Blurred Persistence
in Transactional Persistent Memory

Youyou Lu, Jiwu Shu*, Long Sun
Department of Computer Science and Technology, Tsinghua University, Beijing, China
luyouyou@tsinghua.edu.cn, shujw@tsinghua.edu.cn, sun-112 @mails.tsinghua.edu.cn

Abstract—Persistent memory provides data persistence at
main memory level and enables memory-level storage systems.
To ensure consistency of the storage systems, memory writes
need to be transactional and are carefully moved across the
boundary between the volatile CPU cache and the persistent
memory. Unfortunately, the CPU cache is hardware-controlled,
and it incurs high overhead for programs to track and move data
blocks from being volatile to persistent.

In this paper, we propose a software-based mechanism,
Blurred Persistence, to blur the volatility-persistence boundary,
so as to reduce the overhead in transaction support. Blurred Per-
sistence consists of two techniques. First, Execution in Log executes
a transaction in the log to eliminate duplicated data copies for
execution. It allows the persistence of volatile uncommitted data,
which can be detected by reorganizing the log structure. Second,
Volatile Checkpoint with Bulk Persistence allows the committed data
to aggressively stay volatile by leveraging the data durability
in the log, as long as the commit order across threads is kept.
By doing so, it reduces the frequency of forced persistence and
improves cache efficiency. Evaluations show that our mechanism
improves system performance by 56.3% to 143.7% for a variety
of workloads.

I. INTRODUCTION

Persistent memory is a promising technology to provide
data persistence at the main memory level, which recently has
been advanced by emerging non-volatile memories (NVMs),
such as Phase Change Memory (PCM), Spin-Transfer Torque
RAM and Resistive RAM (RRAM). Since data are persistent
in main memory, persistent data location gets promoted from
the secondary storage to the main memory [1], [2], [3], [4],
[51, [6], [7].

In persistent memory, the volatility-persistence boundary
has moved to the interface between the volatile CPU cache
and the persistent memory [1], [8], [9], as shown in Figure 1.
Storage consistency, which ensures that storage systems can
recover from unexpected failures, needs to be provided at the
memory level in persistent memory. To provide storage con-
sistency, writes from the volatile media (the CPU cache) to the
persistent media (the persistent memory) need to be performed
in correct order.This write ordering leads to frequent I/O halts,
and thus significantly degrades system performance [10], [11],
[12], [13], [14].

Persistence overhead due to storage consistency gets even
higher in persistent memory than in disk-based storage sys-

Jiwu Shu is the corresponding author.

tems. As shown in Figure 1, buffer management in main
memory is a white box for disk-based storage systems, while
that in the CPU cache is a black box for persistent memory.
Pages in main memory are managed by the operating system,
and programs can know the status and perform the persistence
operation on each page. With persistent memory, the CPU
cache is hardware controlled, and programs find it cumbersome
to track the status or perform the persistence operation for
each cached block. In persistent memory, programs either keep
the status of each page in the software, leading to extremely
high tracking overhead, or flush the whole cache using cache
flush commands (e.g., clflush and mfence). Since the storage
consistency requires frequent persistence operations, system
performance dramatically degrades [1], [9], [15], [16], [3].

blackbox
CPU CPU
Cache ache

Volatility-persistence

/ boudary

Disk-based storage system

Main Memory

Persistent Memory

Persistent Memory

Fig. 1. Volatility-Persistence Boundary in disk-based storage systems and
persistent memory.

Recent research has proposed to extend the CPU hardware
to mitigate the performance degradation. Approaches of this
kind can be divided into two categories. One is to reduce per-
sistence overhead by making the CPU cache non-volatile [17],
[8]. The other is to reduce ordering overhead by allowing
asynchronous or reordered persistence of transactions [1],
[9], [15], [16]. While these approaches effectively improve
transaction performance in transactional persistent memory,
they require hardware modifications inside CPUs.

In this paper, our goal is to design a software-based
approach to mitigate the performance degradation in transac-
tional persistent memory. We do so by relaxing the persistence
requirements and blurring the volatility-persistence boundary,
and call this mechanism Blurred Persistence. We have two
key observations on the uncommitted data (i.e., data blocks
that should stay volatile) and the to-be-persisted data (i.e., data
blocks that need to be persisted).

978-1-4673-7619-8/15/$31.00 (© 2015 IEEE

Observation 1. Volatile data can be persisted if they do
not damage the persistent data and are detectable after system
crashes. Volatile data should be prevented from being written
back to persistent memory because of two reasons. First, the
uncommitted data that have not been committed can corrupt
the persistent data, when they are written back due to cache
eviction. In persistent memory, the CPU cache is hardware
controlled, and the mapping between data blocks in the CPU
cache and those in persistent memory are opaque to the
programs. To keep uncommitted data in the CPU cache in
order not to be written back and to overwrite/damage the
memory data, dividing memory into different areas respec-
tively for uncommitted and to-be-persisted data is an effective
approach [3], [7]. When uncommitted data are isolated from to-
be-persisted data using different memory areas, the writeback
of uncommitted data does not damage the persistent data.
However, the isolated memory area brings duplicated data
copies among them. Second, the uncommitted data, which are
not committed but have been evicted to persistent memory,
need to be detected after system crashes. Otherwise, the storage
systems in persistent memory have partially updated data, and
this leads to inconsistent state. The two problems, however,
can be solved by carefully organizing the data structures in
persistent memory.

Observation 2. To-be-persisted data may stay volatile if
they have persistent copies in other areas. Tracking and forcing
persistence of to-be-persisted data also incur high overhead
in programs. To make sure that the to-be-persisted data are
persisted in time, programs have to record the addresses of
these data blocks. When the persistence ordering is required,
programs iterate each address and call cache flush commands
to force them being written back to persistent memory. The
tracking and forced persistence operations lead to poor cache
efficiency. However, if the to-be-persisted data have copies
elsewhere, which have already been persisted, these do not
need to be written back immediately.

Based on the above two observations, we conclude that
there are opportunities to relax the volatility or persistence
requirements of the uncommitted and to-be-persisted data.
Tracking and placing data blocks between the volatile CPU
cache and the persistent memory can be relaxed to improve
transaction performance. Our proposed blurred persistence
mechanism has two key ideas. First, Execution in Log (XIL)
allows transactions to be executed in the log area and removes
duplicated copies in the execution area. Volatile data are
allowed to be persisted in the log area. To enable this, XIL
reorganizes the log structure to make the uncommitted data
detectable in the log. During recovery, the detected uncom-
mitted data can be cleaned from the log while leaving only
committed transactions. Second, Volatile Checkpoint with Bulk
Persistence (VCBP) allows delayed persistence of committed
transaction data in each transaction execution and avoids the
tracking of to-be-persisted data. This is achieved by making
the corresponding log data persistent and maintaining the
commit order of checkpointed data across threads. It also
aggressively flushes all data blocks from the CPU cache to
memory using bulk persistence, with the reorganized memory
areas and structures. By doing so, VCBP enables more cache
evictions and less forced writebacks, and thus improves cache
efficiency.

