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Abstract. In this paper, we propose a new descriptor for texture clas-
sification that is robust to image blurring. The descriptor utilizes phase
information computed locally in a window for every image position.
The phases of the four low-frequency coefficients are decorrelated and
uniformly quantized in an eight-dimensional space. A histogram of the
resulting code words is created and used as a feature in texture classi-
fication. Ideally, the low-frequency phase components are shown to be
invariant to centrally symmetric blur. Although this ideal invariance is
not completely achieved due to the finite window size, the method is
still highly insensitive to blur. Because only phase information is used,
the method is also invariant to uniform illumination changes. According
to our experiments, the classification accuracy of blurred texture images
is much higher with the new method than with the well-known LBP
or Gabor filter bank methods. Interestingly, it is also slightly better for
textures that are not blurred.

1 Introduction

Natural surfaces usually exhibit some repetitive intensity variations or patterns
that are generally referred to as texture. Analysis of texture information is im-
portant in machine vision, and it has numerous applications including surface
inspection, medical image analysis, and remote sensing [1]. In some applications,
image degradations may limit the applicability of the texture information. One
class of degradation is blur due to motion, out of focus, or atmospheric turbu-
lence. Because image deblurring is very difficult and introduces new artifacts, it
is desirable to be able to analyze texture in a way that is insensitive to blur.

The focus of this paper is on blur insensitive texture classification. There
are not many texture analysis methods that are considered to be insensitive to
blurring. A blur robust descriptor based on color constancy was proposed in [2].
Also, blur invariant moments [3] or the modified Fourier phase [4] could be used
in principle, but they are mainly intended for global object recognition, not local
texture analysis.

In this paper, we propose a new blur insensitive texture classification method,
which is based on quantized phase of the discrete Fourier transform (DFT) com-
puted in local image windows, and it is called local phase quantization (LPQ).

A. Elmoataz et al. (Eds.): ICISP 2008, LNCS 5099, pp. 236–243, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Blur Insensitive Texture Classification Using Local Phase Quantization 237

The codes produced by the LPQ operator are insensitive to centrally symmetric
blur, which includes motion, out of focus, and atmospheric turbulence blur [5].
The LPQ operator is applied to texture identification by computing it locally at
every pixel location and presenting the resulting codes as a histogram. Genera-
tion of the codes and their histograms is similar to the LBP method [6]. Local
frequency analysis, often referred to as signal processing methods, has also been
used for texture analysis previously. For a review, see [7]. One of the best known
methods uses a bank of Gabor filters and is based on magnitude information
[8]. Phase information has been used in [9] and histograms have been used in
conjunction with spectral information in [10]. Nevertheless, blur sensitivity has
not been considered as a criterion when designing these operators.

First we introduce the conditions under which the DFT phase is invariant to
blur in Sect. 2. Then, Sect. 3 proposes the LPQ operator. Section 4 contains
experimental results and Sect. 5 presents conclusions.

2 Blur Invariance Using Fourier Transform Phase

In digital image processing, the discrete model for spatially invariant blurring of
an original image f(x) resulting in an observed image g(x) can be expressed by
a convolution [5], given by

g(x) = (f ∗ h)(x) , (1)

where h(x) is the point spread function (PSF) of the blur, ∗ denotes 2-D con-
volution and x is a vector of coordinates [x, y]T . In the Fourier domain, this
corresponds to

G(u) = F (u) · H(u) , (2)

where G(u), F (u) and H(u) are the discrete Fourier transforms (DFT) of the
blurred image g(x), the original image f(x), and the PSF h(x), respectively, and
u is a vector of coordinates [u, v]T . We may separate the magnitude and phase
parts of (2), resulting in

|G(u)| = |F (u)| · |H(u)| and

∠G(u) = ∠F (u) + ∠H(u) .
(3)

If we assume that the blur PSF h(x) is centrally symmetric, namely h(x) =
h(−x), its Fourier transform is always real-valued, and as a consequence its phase
is only a two-valued function, given by

