ON HIGHER ORDER SPECTRAL NULLS

Andreas E. Savakis and Roger L. Easton Jr.**

*
DepartmentofPhysiology, Box 642 **Center for Imaging Science

University of Rochester Medical Center Rochester Institute of Technology
Rochester, New York 14642 Rochester, New York 14623

Abstract

The identification of the point spread function (PSF) from the degraded image data constitutes an
important first step in image restoration that is known as blur identification. Though a number of
blur identification algorithms have been developed in recent years, two of the earlier methods
based on the power spectrum and power cepstrum remain popular, because they are easy to
implement and have proved to be effective in practical situations. Both methods are limited to
PSF's which exhibit spectral nulls, such as due to defocused lens and linear motion blur. Another
limitation of these methods is the degradation of their performance in the presence of observation
noise. The central slice of the power bispectrum has been employed as an alternative to the
power spectrum which can suppress the effects of additive Gaussian noise. In this paper, we
utilize the bicepstrum for the identification of linear motion and defocus blurs. We present
simulation results where the performance of the blur identification methods based on the
spectrum, the cepstrum, the bispectrum and the bicepstrum is compared for different blur sizes
and signal-to-noise ratio levels.

1. INTRODUCTION

The estimation of the point spread function (PSF) from the degraded image is often required in
image restoration and is known as blur identification. The blur identification problem has
received considerable attention in recent years [1 -7]. However, two of the earliest blur
identification methods based on the power spectrum [8] and power cepstrum [9] are still widely
used despite the development of more sophisticated algorithms. The popularity of the spectral
and cepstral methods is partly due to their effectiveness when dealing with certain types of blurs,
and partly due to their simplicity which results in easy implementation.

Spectral and cepstral methods can only be used to identify PSF's which exhibit periodic or nearly
periodic spectral nulls such as linear motion and out-of-focus blurs. In addition, they do not
consider the observation noise explicitly. When the signal-to-noise ratio (SNR) level is low, the
noise power spectrum obscures the spectral nulls of the degraded image and reduces the
performance of these methods. In practice, many sections of the degraded image are averaged to
reduce the effects of noise on the power spectral estimate. Blur identification using the
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bispectrum was proposed as an alternative to the power spectrum which performs better in the
presence of additive Gaussian noise [10]. It was shown that the two-dimensional central slice of
the bispectrum is sufficient for blur identification purposes, thus an efficient implementation was
obtained.

In this paper, the bicepstrum is used for the identification of blurs which exhibit periodic nulls in
the central slice of the bispectrum. The bicepstrum utilizes the bispectrum and thus inherits
superior performance in the presence of additive Gaussian noise. Furthermore, it can be
implemented without user intervention, since blur parameter estimation is based on the global
maximum rather than a local minimum. We present simulation results where we compare the
blur identification performance of the power spectrum, power cepstrum, bispectrum, and
bicepstrum for different blur sizes and SNR levels.

2. BLUR IDENTIFICATION BASED ON SPECTRAL NULLS

2.1 Image and PSF Models

The degraded image is modeled using a space-invariant linear degradation model:

g(i,j) =h(i,j)**f(i,j)+n(i,j) (1)

where ** denotes two-dimensional convolution and g(i, j) f(i, j) h(i, j) and n(i, j) represent
the original image, the point spread function, and the additive signal-independent Gaussian noise,
respectively. Spectral and cepstral methods do not assume a particular model for the original
image, but they require the presence of periodic or nearly periodic zeros in the power spectrum of
the PSF. This condition is met by some commonly encountered blurs, such as due to uniform
linear motion and out-of-focus lens. The linear motion PSF is modeled by a rectangle oriented in
the direction of motion. The frequency response of the linear motion blur has the shape of a sinc
function in the direction that the motion occurred. Thus, the spectral nulls of the linear motion
blur are periodic. The PSF due to out-of-focus lens with circular aperture is modeled by a
uniform disk. The frequency response of the out-of-focus PSF is circularly symmetric with nulls
occurring at concentric circles which are nearly periodic.