Major contributions of our paper are summarized as
follows:

e We identify a major cause of performance degrada-
tion while providing storage consistency for persistent
memory - tracking and separating uncommitted and
to-be-persisted data blocks with a strict boundary.

e We propose Execution in Log (XIL), a technique to
enable transaction execution in allocated log area, to
allow uncommitted data to be persisted by using a
static memory log organization.

e We propose Volatile Checkpoint with Bulk Persistence
(VCBP) to delay the persistence of checkpoint without
tracking data blocks that need to be persisted. This
technique allows to-be-persisted data to stay volatile
before truncation of the transaction log.

e We implement a transactional persistent memory sys-
tem, Blurred-Persistence Persistent Memory (BPPM),
and evaluate it using a variety of workloads. Results
show BPPM gains performance improvement ranging
from 56.3% to 143.7%.

The rest of this paper is organized as follows. Section II
gives the background of non-volatile memory and transaction
recovery. Section III describes the Blurred Persistence mech-
anism, including the Execution in Log and Volatile Check-
point with Bulk Persistence techniques. Section IV presents
our persistent memory implementation, BPPM, using Blurred
Persistence mechanism. Then, Section V evaluates BPPM. And
finally, Section VI presents related work, and Section VII
concludes.

II. BACKGROUND
A. Non-Volatile Memory

Byte-addressable non-volatile memories (NVMs) are able
to provide data access latency in the order of tens to hundreds
of nanoseconds. Phase Change Memory (PCM) [18], [19],
[20] is reported to have a read latency of 85ns and a write
latency of 100-500ns [21]. Spin-Transfer Torque RAM (STT-
RAM) [22] is reported to have read and write latencies less
than 20ns [21]. These NVMs not only provide access latency
close to that of DRAM, but also show better technology
scalability than DRAM. This makes them promising to be used
in main memory [22], [18], [19], [20]. In addition, the non-
volatility of these NVMs naturally provides data persistence
at the memory level, which enables storage systems at main
memory level [4], [1], [7], [6], [2], [3], [5].

NVDIMM (Non-Volatile Dual In-line Memory Modules)
is another form of byte-addressable non-volatile memory [23].
It is proposed to attach flash memory to the memory bus
using byte-addressable interface emulated with DRAM. Data
in DRAM are kept persistent using a BBU (Battery Backed
Up) or a capacitor when system crashes. NVDIMM provides
good performance with data persistence at the memory level.

B. Transaction Recovery

The concept of transaction management originates from
database management systems (DBMSs) [24], which intro-
duces transactions to provide ACID properties: atomicity (A),

Volatile Memory

CPU Cache CPU Cache
LT[] L1 T[] AlB|C|[C B A
TExec?utionk\ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
T
. © 9@ | 0 |
> | > S
_// Ly | \ L ¥l 1
M T T T T L ale] Jelafe]c] L L ale] Jelle]e]a]
Data Log Execution Data Log Execution Data Log
Disk Volatile Memory Persistent Memory Volatile Memory Persistent Memory

(a) Transaction Phases in Disk-based
Storage Systems

(b) Transaction Phases in Conventional
Persistent Memory

(c) Transaction Phases in Blurred-Persistence
Persistent Memory

Fig. 2. Transaction Phases in Disk-based Storage Systems, Conventional Persistent Memory, and our proposed Blurred-Persistence Persistent Memory (BPPM).

consistency (C), isolation (I) and durability (D). Transaction
management has two components to ensure the four prop-
erties: concurrency control to allow multiple transactions to
be executed concurrently and transaction recovery to enable
the system recovery from unexpected failures. Concurrency
control aims to provide execution consistency, which requires
each transaction to be atomically executed (i.e., all or none
transactional operations are performed) and the concurrently
executed transactions are isolated properly. Transaction recov-
ery aims to provide persistence consistency, which requires
data in persistent storage to be updated atomically and durably.
The two components are used together to make sure the
concurrently executed transactions are performed correctly to
survive system failures, ensuring the ACID properties.

Transactional memory [25], [26], [27] borrows the idea of
concurrency control to support program concurrency, which
requires ACI properties. Recent non-volatile memories provide
data persistence (durability) at the main memory level. This
leads to opportunities of data recovery at the main memory
level. Thus, transaction recovery is proposed to be incorpo-
rated into transactional memory, which is called transactional
persistent memory, to provide ACID properties as in database
transactions [3], [28].

C. Transactional Persistent Memory

Transactional persistent memory provides both concur-
rency control and transaction recovery. To support transaction
recovery, a transaction needs to keep at least one version
complete in persistent memory. To ensure this property, writes
need to be persisted from the CPU cache to the persistent
memory in correct order, which is discussed as follows.

Transaction Phases. A transaction has three phases: execution,
logging, and checkpointing. In the execution phase, data are
changed in a volatile area called execution area with the
execution of program instructions. At this phase, data are
prevented from overwriting the old-version data in a persistent
place called data area, so as to protect the old version. When a
transaction is committed, the data can be written to persistent
storage. Before being written to the data area, they are first
persisted to a persistent area called log area; Otherwise, a
transaction in the data area may have only part of its data
overwritten before system failures, and this hurts the atomicity.
Therefore, a transaction first writes its data to the persistent log
area when it is committed. This phase is called the logging
phase. Only after the data have been completely written to the

persistent log area, they are checkpointed (i.e., written back
from the log area to the data area) to the persistent data area.
This phase is called the checkpointing phase.

Figure 2 (a) shows the transaction phases in disk-based
storage systems, in which the secondary storage is persistent
and the main memory is volatile. The volatility-persistence
boundary lies between the main memory and the secondary
storage. To ensure the storage consistency, the software (i.e.,
file systems or database management systems) manages the
data versions and the write ordering from the main memory to
the secondary storage. A transaction is executed following the
steps shown in Figure 2 (a). In Step 1, the transaction reads
data blocks from the disks to the main memory. In the memory,
the transaction is executed in the execution area. After the
execution finishes, data pages that need persistence are copied
to the operating system page cache, as shown in Step 2. Before
these data pages being written to the data area, they are firstly
written to the log area, as shown in Step 3. Only when these
data pages are completely persisted in the log area, they are
checkpointed to the data area, as shown in Step 4.

Figure 2 (b) shows the transaction phases in con-
ventional persistent memory using write-ahead logging,
like Mnemosyne [3]. In persistent memory, the volatility-
persistence boundary has moved to the line between the
volatile CPU cache and the persistent main memory. Since the
CPU cache is hardware-controlled, programs separate uncom-
mitted and to-be-persisted data into different memory areas, as
shown in Figure 2 (b). In a transaction, data are first read from
the data area to the CPU cache (as Step 1), and are copied to
the execution area to be executed (as Step 2); Otherwise, the
generated new-version data may be evicted to the memory and
overwrite the old-version data in the execution area, violating
the atomicity property of transactions. When the transaction
is committing, the executed data are copied to the log area
(as Step 3) for logging persistence (as Step 4). After the log
has been persisted, the committed data are checkpointed to the
data area (as Step 5) for checkpoint persistence (as Step 6).