∠H(u) =
{

0 if H(u) ≥ 0
π if H(u) < 0 . (4)

This means that

∠G(u) = ∠F (u) for all H(u) ≥ 0 . (5)
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In other words, the phase of the observed image ∠G(u) at the frequencies, where
H(u) is positive, is invariant to centrally symmetric blur. In the case of ideal
motion and out of focus blur, the cross-section of h(x) is rectangular [5]. This
results in a spectrum H(u) of which cross-section is a sinc function containing
also negative values. The values of H(u) are always positive before the first zero
crossing at frequency ≈ (blur length)/(sampling frequency) that satisfies (5). In
the case of Gaussian PSF, which models atmospheric turbulence blur [5], H(u)
is also Gaussian with only positive values that always satisfy the condition (5).

In practice, blur invariance cannot be completely achieved because of the
finite size of the observed images. The convolution of the ideal image with the
blur PSF extends beyond the borders of the observed image so that part of the
information is lost. When the extent of blur is large enough compared with the
image size, this border effect becomes noticeable.

3 Local Phase Quantization for Texture Classification

3.1 Short-Term Fourier Transform

The local phase quantization (LPQ) method is based on the blur invariance
property of the Fourier phase spectrum described in Sect. 2. It uses the local
phase information extracted using the 2-D DFT or, more precisely, a short-term
Fourier transform (STFT) computed over a rectangular M -by-M neighborhood
Nx at each pixel position x of the image f(x) defined by

F (u,x) =
∑

y∈Nx

f(x − y)e−j2πuT y = wT
u fx , (6)

where wu is the basis vector of the 2-D DFT at frequency u, and fx is another
vector containing all M2 image samples from Nx.

As it can be noticed from (6), an efficient way of implementing the STFT is
to use 2-D convolutions f(x) ∗ e−2πjuT x for all u. Since the basis functions are
separable, computation can be performed using 1-D convolutions for the rows
and columns successively.

In LPQ only four complex coefficients are considered, corresponding to 2-D
frequencies u1 = [a, 0]T , u2 = [0, a]T , u3 = [a, a]T , and u4 = [a, −a]T , where
a is a scalar frequency below the first zero crossing of H(u) that satisfies the
condition (5). Let

Fc
x = [F (u1,x), F (u2,x), F (u3,x), F (u4,x)] , and (7)

Fx = [Re{Fc
x}, Im{Fc

x}]T , (8)

where Re{·} and Im{·} return real and imaginary parts of a complex number,
respectively. The corresponding 8-by-M2 transformation matrix is

W = [Re{wu1 ,wu2 ,wu3 ,wu4}, Im{wu1 ,wu2 ,wu3 ,wu4}]T , (9)

so that
Fx = Wfx . (10)
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3.2 Statistical Analysis of the Coefficients

Let us assume that the image function f(x) is a result of a first-order Markov
process, where the correlation coefficient between adjacent pixel values is ρ, and
the variance of each sample is σ2. Without a loss of generality we can assume
that σ2 = 1. As a result, the covariance between positions xi and xj becomes

σij = ρ||xi−xj || , (11)

where || · || denotes L2 norm, and the covariance matrix of all M samples in Nx
can be expressed by

C =

⎡
⎢⎢⎢⎣

1 σ12 · · · σ1M

σ21 1 · · · σ2M

...
...

. . .
...

σM1 σM2 · · · 1

⎤
⎥⎥⎥⎦ . (12)

Hence, the covariance matrix of the transform coefficient vector Fx can be ob-
tained from

D = WCWT . (13)

One can easily notice that D is not a diagonal matrix for ρ > 0, meaning that
the coefficients are correlating.

