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Abstract Aligning a pair of blurred and non-blurred images

is a prerequisite for many image and video restoration and

graphics applications. The traditional alignment methods

such as direct and feature-based approaches cannot be used

due to the presence of motion blur in one image of the pair.

In this paper, we present an effective and accurate align-

ment approach for a blurred/non-blurred image pair. We ex-

ploit a statistical characteristic of the real blur kernel - the

marginal distribution of kernel value is sparse. Using this

sparseness prior, we can search the best alignment which

produces the sparsest blur kernel. The search is carried out

in scale space with a coarse-to-fine strategy for efficiency.

Finally, we demonstrate the effectiveness of our algorithm

for image deblurring, video restoration, and image matting.

1. Introduction

Image alignment or registration is a fundamental task

for many multi-image and video applications, e.g., image

stabilization, image enhancement, video summarization,

panorama and satellite photo stitching, medical imaging,

and many graphics applications. However, existing meth-

ods are applied only to good images without motion blur.

In this paper, we study the problem of aligning two images,

one blurred and one non-blurred, as illustrated in Figure 2.

The problem arises in many practical capturing situations,

for instance changing relative motion between the camera

and the scene, fast panning of the video camera which often

gives blurred frames, and varying the exposure times [7, 22]

for hand-held camera in low-light conditions.

Aligning a blurred/no-blurred image pair is non-trivial.

For a spatially invariant blur, the blurred image can be repre-

sented as a convolution of a blur kernel and an original sharp

image. Usually, the real blur kernel is complex, not simply

a gaussian or a single direction motion. The presence of

the blur make it difficult to directly apply two existing types

of image alignment approaches: direct approaches [13] and

feature based approaches [2]. Direct approaches minimize

pixel-to-pixel dissimilarities. But this measurement is in-

feasible if the blur kernel is large, e.g., 40-80 pixels. One

can downsample the input images to reduce the blur effect,

but in practice it is hard to use more than two or three levels

of a pyramid before important details start to be lost. Fea-

ture based approaches have trouble extracting features in the

blurred image. For an arbitrary blur kernel, features such as
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Figure 1. Kernel distributions. Top: eight real kernels. (a-c) are

from Fergus et al. [4], and (d) is from Raskar et al. [15], and (e-

h) are from Anonymous [22]. Bottom: The histograms of kernel

magnitude are shown in different colored curves.

corners, or SIFT features [12], are not blur invariant.

The main difficulty is that we do not know the blur ker-

nel or the motion between the two images. If the blur ker-

nel is known, we can do non-blind deconvolution to ob-

tain a deblurred image to apply the previous approaches to.

However, directly estimating an accurate blur kernel from

the blurred image is challenging despite recent significant

progress in single image deblurring [4]. If two images are

well aligned (up to a translation), the work in [22] demon-

strated that a very accurate kernel can be estimated from a

blurred/non-blurred image pair.

The key is whether it is possible to align a blurred and

non-blurred image pair without correspondence. If so, what

is the necessary prior information, and what are the required

assumptions?

1.1. Related work

A general tutorial to the literature of image alignment

could be found in [19]. There are two approaches explicitly

account for blur. The first approach is to deblur. By limiting

the blur kernel to be one dimensional in [16, 17], both align-



ment and deblurring can be solved simultaneously for a

blurred/non-blurred pair or two blurred images with differ-

ent blur directions. The motion direction is pre-computed

using the monotonicity of the sharpness of the recovered

image as a function of the estimated direction. The work

in [1] assumes that the motion blur is caused by a constant

velocity affine motion, which is estimated by a tracking that

combines area-based and contour based deformable mod-

els. Motion blur has also been explicitly taken into account

in [8]. Based on single direction and constant velocity as-

sumption, it simultaneously estimates motion blur and de-

formation. Instead of deblurring images, the matching cost

is defined by further blurring two regions using commuta-

tivity of the kernels.

The second approach is to derive features that are invari-

ant to blur or invariant to the combination of both blur and

geometric transforms. The work in [6] proposes the first

moment-based invariants to blurring by a centrally sym-

metric blur kernel. The descriptors are invariant to trans-

lation. This work is extended in [6] and [5] to moment-

based descriptors that are invariant to the combination of

2D blur-rotation and N-D blur-rotation. However, these in-

variants are mainly limited to centro-symmeric kernels, e.g.,

Gaussian-like blur, out-of-focus blur, and atmospheric tur-

bulence blur. So far, there is no blur-invariant feature for an

arbitrary shape kernel.