However, it causes high overhead to strictly control the
volatility and persistence of each data block. Our goal in
this paper is to lower transaction overhead by blurring the
volatility-persistence boundary. This can be achieved based
on the following two observations. First, transaction data can
be executed in the log area if the uncommitted data that are
evicted to persistent memory are detectable. (Section III-A).
Second, checkpointed data, which have persistent copies in

the log area, do not need to be immediately flushed back
to persistent memory if the overwrite order of those volatile
checkpointed data can be maintained correctly (Section III-B).
We thus propose the Blurred Persistence mechanism for
transactional persistent memory. The general framework for
our mechanism is illustrated in Figure 2 (c), and details are
discussed in Section III.

III. BLURRED PERSISTENCE

In this section, we propose the Blurred Persistence mecha-
nism, which blurs the volatility-persistence boundary in trans-
actional persistent memory, to improve system performance
while providing storage consistency. This mechanism consists
of two techniques:

1) Execution in Log (XIL), which reorganizes the mem-
ory log structure and makes the uncommitted data
detectable, to allow the (volatile) uncommitted data
to be persisted to the persistent memory.

2) Volatile Checkpoint with Bulk Persistence (VCBP),
which leverages the durability of persistent data
copies in the log area and maintains the correct
overwrite order of the volatile data, to allow the (to-
be-persisted) checkpointed data to aggressively stay
volatile in the CPU cache.

In this section, we first describe the two techniques, and then
discuss the crash recovery.

A. Execution in Log

In persistent memory, uncommitted data should be pre-
vented from being persisted (i.e., being written back from
the CPU cache to the persistent memory); Otherwise, the
old-version data copies in the persistent memory might be
overwritten and corrupted. Since cache replacement in the
CPU cache is hardware controlled, software programs are
unaware of the cache eviction and are unable to keep the
uncommitted data from being persisted. The common approach
to separate uncommitted and to-be-persisted data into different
memory areas (as shown in Figure 2 (b)) is effective but
inefficient due to duplicated data copies. In this section, we
argue that duplicating data in different areas is unnecessary in
transactional persistent memory. We propose a new technique,
Execution in Log (XIL), to allow the (volatile) uncommitted
data to be persisted by making them detectable.

With the Execution in Log (XIL) technique, a transaction
writes its new data directly to the log area rather than to the
execution area, no matter whether these data are committed or
not. Steps 1 to 3 in Figure 2 (c) illustrate the data flow of a
transaction using the XIL technique in transactional persistent
memory. As shown in the figure, a transaction loads data
from the persistent memory and caches them in the CPU
cache (shown as Step 1). During the transaction execution, the
generated new-version data blocks are allocated with memory
space and are written directly in the log area (shown as Step
2). When a transaction commits, these data blocks are forced
to be persistent in the persistent log area (shown as Step 3).
After the data blocks are persisted in the log area, they are
checkpointed (i.e., copied back to their home locations) to the
data area (shown as Step 4). And finally, these data blocks are

forced to be written back to the persistent data area (shown as
Step 5).

The XIL technique eliminates data copies to and from
the execution area (as illustrated by comparing Figure 2 (b)
and (c)). But the challenge of the XIL technique is how to
detect and remove the uncommitted data blocks that have
been written to persistent log area. As shown in step 3 of
Figure 2 (c), data blocks from uncommitted transactions may
be written to the persistent log area, due to the cache eviction
of the CPU cache hardware. The XIL technique reorganizes the
memory log area and makes these uncommitted data detectable
(discussed as follows), to make sure the log area can be used
to correct data recovery.

The Log Holes. To support the X/L technique, data blocks
from uncommitted transactions should be detected and re-
moved from the persistent log area. To make the uncommitted
data detectable in persistent memory, XIL reorganizes the log
structure: (1) Data blocks in the log area are allocated in a
log-structured way. Each block has an unique address. With
the determined address, an uncommitted block is written to
its own location. It neither overwrites any other block nor
is overwritten. (2) Uncommitted data blocks are identified
using their transaction status metadata in the log, which has
associated metadata to indicate the transaction status. For each
transaction, there is a block to record these metadata, i.e., a
commit record for a committed transaction and an abort record
for an aborted transaction. During the normal execution, when
a transaction is aborted, its volatile data blocks are discarded
without being written back to the persistent memory. This
leads to log holes in the log area (i.e., the log blocks that
have been allocated but not written to). Log holes are those
blocks allocated for uncommitted transactions, but have no
data written to.

Figure 3 illustrates an example of the log holes. A transac-
tion, which has four data blocks, is aborted. Among the four
blocks, one has been written to the persistent log area due to
cache eviction. The other three blocks are discarded in memory
without being written back to memory. But they have been
allocated with memory area in the log area, and this leads to
hole blocks shown as X blocks in the figure. Following the
four data blocks, an abort record is written at the end to mark
the transaction as aborted.

D DIC|D/X|X|[X|A D|D

D — Data Block
X — Hole Block

C — Commit Record
A — Abort Record

Fig. 3. An Example of Log Holes.

In transactional persistent memory using X/L technique,
each thread allocates and manages its own persistent log area.
The start address of each log is globally visible, so that each
log can be read during recovery. Each log consists of a series
of 64-bit data and metadata blocks. Since one thread executes
one transaction at a time, data blocks for each transaction are
written to the log consecutively, followed by one metadata
block at the end. Details of the data and metadata block
organization are discussed in Section IV. The XIL technique

removes the ordering between the persistence of the data
blocks and the commit record (i.e., the metadata block) using
the torn-bit technique, which is proposed in Mnemosyne [3].
It uses one bit in each data block to indicate the status. Before
each run of log writes, the torn bit is set to ‘0’ (or ‘1’). When
these blocks are written, they are set to ‘1’ (or ‘0’). This bit
can be used to detect data blocks that have not been written,
i.e., the hole blocks. The XIL technique also avoids the use
of log head and tail pointers, so as to eliminate the ordering
before their updates. To achieve this, the XIL technique has to
check the log from the beginning and detects the end by itself
during recovery.

During recovery, the XIL technique needs to correctly
process a persistent log area with hole blocks. There are three
issues to be addressed: (1) hole blocks should be detectable; (2)
uncommitted data blocks that have already been written should
be detectable; and (3) valid log blocks that follow the holes
should be read and processed. For the first issue, the torn-bit
technique can be used to detect data blocks that have not been
written, including the hole blocks. For the second issue, XIL
puts a backpointer in the abort record to point to the commit
record of last committed transaction. The backpointer serves
as a bridge to straddle the uncommitted blocks (as shown
in Figure 3). For the third issue, XIL checks the length of
each aborted transaction and adds an aborted record for every
64 blocks (the number ‘64 is adjustable in implementation).
During recovery, when an unwritten block is met, the recovery
process reads ahead by 64 blocks. Only if there is no aborted
record in the 64 blocks, the end of the log is found. There is no
valid log block following, and the log scan can be terminated.
In addition, as the torn bits in those log holes are not set,
they are required to be set during log truncation to ensure the
correctness of next run.