2.2 The Power Spectrum

In the frequency domain, the relationship between the power spectra in (1) becomes

Pg(u,v)1H(u,v)12 Pj(u,v)+ P(u,v) (2)

where H(u, v) is the magnitude of the Fourier transform of the PSF, and Pg(U, v), P1 (u, v), and

P, (u, v) are the power spectra of the degraded image, original image, and noise respectively.
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Spectral methods are based on the assumptions that the noise power spectrum is negligible and
the spectral nulls in the power spectrum ofthe degraded image are exclusively due to the PSF. In
practice, the noise level is not negligible, and the PSF spectral nulls appear as local minima in the
power spectrum of the degraded image. The image power typically is concentrated in the lower
frequencies, while the noise power spectrum is relatively flat, thus, the SNR is considerably
lower in the higher frequencies. As a result, only the first prominent local minimum is used to
identify the blur parameters. Sectioning and averaging is needed to reduce the noise power
spectrum. The averaged periodogram is used to obtain the power spectral estimate of the
recorded image [1 1]:

p(M)(uv) =--G(u,v) (5)

where M is the total number of sections which are averaged, and G(u,v) is the Fourier transform

of the kthdata section. The data is windowed to reduce the effects of the window sidelobes and
data discontinuities at the edges.

2.3 The Power Cepstrum

The use of the power cepstrum for blur identification [9] is based on the presence of periodic or
nearly periodic nulls in the PSF power spectrum, which result in periodic local minima in the
degraded image power spectrum. The power cepstrum is defined as

—1

Cg(p,q)cY {log[Pg(u,v)]} (6)

where 5r1 denotes the inverse Fourier Transform operator. The logarithm of the power
spectrum yields large negative spikes at the locations of the local minima of the power spectrum.
The periodicity of the spikes is detected by taking the inverse Fourier transform.

Blur identification using the power cepstrum provides some advantages over the power spectrum.
First, it is easy to automatically detect the global maximum in the power cepstrum, as opposed to
the first prominent local minimum in the power spectrum. In addition, the power cepstrum is
based on multiple spectral nulls, so that even if there is an error due to noise in the location of the
first local minimum in the power spectrum, it is possible to obtain the correct PSF estimate using
the power cepstrum. Finally, postprocessing may be used to enhance the power cepstrum. There
are often spurious peaks in the cepstrum due to the presence of noise. At low SNR levels the
spurious peaks increase and may obscure the cepstral peak due to the blur. The effects of the
unwanted peaks may be reduced using the approach of [12] which takes advantage of the
presence of rahmonics (cepstral domain harmonics) associated with the true cepstral peak. The
quefrencies (cepstral domain frequencies) which exhibit rahmonics are enhanced because they
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are more likely to be due to the PSF. The quefrencies which do not have rahmonics are
suppressed because they are more likely to be due to noise. Due to averaging the cepstrum is
reduced to a one-dimensional signal which is processed as follows:

C1(p) = C(p)
, (7)

I-qEA

where M is the number of points in A, where A is the set of points where rahmonics are not

expected. For quefrency p, the set A consists of points {q: q > p and
q (/qi — 1, /çj, , 1ci + 1), k = 0, 1, 2, . . .} . The value of p is taken to be 4, and a point above and

below multiples of p are excluded to allow for discretization errors. The choice of A implies
that cepstrum postprocessing cannot be used to identify small blurs.

3. BLUR IDENTIFICATION BASED ON HIGHER-ORDER SPECTRAL NULLS

3.1 The Bispectrum

Use of the bispectrum in place of the power spectrum for blur identification is motivated by the
fact that the bispectrum is blind to additive Gaussian noise [13]. The bispectrum of the degraded
image is:

Bg(ui,vi;u2,v2)=H(Ui,vi)H(u2,v2)H*(ui+u2,vi+v2)Bj(ui,vi;u2,v2)+B(ui,vi;u2,v2) (8)

where Bg (u1 ,v;u2 ,v2), B1 (u1 ,v1 u2 ,v2), and B (u1 ,v1 u2 ,v2) are the bispectra of the degraded

image, the original image, and noise respectively. The bispectrum is a four-dimensional function
and its implementation is computationally demanding. However, the central slice of the
bispectrum is sufficient for blur identification [10]:

Bg(uv;O,O) = H(u1,v1)2H(0,0)B1(u1,v1;0,0) (9)

The central slice of the bispectrum is two-dimensional and can be implemented efficiently.
However, section averaging is necessary to reduce the variance of the estimator. The averaging
of M sections results in the following implementation:
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. BM)(u,v;O,O)=iB(u,v;O,O) (10)

where

B (u,v; 0, 0) = Gk(u, V)Gk (0,0)G; (u,v)

=Gk(u,v) Gk(O,O) (11)

= P1k (u,v)Fk (u,v) +Nk (uv)[Hk (O,O)Fk (0,0) + Nk (0,0)]

The expected value of B(u, v; 0, 0) is proportional to the periodogram of the noise-free blurred

image, if the noise is zero mean and the average of the original image is zero. The latter
assumption does not hold in practice because images have non-negative values. Therefore, the
original image average should be estimated and subtracted. When a good estimate of the original
image mean value is obtained, and the number of sections M is large enough, the bispectrum can
outperform the power spectrum.