1.2. Our approach

We propose a simple but effective alignment method that

uses the statistics of the blur kernel. We assume that the blur

kernel is spatially invariant, caused by motion between the

camera and the scene. We exploit an unique characteris-

tic of most real blur kernels: sparseness, i.e., most values

in the kernel are zero. Blur kernels have this characteristic

because the relative motion between camera and scene is a

continuous path in 3D in most cases. This is particularly

true for the hand-held cameras. If there is no saturation, the

trajectory of a point light source recorded on the 2D sen-

sor should be exactly the blur kernel. Based on this simple

statistic, we can use the kernel sparseness priors to measure

what a good kernel should be. Thus, we can simultaneously

perform the alignment and the blur kernel estimation by a

coarse-to-fine “brute force” search.

2. Kernel Sparseness Prior

Natural image statistics have been used in many applica-

tions, such as image super-resolution [20], denoising [18],

inpainting [11], transparency separation [10], and single im-

age deblurring [9]. These works mainly exploit the sparse-

ness of the distribution of image derivatives. Inspired by

these works, we propose to study the statistics of the blur

kernels, and to use these statistics as the prior for alignment

with a blurred image.

2.1. Kernel statistics

We collected a number of real kernels, as shown in Fig-

ure 1 (a-g). The brightness value in the kernel suggests

the duration of the camera exposure. The brighter a ker-

nel value is, the longer the camera exposes. As we can

see, all kernels tend to be sparse - most values in the kernel

are zeros (black) and the non-zeros form curve-like pathes.

Figure 1 (b) plots the histograms of the kernel values. The

histograms peak at zero and fall off faster than a Gaussian

distribution. The long tails show the high-kurtosis statistics

of these distributions. Following [4], we fit the kernel value

distribution to a mixture of two exponential distributions:

p(ki) ∝
(

w1e
−ki/β1 + (1 − w1)e

−ki/β2

)

, (1)

where ki is the ith element in the kernel k, and w1 and

β1, β2 are parameters of two exponential distributions. As-

suming i.i.d, the probabilistic distribution of the kernel k is

P (k) =
∏

i p(ki). To measure the sparseness of a given

kernel, we compute the minus log of distribution P (k)
which is normalized by the kernel size Z as a sparseness

measurement:

Esparse(k) = −
1

Z

∑

i

ln p(ki). (2)

The parameters in the distribution P (k) can be estimated

using example kernels by Maximum Likelihood (ML) es-

timation. Using eight kernels in Figure 1, our estimated

parameters are: w1 = 0.6, β1 = 0.01, β2 = 0.03.

2.2. Kernel estimation

The work in [22] demonstrated that if the blurred image

and non-blurred image are well aligned, a very accurate blur

kernel can be estimated using two input images. We briefly

review the approach.

First, the non-blurred image I is pre-multiplied by a scale

factor, if necessary, to compensate for the average intensity

difference between two images. If two images are aligned

up to a translation (because the image translation only re-

sults in a translation of the kernel), the blurred image B

is the convolution of the image I and the blur kernel k:

B = I ⊗ k, where ⊗ is the convolution operator. Then,

the kernel k is computed by minimizing the following ob-

jective function:

k
∗ = argmin

k

||B − I ⊗ k||2 + λ||k||2,

subject to ki ≥ 0, and
∑

i

ki = 1, (3)

where
∑

i ||ki||
2 is a Tikhonov regularization term to sta-

bilize the solution and the parameter λ is fixed at 3. A

Landweber method [3] is used for the optimization. The

algorithm is fast when using FFT, taking about 8 to 12 sec-

onds for a 64 × 64 kernel and a 800 × 600 image. To make
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Figure 2. A synthetic example. (a) and (b) the blurred and non-blurred images. (c-d) estimated kernels using the blurred image

and a number of transformed non-blurred images, with different rotations and scales. [0.90, 0.98, 1.00, 1.02, 1.10] (in horizontal)

[−10◦

,−2◦

, 0◦

, 2◦

, 10◦] (in vertical) are the sampled scales and rotations in the coarse level. Two numbers (in brackets) under each

kernel are the sparseness value and the entropy. The kernel sparseness and entropy are good measures of alignment accuracy.

the optimization robust, the kernel estimation is run in a

coarse-to-fine manner. To further suppress the error and

noise in the estimation, a hysteresis thresholding is applied

in scale space so that the global shape of the kernel at a fine

level to be similar to the shape at its coarser level. More

details can be found in [22].