B. Volatile Checkpoint with Bulk Persistence

While the Execution in Log (XIL) technique allows uncom-
mitted data to be persisted, the Volatile Check with Bulk Per-
sistence (VCBP) technique is proposed to allow to-be-persisted
data to stay volatile. The VCBP technique consists of two
steps: volatile checkpoint and bulk persistence. The volatile
checkpoint step checkpoints committed data blocks to the data
area without forcing them to be written back to persistent
memory. It is performed for each transaction execution (shown
as Step 4 in Figure 2 (c)). The bulk persistence aggressively
delays the persistence of checkpointed data until the persistent
log area runs out of space. At this time, it forces all data
blocks in the CPU cache to be written back to the persistent
memory. Persistence of checkpointed data (shown as Step 5
in Figure 2 (c)) is removed during the execution of each
transaction.

The VCBP technique improves transaction performance
without compromising the functionality of the checkpoint
operation. The functionality of the checkpointing operation,
which makes committed data visible and durable, is still
guaranteed in transactional persistent memory using the VCBP
technique. The visibility of committed data is provided with
volatile checkpoint by copying the committed data to the data
area, even though these data blocks are not forced to be
persistent. The durability of committed data is ensured with

the persistent log area, which is not truncated until the bulk
persistence.

Transaction performance is improved in transactional per-
sistent memory using the VCBP technique. This technique
not only removes the persistence of checkpointed data from
each transaction execution, but also frees programs from
tracking (i.e., bookkeeping) of those checkpointed data blocks.
It flushes all data blocks, including both the volatile and to-
be-persisted data, from the CPU cache to the memory.

The correct issue of the VCBP technique is raised from the
problem that volatile data blocks, including uncommitted ones,
may be written to the persistent memory in both steps, volatile
checkpoint and bulk persistence, of VCBP. In the volatile
checkpoint step, the volatile checkpointed data blocks may
have been written to persistent memory due to cache eviction.
In the bulk persistence step, uncommitted data that do not need
persistence are flushed to persistent memory due to the bulk
persistence operation. To ensure the correctness of VCBP due
to blurred the volatility-persistence boundary, two properties
are required to be maintained.

Property 1. Transaction correctness maintains, even if part
of its checkpointed data blocks are persisted in advance due
to cache eviction. Checkpointed data blocks are those blocks
that are copied to the data area only after their transactions are
committed. In other words, these data blocks and all others
in their transactions have been completely persisted in the
log area. Even if some (not all) checkpointed data blocks
are written back due to cache eviction and system crashes,
all other data blocks in their transactions can be recovered
using persistent log. Thus, the writeback of checkpointed data
blocks before bulk persistence does not hurt the completeness
of their transactions. Instead, VCBP takes more advantage
of the writebacks due to cache eviction. It allows the CPU
cache to buffer data blocks and write them back on cache
conflicts. Cache efficiency is improved compared to the forced
writebacks in conventional persistent memory.

Property 2. Persistent data are protected, even if uncom-
mitted data are forced to be written back due to bulk persis-
tence. On the bulk persistence operation, uncommitted data are
also forced to be written back to memory, as the data blocks
that need persistence are not tracked. Since all data in the
checkpointing phase are committed data, those uncommitted
data include: (1) uncommitted data in the execution phase, and
(2) uncommitted data in the logging phase. For uncommitted
data in the execution phase, they can be only written to
the execution area without hurting any persistent data, which
reside in the persistent log and data areas. For uncommitted
data in the logging phase, they can be data blocks from
uncommitted transactions. They can be detected as discussed
in Section III-A. For volatile data in the checkpointing phase,
since they are committed, they also do not hurt data in the
persistent data area, as discussed for Property 1.

In all, VCBP improves cache efficiency by removing forced
persistence of checkpointed data from each transaction, and
frees programs from the complexity of tracking blocks that
need persistence.

Overwrite Order of Concurrently-Updated Blocks. With the
VCBP technique, a data block may have different versions that
are committed in different transactions. Since the persistence

of checkpointed data blocks are delayed, different versions of
a data block should be written back in correct commit order;
Otherwise, a newer version may be overwritten by an earlier
one, which leads to inconsistency. Figure 4 shows an example
of the overwrite order problem. As shown in the figure, one
transaction 77 commits and checkpoints block A and B (as
shown in the left private cache), and another transaction 7,
writes block B and C (as shown in the right private cache). 15
commits after 7. Both of them have volatile copies in their
own private cache. The VCBP technique needs to make sure
the data blocks are overwritten in correct commit order, even if
a later committed transaction is flushed to memory first. In the
illustrated example, it is required that B; does not overwrite
Bs.

Private Cache
‘ B2 ‘ Cz ‘

Private Cache
‘ At ‘ B+ ‘

w0

Persistent Memory

Fig. 4. An Example of the Overwrite Order Problem.

During normal execution of a transaction, the overwrite
order is correctly achieved by the cache coherence protocols.
When Bs is checkpointed, it invalidates B;. For any persis-
tence sequence, only Bs can be written back. The complete-
ness of the checkpointed data persistence in each transaction
is discussed in Property I as above. To ensure the correct
overwrite order during recovery, commit sequence between
transactions is kept. The VCBP technique keeps a global ID as
the transaction identifier (TxID), and stores it in the commit
record (as discussed in Section IV). The global ID is used
to determine the replay sequence of committed transactions
during recovery. In this way, the overwrite order of committed
transaction is kept, even if their persistence is delayed.

Bulk Persistence vs. Asynchronous Log Truncation. Both
of the two techniques move persistence of checkpointed data
and log truncation from the critical transaction execution path.
Asynchronous log truncation forks a thread in background to
check the persistence of checkpointed data blocks in each
transaction and truncate the log once the checkpointed data
blocks are persistent [3]. The difference is that asynchronous
log truncation still iterates the checks and truncation for
transaction one by one while bulk persistence removes the
tracking and flushes the whole CPU cache without iterating
each transaction. Bulk persistence also increases the oppor-
tunity of (1) write coalescing of data blocks across transac-
tions in the CPU cache, and (2) better cache efficiency with
less forced writebacks (but more cache eviction writebacks).
Comparetively, bulk persistence improves cache efficiency and
thereby the transaction performance.

C. Recovery

In persistent memory using Blurred Persistence mecha-
nism, programs can not tell the exact location (in the CPU
cache or in the persistent memory) of a data block. After
unexpected system crashes, uncommitted data blocks may have
been written to persistent memory, and checkpointed data may

get lost. Therefore, there are two tasks during recovery: (1)
finding all uncommitted data that have been persisted, and (2)
recovering all checkpointed data that have not been persisted
in the data area.

Recovery steps are as follows.

1) Detection of Uncommitted Data Blocks. Each log is
scanned independently in the first step. The type of
each log record (i.e., data record, commit record or
abort record) is determined using the metadata in the
log record. Since an abort record stores a backpointer
to the commit record of the last committed trans-
action, all data blocks between the commit record
and the abort record belong to an uncommitted trans-
action. As such, the data blocks from uncommitted
transactions in the persistent log area are detected.