3.3 Decorrelation and Quantization

Before quantization the coefficients are decorrelated, because it can be shown
that the information is maximally preserved in scalar quantization if the samples
to be quantized are statistically independent. Assuming Gaussian distribution,
independence can be achieved using a whitening transform

Gx = VT Fx , (14)

where V is an orthonormal matrix derived from the singular value decomposition
(SVD) of the matrix D that is

D = UΣVT . (15)

Notice, that V can be solved in advance for a fixed value of ρ.
Next, Gx is computed for all image positions, i.e., x ∈ {x1,x2, . . . ,xN}, and

the resulting vectors are quantized using a simple scalar quantizer

qj =
{

1 , if gj ≥ 0
0, otherwise , (16)

where gj is the jth component of Gx. The quantized coefficients are represented
as integer values between 0-255 using binary coding

b =
8∑

j=1

qj2j−1 . (17)
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Finally, a histogram of these integer values from all image positions is composed
and used as a 256-dimensional feature vector in classification.

The resulting integers b are invariant to centrally symmetric blur provided
that the window Nx is infinitely large and the frequency spectrum of the blur
PSF is positive at the sample locations u1 − u4. The second condition is easily
met if a is sufficiently small. However, the first condition cannot be fulfilled in
practice, and therefore, complete invariance is not achieved, but as shown in the
experiments, even a relatively small neighborhood is enough for robustness to
reasonable extents of blur.

Decorrelation and quantization do not have any effect on the blur invariance
property. In the whitening transform the coefficient vectors are subject to an eight-
dimensional rotation that only causes a uniform phase shift to all vectors. In quan-
tization the eight-dimensional space is divided into 256 hypercubes, and the assign-
ment of a vector to one of these hypercubes depends only on the phase information.

4 Experiments

In the experiments, we measured the performance of our LPQ method in the
classification of sharp as well as blurred textures. The correlation coefficient was
selected to be ρ = 0.9 in all the experiments. As test material we used the appli-
cable test suites of the Outex texture image database 1 [11]. For comparison, we
also did the same experiments with two other widely known texture classification
methods: local binary pattern (LBP) method 2 [12,6] and a method based on
Gabor filter banks 3 [8]. We used the Matlab implementations of these reference
methods, which can be found on the Internet. Both methods have also been used
previously in conjunction with the Outex texture database [11].

All three test suites of the Outex texture database used in our experiments,
Outex TC 00000-00002, contained images from 24 texture classes and had 100
different test cases that divided the images into training and test sets differently.
Test suites with a larger number are more challenging, as they contain more
and smaller images. In the experiments, we used a k-nearest neighbor (k-NN)
classifier, which was trained and tested using the appropriate sets of the images.
The value of k was 1, 3 or 15 for test suites Outex TC 00000-00002, respectively.
We used the Chi square distance measure for the LPQ and LBP histograms.
For the Gabor features we used the distance measure proposed in [8]. Notation
LBPP,R means LBP with P samples at radius R. In classical LBP P = 8,
which results in a code with values in the range {0,. . . ,255}, similar to LPQ.
Notation LPQR means LPQ of a spatial window with dimensions M = 2R + 1.
A larger radius R for LPQ and LBP, which provides the comparable spatial
extent of the operators, gives better results for blurred textures, but too large
radius deteriorates the classification results for sharp textures. The frequency
parameter used for LPQ was a = 1/M , which is the lowest non-zero frequency.
1 http://www.outex.oulu.fi/
2 http://www.ee.oulu.fi/mvg/page/lbp matlab/
3 http://vision.ece.ucsb.edu/texture/software/
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Table 1. Texture classification accuracies of the non-whitened LPQ, LPQ, LBP and
Gabor methods in the first experiment for Outex TC 00002 test suite

LPQ1 nw LPQ1 LBP8,1 Gabor

Accuracy 88.0 % 93.6 % 90.2 % 90.2 %

Fig. 1. An example of the texture images used in the second experiment (left). Circu-
larly blurred versions of the same image with blur radii one (middle) and two (right).
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Fig. 2. Classification accuracies of the LPQ, LBP and Gabor methods for (a) circularly
blurred textures of test suite Outex TC 00000 and for (b) Gaussian blurred textures
of test suite Outex TC 00001

In the first experiment, we tested the classification performance of the methods
for the sharp texture images of the challenging Outex TC 00002 test suite. The
test suite includes 8832 images of size 32 × 32; hence, 368 images per class. We
also included the result for non-whitened (nw) LPQ to demonstrate the effect of
the whitening transform. We used LBP8,1 and LPQ1, which results in the basic
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forms of these operators, and the Gabor method. The classification accuracy as
percentages is shown in Table 1.