2.3. Empirical evaluation of kernel sparseness

The kernel estimation method given above is theoreti-

cally optimal only when the two images are aligned up to

a translation. Unfortunately, this is not true in practice.

Let us first assume that the motion between the two images

is a similarity transformation: x
′ = [sR t] x, where

x = (x, y, 1) is the homogeneous 2D coordinate. R is an

orthonormal rotation matrix, s is an arbitrary scale factor,

and t is 2D translation. Since an image translation only re-

sults in a translation of the kernel and our kernel sparseness

measurement is translation-invariant, we need not consider

the 2D translation t. Therefore, the alignment parameter

space consists of only a 2D rotation characterized by an an-

gle and a scaling factor for the similarity transformation.

Now, we want to investigate the relationship between the

sparseness of the estimated kernel and the accuracy of the

kernel estimation under different similarity transformations

between the blurred/non-blurred image pair.

We designed the following experiment. First, we take

one original (non-blurred) image and blur it with a given

synthetic kernel (shown on the top-right corner of Figure 2

(a)) to obtain the blurred image shown in Figure 2. Then,

we transform the original non-blurred image using different



rotation angles and scaling factors to generate a series of

transformed but non-blurred image families. Finally, we run

the kernel estimation method described in the above section

for each pair of blurred and transformed non-blurred im-

ages. Figure 2 (c-d) show estimated kernels with different

transformations at coarse and fine sampling levels.

It is interesting to observe that the closer the alignment

parameters are to the true transformation, the sparser the es-

timated kernel is. The true alignment (0◦, 1.000) produces

the sparsest kernel! The sparseness Esparse for each kernel

is quantitatively evaluated by Equation (2), and is shown in

the first number of the bracket on the bottom of each ker-

nel in Figure 2. The best kernel has the smallest sparseness

measure of 0.63. The measurement Esparse consistently re-

veals the sparseness of the kernel.

An alternative measure for the sparseness of a distribu-

tion p(x) is to use the entropy: −
∫

x p(x) ln p(x). In Fig-

ure 2, the second number in the bracket is the entropy of the

histogram of the kernel values. The entropy also tells which

kernel we should choose since it measures the disorder or

randomness of a distribution. The sparsest kernel has the

minimal entropy. Both the sparseness value and the entropy

are good measurements for the sparseness characteristic of

a real kernel.

3. Alignment using Sparseness Prior

Motivated by the above empirical results, we propose an

alignment approach using the kernel sparseness prior. We

first describe the algorithm with a similarity transform be-

tween the two images, then we evaluate the alignment ac-

curacy, and finally we extend the similarity transform to the

affine transform.

3.1. Algorithm

To be efficient, we use scale space representations for

both image space and parameter space. We build two pyra-

mids {Bl}L
l=1 and {Il}L

l=1 for the blurred and non-blurred

images, where L is the pyramid level. Let [∆θ, ∆s] and

[θ−, θ+], [s−, s+] be the search intervals and ranges for the

rotation angle and the scale. Our basic algorithm for the

similarity transformation is from level 1 to L:

• compute a family of kernels using B
l and the trans-

formed I
l from Eqn. (3) in the current search ranges.

Calculate the sparseness values by Eqn. (1) or en-

tropies of these kernels.

• obtain the best alignment [θopt, sopt] resulting in the

kernel with minimal sparseness value Esparse or en-

tropy.

• (optional) repeat the above steps once or twice by re-

ducing the search ranges and sampling intervals by

half.

• for the next level l + 1, set the sampling intervals as

[∆θ/2, ∆s/2], and the search ranges as [θopt±2∆θ]×
[sopt ± 2∆s].

The initial search ranges are determined by the maxi-

mal possible relative motion between two images and the

initial sampling intervals are dependent on the required

alignment accuracy. Figure 4 shows a real example using

four levels coarse-to-fine search. Figure 4 (a) is a blurred

image with a long exposure and Figure 4 (b) is a non-

blurred but noisy image with a short exposure. Their size

is 791 × 1156. In this example, we set the initial search

ranges to [−45◦, 45◦] × [0.7, 1.3] and the initial sampling

intervals to 1◦ and 0.04.