2) Commit Sequence Sorting. In the second step, all
committed transactions from different log areas are
sorted by the commit sequence, recorded as TxID
in each commit record. With the identified commit
records from the first step, the recovery process sorts
these transactions by the TxID using sort algorithms.
After this step, each committed transaction has its
global commit sequence.

3) Replay of Committed Transactions. In the final step,
the committed transactions are replayed by check-
pointing their data blocks from the persistent log
area to the data area, following the global commit
sequence as sorted in the second step. Once these
committed data are replayed, the data area are recov-
ered to the latest committed data version.

After all the three steps, all the data blocks in the data
area are committed and brought to the newest version. All
data blocks are committed, because only data blocks from
committed transactions are checkpointed during normal exe-
cution and only committed transactions have their data blocks
replayed to the data area during recovery. All data blocks
are newest, because all data blocks are checkpointed using
volatile checkpoint, once a transaction is committed during
normal execution, and all committed transactions in the log
are replayed in the global sequence during recovery. As such,
the data area is guaranteed to be consistent.

IV. IMPLEMENTATION

In this section, we describe the implementation of our
persistent memory system that uses Blurred Persistence mech-
anism, which we call Blurred-Persistence Persistent Memory
(BPPM).

A. Overview of BPPM

We implement BPPM based on a software transactional
memory implementation, TinySTM [27]. To leverage BPPM
for ACID properties support, a program only needs to be in-
serted with transaction primitives, which is a light-weight revi-
sion. BPPM uses Intel STM compiler [29] to compile programs
with transactional annotation using the inserted transaction
primitives. The Intel STM compiler compiles the programs and
generates transactions. And then, each transaction is ensured
with ACID properties in BPPM.

To provide ACID properties for storage consistency, BPPM
extends the transactional memory system with persistence
support to make the system recoverable. First, versions are
kept atomic and durable in persistent memory instead of in
the volatile CPU cache. To achieve this, data blocks in the
volatile CPU cache are persisted to the log area in persistent
memory when a transaction commits, and are not truncated
until they are checkpointed and persisted to the data area in
persistent memory. As shown in Figure 2 (c), when a trans-
action commits, data blocks are persisted (as in Step 3) using
clflush and mfence commands. For a checkpoint operation in a
transaction, persistence of these data blocks (originally shown
as Step 5) is delayed but ensured using the bulk persistence
operation of the VCBP technique. Data blocks in the log area
are not truncated until the bulk persistence operation. Second,
the allocated log area is globally visible. Even though each
thread allocates its own log area, the address of the log area
is fixed in the persistent memory. After system crashes, these
log areas can be located and scanned for recovery. Third, a
global sequence for transactions in all log areas is required, so
that the commit sequence of transactions across threads can
be determined. For transactions with overlapped writes (i.e.,
two transactions write to the same data block), only when
the commit sequence is determined, they can be recovered
correctly during recovery.

B. Log Organization

Each thread allocates its own log area. Each log area
consists of a series of log records. A log record has a 64-
bit data block (as shown in Figure 5) and a 64-bit metadata
block (as shown in Figure 6).

o e 6263

a 64-bit Data Block

Bit(s) Name Description

0-62 Data 8-byte data with one bit stored as the tail
bit in the metadata block
63 TornBit the torn bit
Fig. 5. Data Block Format in a Log Record.

In Figure 5, there are 8-byte data, with one bit named
TailBit borrowed from the metadata block, and one TornBit
flag. The TornBit flag is used to check whether the data block
has been written. In persistent memory, a write of a 64-bit
block can be an atomic operation [1], [30], [31]. By setting
and checking the TornBit flag before and after each log run, the
unwritten blocks are found (as discussed in Section III-A). In
this way, the atomicity of a block write is detectable. Since the
TornBit flag consumes one bit in the data block, one bit from
the metadata block (7ailBit as shown in Figure 6) is borrowed
to make the 8-bytes complete.

In addition to the TornBit and TailBit as discussed above,
there are several flags in the metadata block (as shown in
Figure 6) that are used to describe the data block. The MASK
is a bitmap to indicate which bytes in the data block are valid.
It has eight bits, and each bit is corresponded to each byte
in the data block. The FLG_DC is a flag to indicate whether
the data block is a commit/abort record or a data block. And

91011121516

a 64-bit Metadata Block

Description

Bit(s) Name

0 TornBit the torn bit
1 TailBit the tail bit of the data block
2-9 MASK valid bitmap of each byte in the data block
10 FLG_DC bit to indicate whether this is a com-
mit/abort record or a data record
11 FLG_CA bit to indicate whether this is a commit
record or an abort record
12-15 RESV reversed, not used
16-63 ADDR address of the data block

Fig. 6. Metadata Block Format in a Log Record.

the FLG_CA is further used to differentiate the commit record
from the abort record. In a data record, its data block keeps the
real data value. In a commit record, its data block keeps the
transactional identifier, 7xID, which is a global ID to determine
the commit sequence as discussed in Section IV-A. In an abort
record, its data block keeps the backpointer to straddle the
aborted records as discussed in Section III-A. Besides the four
reserved bits, RESV, there is a 48-bit ADDR to keep the home
location address of the data block.

C. Command Support in the CPU Cache

To persist data from the CPU cache to the persistent
memory in software, several commands in the CPU cache
need to be enhanced. We use the clflush command to force
a data block with a specific address in each level of the CPU
cache to be written back to the memory, and the mfence to
prevent the reordering, similar to [2], [5]. We also use the
wbinvd command to flush all data blocks in the CPU cache
to be written back [30], [31]. The wbinvd is used for bulk
persistence, in which we ensure that there is no side effect on
correctness (as discussed in Section III-B). It has been pointed
out that clflush and mfence commands do not guarantee the
durability due to the buffer queues in memory controller [7].
Simple enhancement can be easily made to the CPU cache to
ensure durability [7]. We believe that the enhancement could
also be generalized to the wbinvd command for durability.

V. EVALUATION

To evaluate the benefits of BPPM, we are going to answer
the following questions:

1) How does BPPM benefit from the proposed tech-
niques, XIL and VCBP?

2) How is BPPM sensitive to the variation of the value
size, the transaction size, the size of the log area, the
memory latency, and the transaction idle time?

In this section, we first describe the experimental setup before
answering the above two questions.

A. Experimental Setup

BPPM Settings. In the evaluation, we compare BPPM with
a baseline (BASE) system, the Mnemosyne (MNE) system, and
a no-persistence (NP) system. The baseline (BASE) system is a

conventional transactional persistent memory implementation
as shown in Figure 2 (b). The Mnemosyne (MNE) system is
an optimized implementation of the baseline system, which
uses write combing technique [30], [31] to bypass the CPU
cache to provide faster log persistence [3]. The no-persistence
(NP) system is an ideal transactional persistent memory system
which has no persistence operations. The performance is an
upper bound of all solutions of persistence optimizations in
transactional persistent memory. To evaluate the benefits from
different techniques in BPPM, we also perform experiments for
BPPM in different modes: BP(XIL), BP(VCBP), and BPPM.
BP(XIL) is referred to as BPPM with only XIL technique used.
Similarly, BP(VCBP) is referred to as BPPM with only VCBP
technique used. And BPPM is referred to as BPPM with both
techniques used.