3.2 The Bicepstrum

The bicepstrum is proposed as an alternative to the bispectrum for blur identification, similarly to
the way the cepstrum may be used instead of the power spectrum. The power bicepstrum

Dg(P, q) is defined as

Dg(p,q)cJ {log[Bg(u,v;0,0)]} (12)

The performance of the bicepstrum in the presence of noise is discussed in [14]. The bicepstrum
utilizes the bispectrum and inherits robust performance in the presence of additive Gaussian
noise. In addition, it provides all the advantages of cepstral analysis outlined in Section 2.3. As
is the case with the power cepstrum, the bicepstrum can be postprocessed using the filter in (7).
In the next section, simulation results using all of the above methods are presented.

4. RESULTS

The performance of the spectrum, cepstrum, bispectrum, and bicepstrum for the identification of
linear motion blurs was experimentally investigated by simulations. The "cameraman" image
was synthetically blurred using uniform linear motion PSF's of length 8 and 15 pixels. Gaussian
noise was added to obtain SNR levels between 0 and 40 dB. The degraded image was divided in

172 ISPIE Vol. 2302 Image Reconstruction and Restoration (1994)



500 one-dimensional sections, with 256 points in each section, and 128 point overlap between
sections. The direction of scanning alternate rows in the image was reversed to preserve signal
continuity. The 1-D data sections were windowed using a Hanning window. The first prominent
local minimum of the power spectrum or the bispectrum was used to identify the first zero of the
linear motion blur. The cepstrum and bicepstrum were computed based on the power spectrum
and bispectrum respectively and were postprocessed using (7). The global maximum of the
processed cepstrum or bicepstrum was used to identify the motion blur parameters. The
simulation results showed that at SNR greater than 20 dB all methods performed well. In
situations where the SNR was low and the blur size was small, the bispectrum outperformed the
other methods. When the SNR was low and the blur was large, the bicepstrum provided the best
results. Representative results are shown in Figures 1 through 4. It was determined that in most,
but not all, cases postprocessing improved the performance of the cepstrum and the bicepstrum.

5. CONCLUSIONS

In this paper, the bicepstrum was employed as an alternative to the bispectrum for the
identification of linear motion blur parameters. The biceptrum combines the advantages of
cepstral analysis with the robustness of the bispectrum in the presence of additive Gaussian
noise. However, for the bicepstrum to be effective averaging of large numbers of image sections
is required. A comparative study of blur identification methods using spectral and higher-order
spectral nulls was performed. At high SNR levels the performance of all methods is acceptable.
At low SNR levels and large blurs the cepstrum and bicepstrum outperform the spectrum and
bispectrum respectively. When the blur size is small and the SNR is low, the blur identification
problem becomes very difficult and no single method consistently provides accurate PSF
estimates.
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Figure 1: Spectrum and Bispectrum of "cameraman" image blurred with 8 pixel motion blur for
SNR=4OdB (broken line), SNR=20 dB (dotted line), and SNR=lOdB (solid line)
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Figure 2: Spectrum and Bispectrum of "cameraman" image blurred with 15 pixel motion blur for
SNR=4OdB (broken line), SNR=20 dB (dotted line), and SNR=lOdB (solid line)
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Figure 3 : Cepstrum and Bicepstrum of "cameraman" image degraded with 8 pixel motion blur;
signals were normalized by setting maximum to one; dark bars show the cepstrum or bicepstrum
without postprocessing, light bars show the cepstrum or bicepstrum postprocessed using (7):

(a) Cepstrum at SNR=4OdB, (b) Bicepstrum at SNR=4OdB, (c) Cepstrum at SNR2OdB,
(d) Bicepstrum at SNR=2OdB, (e) Cepstrum at SNR=lOdB, (f) Bicepstrum at SNR1OdB
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