The top of Figure 4 shows a fraction of the kernels esti-

mated during the search. For each kernel, the rotation angle

and the scale are on the top, and the sparseness value and the

entropy are on the bottom. We mark the sparsest kernel at

each level with a red square. With the estimated blur kernel,

we can obtain the deblurred image in Figure 4(c) using the

Richardson-Lucy (RL) deconvolution algorithm [14] (Mat-

lab’s deconvblind routine). The ripple-like ringing effects

in the deblurred image is a common side effect of most de-

convolution approaches. The fundamental reason is that the

partial high frequencies in the blurred image lost. Please

see [22] for more discussion. Figure 4(d) is the aligned im-

age using the computed rotation and translation. The im-

ages in Figure 4 (c-d) are automatically aligned and we do

not need to consider translation. The total computation time

are about 7 minutes, which is efficient with the finest sam-

pling intervals of 0.02◦ and 0.001.

3.2. Alignment accuracy

The accuracy of the estimates can be evaluated for the

synthetic examples as we know the ground truth. For

the example in Figure 2, we search for the sparsest ker-

nel using very fine search intervals [0.001◦, 0.0001] at

the finest level to test the maximal accuracy that can be

achieved by our approach. The resulting alignment param-

eters are [−0.009◦, 1.0002] using the sparseness value, and

[−0.013◦, 1.0004] using the minimal entropy, with respect

to the ground truth parameters [0.0◦, 1.0]. For this 678×376
example, the alignment accuracy is sub-pixel.

To measure the accuracy for the real example in Fig-

ure 4, we manually select a number of corresponding fea-

tures in the deblurred image and the aligned non-blurred

image, as showed in Figure 3 (a). The corresponding fea-

tures are further refined to sub-pixel accuracy by correla-

tion [21]. The alignment error is measured by the coordi-

nate differences between corresponding feature pairs. Fig-

ure 3 (b) shows the coordinate differences (∆x, ∆y) for

11 corresponding feature pairs. We have also implemented

a naive alignment approach: first deblur the blurred image

using Fergus et al.’s single image deblurring algorithm [4]

(http://people.csail.mit.edu/fergus/), then use the SIFT [12]



# Ours (pixel) SIFT (pixel)

1 (0.6, 0.2) (5.7, 6.8)

2 (0.0, -0.3) (5.9, 1.2)

3 (0.2, -0.4) (3.1, -3.9)

4 (0.5, -0.8) (-7.7, -12.5)

5 (-0.1, -0.9) (4.6, 7.9)

6 (0.1, -0.6) (7.0, 6.5)

7 (-0.5, -0.7) (-2, -2.7)

8 (0.2, -0.6) (0.1, 2.0)

9 (0.7, -0.5) (0.8, 13.9)

10 (-0.3, -0.3) (2.2, 2.3)

11 (0.1, 0.2) (5.9, 6.9)

Figure 3. Comparison of alignment errors. (a) 11 manually marked

features in our deblurred image. (b) alignment errors of our

approach and a naive approach (single image deblurring [4] +

SIFT [12]). Our alignment is significantly more accurate.

algorithm with RANSAC to align the deblurred image and

the non-blurred image. In Figure 3(b), we can see that our

alignment errors are less that a pixel. The mean and stan-

dard derivation of our alignment error are 0.31, 0.50 and

(0.23, 0.24) which are very small compared with the na-

tive approach, which produces the mean (4.13, 6.11) and

the standard derivation (2.58, 4.22). The errors of the naive

approach are quit large and unacceptable for most align-

ment applications.

3.3. Extension for affine transformation

To model an affine transformation, we replace the scaled

rotation matrix by a non-singular linear transformation fol-

lowed by a translation: x
′ =

[

A t

0 1

]

x. The 2 × 2 ma-

trix A is the composition of two fundamental transforma-

tions, rotations and non-isotropic scalings. The matrix A

can always be decomposed as A = R (θ)R (−φ)DR (φ),

where R (θ) and R (φ) are rotations by θ and φ respec-

tively, and D is a diagonal matrix diag (s1, s2). This de-

composition follows directly from the SVD: writing A =
(

UV
T
) (

VDV
T
)

= R (θ)R (−φ)DR (φ), since U and

V are orthogonal matrices. Therefore, alignment with an

affine transformation requires a search in a 4D parameter

space.