All the evaluations are conducted on a server with a
24GHz quad-core AMD Opteron Processor and a 16GB
DRAM memory. We emulate the latency of NVM by adding
extra latency in each memory flush operation'. In the evalu-
ation, the log size is set to one megabyte, and the memory
latency is set to 150 nanoseconds by default.

Workloads. Table I lists the workloads that are used in
the evaluations, including basic data structures and well-known
key-value stores. We evaluate the performance of transactional
operations on basic data structures, such as random swaps in
a large data array, insert/delete operations in a hash table, and
insert/delete operations in a red-black tree, which are also used
in previous transactional persistent memory works [4], [9], [8].
The size of all values in these data structures is set to 64
bits by default in the evaluation. We also implement a B+
tree with a node size of 4 KB, and evaluate its transactional
operations. Each node in the B+ tree has 200 key-value pairs,
and each key or value has a size of 8 bytes. A transaction
in the B+ tree evaluation consists of multiple key-value insert
or delete operations. In addition, we also evaluate transaction
performance of operations on a well-known key-value (KV)
system, Tokyo Cabinet [32], to understand the benefits of
BPPM in real key-value systems.

TABLE 1. WORKLOADS.
Workloads Description
SPS [4] Random swaps of array entries
Hash [4] Insert/delete entries in a hash table
RBTree [4] Insert/delete nodes in a red-black tree
B+Tree [9] Insert/delete nodes in a B+ tree

KVStore [32] Key-value operations on TokyoCabinet

B. Overall Performance

1) Single-thread Evaluation: To focus on the persistence
effect, we first run all benchmarks in a single thread to avoid
the effects from the concurrency control. We compare BPPM
in different modes, including theBP(XIL), BP(VCBP), and
BPPM, with the baseline (BASE), Mnemosyne (MNE), and
no-persistence (NP) systems.

'While the simulated memory latencies introduced by software may not
accurately reflect the actual latencies when evicting cache lines to persistent
memory, we believe that the relative findings across multiple solutions are
likely to still hold.

BASE t==x BP(XIL) & BPPM
MNE ===z BP(VCBP) wzzzzzzz NP xxxx
4 T T T T T
3 35t A -
ey
2 3t .
o
= 25 _
§& 2 .
g 15} -
C
o 1F —
'_
0.5

SPS Hash RBTree B+Tree KVStore Gmean

Fig. 7. Transaction Throughput in Single-Thread Mode.

Figure 7 shows the normalized transaction throughput of
the afore-mentioned systems using different workloads. All
transaction throughputs are normalized to that of the baseline
system (BASE). Two observations are in order.

(1) The Blurred Persistence mechanism (shown as the
white bar in Figure 7) improves system performance signif-
icantly over the baseline (BASE) and Mnemosyne (MNE)
systems. For the evaluated workloads, the performance im-
provement in BPPM ranges from 56.3% to 143.7% compared
with the baseline (BASE) system, with an average of 86.3%.
Compared with Mnemosyne, the performance improvement in
BPPM also can be as high as 74.6% on average. While the
persistence support in persistent memory has 62.1% perfor-
mance degradation (by comparing the BASE system to the
NP system), BPPM almost halves this overhead.

(2) Both the XIL and VCBP techniques (respectively shown
as the third and fourth bars in each cluster in Figure 7)
improve the performance of persistent memory. With the
XIL technique, performance improvement of the evaluated
workloads ranges from 9.7% to 50.5%, with an average of
21.3%. With the VCBP technique, performance improvement
ranges from 52.2% to 84.8%, with an average of 63.5%. Both
the two techniques are effective in performance improvement
of transactional persistent memory.

2) Multi-thread Evaluation: To evaluate the performance
with both persistence and concurrency control effects, we run
benchmarks in multiple threads and vary the number of threads
to 1, 2, 4, and 8. We show the multi-thread evaluation results
for the hash table and RBTree workloads, while the others
have similar patterns and are omitted.

Figure 8 shows the transaction throughputs and the corre-
sponding abort ratios for the hash table and RBTree workloads.
The top half of the figure shows the transaction throughputs of
each workload with different number of threads. As shown in
the left top of Figure 8, the transaction throughput of each
evaluated system increases when the number of threads is
increased from 1 to 4, but drops when the number of threads
is further increased to 8. The reason is that the abort ratio
increases dramatically from about 1% to over 50% when the
number of threads goes from 4 to 8, as shown in the left bottom
of Figure 8. Even though the performance in all evaluated
systems drops, BPPM reduces persistence overhead constantly
by about 40% in the hash table workload. The right half of

2e+06

=]

S 1.5e+06
D~

20

g I 1e+06
l_v L
§ 500000 A
'_

o

gg 9
g 0.1
gg 0.01
22 0.001

1 2 4 81 2 4 8
Number of Threads (HashTable) Number of Threads (RBTree)

Fig. 8. Transaction Throughput in Multi-Thread Mode.

Figure 8 shows similar results for the RBTree workload. In
the RBTree workload, BPPM reduces persistence overhead by
about 43% constantly when the number of threads goes from
1 to 8.

C. Sensitivity Analysis

We evaluate the sensitivity of BPPM to different settings,
including the value size of each data structure, the size of the
log area, the memory latency, and the transaction idle time. In
this subsection, we vary the settings in the hash table workload
for the sensitivity evaluation. Since we focus on the persistence
overhead that is added to persistent memory, we use a single
thread to run the benchmark for the following evaluations.

1) Sensitivity to the Value Size: We measure the transaction
throughput of the hash table workload by varying the value size
in its data structure from 8, 64, 256, 1024 to 4096 bytes.

Figure 9 shows the transaction throughput of the hash
table workload with different value sizes. From this figure,
we have two observations. First, as the value size increases,
the transaction throughput (in terms of transactions per second)
drops, but the byte throughput (in terms of bytes per second)
increases. The byte throughput is calculated by multiplying the
transaction throughput with the value size. The reason for the
increase of the byte throughput is that the amortized persis-
tence overhead per byte decreases. With larger value sizes,
a transaction can execute larger bytes before a persistence
is required. When the persistence overhead is amortized to
each byte, the cost is lowered down. Second, performance
improvement in BPPM (in terms of transaction overhead that
is reduced in BPPM) drops smoothly from 39.7% with an 8-
byte value size to 23.0% with a 4096-byte value size. We
conclude that BPPM gains more benefits in workloads with
smaller value sizes.

2) Sensitivity to the Transaction Size: To understand the
impact of the transaction size, we measure the I/O throughput
of the hash table workload by varying the transaction size (i.e.,
the number of operations in a transaction). I/O throughput is
calculated by multiplying the transaction throughput with the
transaction size.