As can be seen, the whitening improves the performance of the LPQ method
significantly and the whitened LPQ gives the best score. The success of LPQ
also for sharp images was a little surprising, but it was verified also in the other
experiments. For some reason the result of the Gabor method for the same test
suite was two percentages better in the experiments in [11], where the Gabor
method gave the best result. Nevertheless, the result of LPQ is still the best.

In the second and third experiment, we tested the three texture classification
methods in the case of blurred textures, which is the main theme of this paper. In
the second experiment we used the test suite Outex TC 00000, which includes
480 images of size 128 × 128, 20 images per class. The classifier was trained
using the sharp images, but the test images were artificially blurred using cir-
cular and flat PSF, which mimics the out of focus blur [5]. The blur radius was
{0, 0.25, . . . , 2}. Figure 1 shows three examples of one texture image with blur
radii 0, 1, and 2, respectively. We used LPQ and LBP operators with various val-
ues of R, but value R = 3 seemed to give the best trade-off for different extents
of blur. The results for these LPQ3, LBP8,3, and Gabor methods are shown in
Fig. 2(a). As can be seen from the diagram, the LPQ method is very tolerant of
blur, while the Gabor method performs worst. Even very small blur deteriorates
the results of all but the LPQ methods. We also tried a modification of LBP8,3,
namely LBPu2

16,3 [6], which uses 16 samples, but the result was only 0.2 percent
better for sharp images and worse for blurred images. It is remarkable that the
result for LPQ also for sharp images (Blur radius = 0) was the best for any
values of R.

In the third experiment, we used the Outex TC 00001 test suite, which in-
cludes 2112 images of size 64×64 and thus 88 images per class. Now, the artificial
blur had Gaussian PSF with standard deviation in the range {0.5, 0.75, . . . , 1.5},
which mimics the blur caused, for example, by atmospheric turbulence [5]. Oth-
erwise, the experiment was similar to the second experiment. Again, LPQ3 and
LBP8,3 offered the best trade-off for different extents of blur; therefore, the
results of these operators with the Gabor method are shown in Fig. 2(b). The
alternative LBPu2

16,3 operator did not improve the results. As can be seen, the
results of Fig. 2(a) and Fig. 2(b) are quite similar, except that the test suite is
a bit more challenging in the latter. The LPQ3 is again the best option at any
blur level, while the Gabor method is the worst. For all values of R the result of
LPQ was also the best for the smallest blur (Blur std = 0.5).

5 Conclusions

In this paper, we proposed a new LPQ texture analysis method that operates on
the Fourier phase computed locally for a window in every image position. The
phases of the four low-frequency coefficients are uniformly quantized into one of
256 hypercubes in eight-dimensional space, which results in an 8-bit code. These
LPQ codes for all image pixel neighborhoods are collected into a histogram,
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which describes the texture and can be used for classification. The phases of
the low-frequency components are shown to be ideally invariant to centrally
symmetric blur. Although, the invariance is disturbed by the finite-sized image
windows, the method is still very tolerant of blur. Because only phase information
is used, the method is also invariant to uniform illumination changes.

The proposed method was compared with two well-known texture analysis
operators, the LBP and a Gabor filter bank based method. The results of the
texture classification experiments on the Outex texture database show that the
LPQ method tolerates significantly more blurring than other methods. In addi-
tion to that, LPQ also gave slightly better results for sharp texture images.
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