To reduce the search range, we first estimate an initial

affine matrix using a SIFT based alignment with RANSAC

at low-resolution image pairs. Although the initial align-

ment could be very inaccurate, it provides a reasonable

starting point. Then, we apply our coarse-to-fine algorithm

to search four physical parameters [θ, φ, s1, s2].

Figure 5 shows an affine example. For this example, the

search intervals in four levels are: (∆θ = ∆φ = 1.5, 0.32,

0.08, 0.02), (∆s1 = ∆s2 = 0.06, 0.016, 0.004, 0.001). The

top row of Figure 5 shows estimated kernels in different

levels. The four parameters associated with the sparsest

kernel are: [θ, φ, s1, s2] = [−9.82◦,−23◦, 1.063, 0.926].

The final matrix A =

[

1.0352 0.2102
−0.1292 0.9246

]

. Figure 5

(c-d) are the deblurred image and the aligned image using

our estimated kernel and affine transformation. The mean

and standard derivation are (0.6, 0.8) and (0.39, 0.45). The

computation time is about 40 minutes for this example. Al-

though searching in 4D is expensive, it is still affordable

with our coarse-to-fine search in both image space and pa-

rameter space.

4. Applications

We apply our approach to three applications requiring

alignment of blurred/non-blurred image pair.

Image deblurring. Taking satisfactory photos under low-

light condition using a hand-held camera is challenging.

[22] presented an image deblurring approach by combin-

ing a blurred/nosiy image pair. The blurred image is taken

with a slow shutter speed and a low ISO setting. It has the

correct color, intensity and a high SNR, but is blurry due

to camera shake. The other is an underexposed and noisy

image with a fast shutter speed and a high ISO setting. It is

sharp but very noisy due to insufficient exposure and high

camera gain.

Impressive deblurring results can be obtained using the

approach proposed in the work [22], using two well aligned

images. With our alignment approach, we can relax this

restriction and make two-image deblurring more practical.

Figure 6 shows a real image deblurring example.

Video restoration. When the user pans a video camera

with varying speed, blurred/non-blurred image pairs can oc-

cur. The top row of Figure 7 shows three frames in a video.

The middle one is a non-blurred image since the user briefly

stopped panning. Blur is inevitable in some frames despite

using a high-end, progressive scan, 3CCD video camera.

The bottom row of Figure 7 shows our alignment results

and estimated kernels for two blurred frames. Using our

technique, we are able to restore a sharp video sequence.

Image matting. Image matting can also benefit from our

alignment. Figure 8 (a) is a blurred image. Due to the mo-

tion blur, the boundary of the foreground object is semi-

transparent - alpha mattes. It is very difficult, if not impos-

sible, to extract the blurred foreground from the single im-

age. This matting problem becomes easier if we take a sec-

ond non-blurred image, as show in Figure 8 (b). The fore-

ground object and binary mask are interactively extracted

from the non-blurred image. Then, we align two images

and compute the blur kernel. If the foreground boundary is

solid, i.e., the semi-transparency is only caused by the blur,

the alpha matte of the blurred foreground can be obtained

by simply convoluting the blur kernel with the foreground

mask extracted from the non-blurred image. Figure 8 (c-d)
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(a) blurred image (b) noisy image (c) deconvolution image (d) registered image

Figure 4. A real example. Top: a fraction of kernels at four levels in the coarse-to-fine searching. The kernel sizes at each level are [24,

48, 96, 160]. The kernel in the red square is the best one at each level. Bottom: (a-b) blurred/noisy image pair. (c) the non-blind image

deconvolution result using the obtained sparest kernel. The ripple-like ringing effect, especially in the textureless regions, is mainly caused

by the deconvolution. (d) aligned image using the transformation associated with the sparsest kernel.

shows the estimated alpha matte and the composting result.

5. Conclusion

In this paper, we present an approach to align a

blurred/non-blurred image pair based on the motion blur

kernel statistics. We demonstrated that the sparseness prior

can be effectively used to measure the goodness of a kernel

so that we can search the alignment parameters without cor-

respondence. An efficient coarse-to-fine search algorithm is

also presented. The proposed alignment approach is applied

to three applications: image deblurring, video restoration,

and image matting.

Handling more complex motion, e.g., perspective trans-

formation or non-global motion, is one of our future works.

Locally applying our current approach is one possible so-

lution. Another interesting problem is to align two blurred

images using the kernel sparseness prior.
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