Figure 10 shows the I/O throughput of the hash table
workload with different transaction sizes. From the figure, we
observe that the I/O throughput of the no-persistence (NP) sys-
tem keeps almost constant while I/O throughputs of the others
improve smoothly. The reason why performance in the baseline

Fig. 9.

BPPM
NP xxx

BP(XIL) £

Transaction Throughput
(txs/s)

F‘DNZ% et
256 1024 4096
Value Size (byte)

Sensitivity to the Value Size.

BASE —— MNE —<—BPPM —e— NP —e—

700000 : : . ;
600000 | 3
500000 -

400000 p — e o]

300000 [.

200000 W

100000 L L L L
1 2 4 8 16 32

Transaction Size

I/0 Throughput
IOPS

Fig. 10. Sensitivity to the Transaction Size.

(BASE), Mnemosyne (MNE) and BPPM systems improves is
similar to that given in the value size evaluation. When the
transaction size increases, a transaction executes more I/Os
before a persistence is required. Due to the reduced amortized
overhead, the I/O throughput is improved smoothly. In contrast,
persistence operations are removed in the no-persistence (NP)
system. Therefore, performance in the no-persistence (NP)
system can be hardly affected by the transaction size.

3) Sensitivity to the Log Size: In BPPM, bulk persistence is
triggered when the log area runs out of space. For this reason,
performance of BPPM can be affected by the size of the log
area. Meanwhile, different log sizes lead to different recovery
times during recovery, as BPPM has to scan the log area for
the recovery. To study the impact of the log size, we vary the
log size from 0.1 megabytes to 2 megabytes (log size is set
to 1 megabyte by default in other evaluations) to measure its
implications on transaction throughputs.

Figure 11 shows the transaction throughputs for all eval-
vated workloads under different log size settings. As shown
in the figure, the performance of each workload changes
slightly as the log size increases. With a larger log size, bulk
persistence can be performed less frequently. The frequency
of forced writebacks is reduced, and the cache efficiency is
improved. As such, the increase of the log size brings more
benefits to the transaction performance to a certain degree.

Figure 12 shows the recovery time of BPPM for different
log size settings. We show only the results for one workload,
because the recovery times in the evaluated workloads are

SPS —+— RBTree ---3--- KVStore —-o--
Hash ---x--- B+Tree --®&--
.. 700000 T T T
5 : :
8 600000 | — -
S 500000 | .
°_. W T = R 0
e 400000 - R . D .
52300000 |- .
& 200000 - 4
N A e n =
& 1ommo$“ - o 76777777$
NS L 1 1
0.1MB 0.5MB 1MB 1.5MB 2MB
Log Size
Fig. 11. Impact of Log Size on Transaction Throughput.
0.1 T T T
OE) 0.08]
)
(OS]
s8 0.04 |
€ 002
0 1 1 1
0.1MB 0.5MB 1MB 1.5MB 2MB
Log Size
Fig. 12. Impact of Log Size on Recovery Time.

close to each other. As shown in the figure, the recovery time
increases almost linearly from 3.2 microseconds with a log
size of 0.1 megabytes to 49.8 microseconds with a log size
of 2 megabytes. Even with the log size of 2 megabytes, the
recovery time is in the order of tens of microseconds, which
can be regarded as constant recovery.

We conclude that, with increased size of the log area, the
performance in BPPM can be slightly improved, while the
recovery is still fast.

4) Sensitivity to the Memory Latency: To study the impact
from different non-volatile memory technologies that have
different memory access latencies, we set the memory write
latency to 35, 95, 150, 1000, and 2000 nanoseconds to measure
its implication on transaction throughputs. Since BPPM is
implemented to run directly on real servers, we add the latency
to each memory flush operation. But note that the latency is not
added to memory writes due to cache eviction in the evaluation,
because programs are not aware of the cache eviction in the
CPU cache hardware.

Figure 13 shows transaction throughputs of the hash table
workload with different memory latency settings. In this figure,
we omit the performance for the no-persistence (NP) system,
because the memory write latency has little effect on the
no-persistence system. As the no-persistence system has no
persistence operations, it is not sensitive to the memory latency.
The figure shows transaction throughputs of other systems.
From the figure, we have two observations.

(1) First, in general, these protocols have worse transaction
throughputs when the memory latency is higher. However, the
BPPM system has poorer performance than the BP(VCBP)
system when memory latency is high. The reason is that

BASE —— BP(XIL) G-
MNE --x- BP(VCBP) =

400000 ———
350000 &
300000
— 250000 -
200000 |
25150000
100000
50000

0

Transaction Throughput
txs/s

35 95 150 1000 2000
Memory Latency (ns)

Fig. 13. Sensitivity to the Memory Latency.

the BPPM system forces uncommitted data blocks to be
written back to persistent memory and has higher persistence
overhead. In BPPM, the XIL technique executes data in the
log area, which is allocated with memory space in the slow
persistent memory rather than in the fast volatile memory (e.g.,
DRAM). The bulk persistence forces all data blocks in the CPU
cache, including these uncommitted data in the log area, to be
written back. The uncommitted data are forced to be written
back to slow persistent memory instead of fast volatile memory
(e.g., DRAM), and this leads to degraded performance.

(2) Second, the performance of persistent memory gets
worse with higher memory write latency, but the performance
benefits from the blurred persistence mechanism become
higher. The BPPM system outperforms the baseline system by
74.1% when the latency is 35ns, but triples the performance
of the baseline system when the latency is 2000ns. The
BP(VCBP) system, the BPPM system with only VCBP tech-
nique used, can even has nearly five times of the performance
of the baseline system.

5) Sensitivity to the Transaction Idle Time: Transaction idle
time is the time when a program does not execute instructions.
It affects the performance of asynchronous operations in trans-
actions. To study this effect, we set the value size to 1024 bytes
and vary the percentage of transaction idle time from 90% to
0% (no idle time) to evaluate the sensitivity. In addition to
the baseline (BASE), BPPM and no-persistence (NP) systems,
we also evaluate the Mnemosyne (MNE) system with syn-
chronous and asynchronous log truncation methods [3], which
are respectively denoted as MNE-SYNC and MNE-ASYNC in
Figure 14.

Figure 14 depicts transaction throughputs of the evaluated
systems with different percentages of the idle time. As the
percentage of the idle time goes down, which means busier
programs, the transaction throughput goes up. But, with lower
idle time percentage, MNE-ASYNC has poorer performance
than MNE-SYNC, which is consistent with the results reported
in previous work [3]. This is because the background log trun-
cation thread competes with the foreground transaction execu-
tion threads. Comparatively, BPPM has consistently better per-
formance than Mnemosyne with both SYNC and ASYNC log
truncation. The reason is that BPPM removes the bookkeeping
of to-be-persisted data blocks and has no background threads.
Therefore, BPPM gains consistent performance benefits with
the optimization dimension of blurred persistence.

BASE =<SMNE-ASYNC £y
MNE-SYNC z== BPPM zzzzzz

180000 T T T T T
160000 | S
140000 | M .
120000 | .
100000 | .
80000 |
60000 | 7 7 N -
40000 |- % % @w -
20008 o
90% 50% 10% 5% 0%
Percentage of Idle Time

NP

Transaction Throughput
(txs/s

Fig. 14. Sensitivity to the Transaction Idle Time.

VI. RELATED WORK

The transaction mechanism has been widely used to en-
sure storage consistency in both database management sys-
tems [33], [34], [24] and file systems [35], [36]. The design of
the transaction mechanism has evolved as the storage media
moves from magnetic disks to emerging non-volatile memo-
ries. Flash memory has the no-overwrite property, i.e., a flash
page can not be overwrite until it is erased. To hide the long
latency of the erase operation, page writes are redirected to new
free pages in flash storage. With this out-of-place update way,
both the new and the old versions are kept. Data versioning
in transactions is naturally supported. This enables efficient
transaction protocols inside storage devices [12], [13], [14],
[37], [38], [39], which are designed directly on flash memory
to leverage its no-overwrite property and reduce transaction
overhead by removing the journal or log writes.

Emerging byte-addressable non-volatile memories (NVMs)
are further accelerating the architectural change in transac-
tion design. Transaction designs can be classified into three
categories when NVMs are used differently in a storage
system. First, when NVMs are used in secondary storage,
the internal bandwidth inside a storage device (due to the
internal parallelism) is much higher than the device bandwidth.
MARS is a transaction protocol that is proposed to copy
data for transactions inside devices to exploit the internal
bandwidth [40]. Second, when NVMs are used as persistent
cache (at memory level) to secondary storage, the persistence
at memory level provided by NVMs can be used to persistently
keep the transactional data to reduce the transaction overhead
in persisting data to the secondary storage [41], [42]. Third,
when NVMs are used for data storage at the memory level
(a.k.a., persistent memory), the transaction mechanism needs
to be designed when the data are written back from the CPU
cache to the persistent memory. Cache management in the
CPU cache is quite different from that in the main memory.
Transaction design in persistent memory is a challenge, and
has been intensively researched [1], [2], [3], [4], [5], [15], [17],
[43], [8], [7], [9], [28], [44]. Our proposed BPPM is used in
persistent memory, i.e., the third category of the NVM usage.

In persistent memory, the high transaction overhead comes
from not only the persistence overhead that writes multiple
levels of the CPU cache, but also the ordering overhead that
requires I/Os to be performed in strict order. Thus, existing ap-
proaches that reduce the transaction overhead can be classified

into the following three categories:

Reducing the Persistence Latency Overhead. In persis-
tent memory, data persistence is achieved by forcing data to be
written back to memory through multiple levels (e.g., L1, L2
and LLC) of the CPU cache. Making some or all of the levels
non-volatile can reduce the persistence overhead. Kiln [8] is a
recently proposed protocol to use fast non-volatile memory
as the last-level cache (LLC) in the CPU cache to reduce
the persistence overhead [8]. Whole system persistence [17]
takes this approach to an extreme. It makes all levels of
cache non-volatile and uses backed battery to transfer data
through data buses safely even on power failures. In contrast,
our proposed BPPM does not require new hardware, but
instead, reduces persistence overhead by blurring the volatility-
persistence boundary.

In some non-volatile memories like PCM, write operations
can be performed faster with lower retention and reliability
requirements. Leveraging this property, DP? [44] differentially
writes the log records and the data records respectively using
different write speeds. It also schedules differently for the two
kinds of operations. The persistent overhead of the log records
is reduced. In contrast, our proposed BPPM is a software
approach, which does not rely on specific write properties of
NVMs.

Hardware Approaches in Reducing the Ordering Over-
head. Relaxing the ordering requirements is another approach
to reduce transaction overhead in persistent memory. Since
the ordering is ensured at the boundary between the CPU
cache and the memory, keeping ordering inside the CPU cache
hardware is an efficient approach. BPFS [1] introduces the
epoch semantic in the CPU cache. Any I/O after the epoch is
allowed to be performed only after all I/Os before the epoch are
complete. Ordering is kept using epoch in the hardware, and
this frees programs from costly waiting in ordering keeping.
Similarly, CLC [15] keeps the ordering in the CPU cache with
status checking for programs.

Strand Persistency [16] is a relaxed consistency model for
persistent memory. It splits I/O dependencies into concurrent
threads using program semantics, which allows reordering of
I/Os that have no dependency.

LOC [9] introduces the speculative techniques to the CPU
cache hardware for I/O persistence. LOC allows reordering of
I/Os to persistent memory, but makes the commit sequence
visible in program order. PTM [28] takes a similar approach
to extend the CPU cache hardware for consistency issues.

BPPM differs from above techniques in two aspects:
(1) BPPM is a software approach, while the above mentioned
techniques demand for hardware support; (2) BPPM relaxes
the persistence requirement, eliminating unnecessary persis-
tence operations, while the above mentioned techniques relax
the ordering requirement to allow the reordering of persistence
operations.

Software Approaches in Reducing the Ordering Over-
head. Ordering overhead in transactions has long been a design
challenge in storage systems. New commit protocols, using
checksums [45], backpointers [46], [47], and counters [48],
[13], have been proposed in traditional storage systems to re-
move the ordering of the commit records, which forces waiting

for the completeness of all log records. In traditional storage
systems, researchers have also studied the asynchronous order-
ing keeping techniques, which only maintain update dependen-
cies and delay the persistence of update operations [10], [11].

In persistent memory, Mnemosyne [3] proposes two tech-
niques, torn-bit and asynchronous checkpoint, to reduce or-
dering overhead in persistent memory. The forn-bit technique
removes the use of commit record and thus the ordering
overhead before commit operations. This technique can be
well incorporated and has also been used in BPPM. The
asynchronous checkpoint technique asynchronously writes the
checkpointed data to their home locations in the background,
and this benefits programs with more idle time. This technique
is not used in BPPM, due to high overhead in tracking those
checkpointed data and loss of cache coalescing opportunities
across transactions. While Mnemosyne uses asynchronous
techniques to hide the write overhead in transactions, our
proposed BPPM achieves the same goal by avoiding unnec-
essary persistence operations, i.e., redundant persistence of
duplicated copies that are introduced by strict isolation of the
uncommitted data from the to-be-persisted data.

VII. CONCLUSION

Persistent memory enables memory-level storage, but needs
to ensure storage consistency by carefully persisting data
blocks to persistent memory in time and in correct order.
Strictly tracking and placing data blocks in the volatile CPU
cache or in the persistent memory are costly, as the CPU cache
is hardware-controlled and unaware of data locations. Our
proposed Blurred Persistence mechanism blurs the volatility-
persistence boundary to reduce this overhead. With this mech-
anism, uncommitted data blocks (i.e., the volatile data) are
allowed to be persisted, only if they are detectable in persistent
memory. Checkpointed data (i.e., the to-be-persisted data) are
allowed to stay volatile leveraging the durable copies in the log,
if they are ensured to be persisted in the correct commit order
across threads. The costly bookkeeping of those blocks that
need persistence is also removed with bulk persistence, due to
the allowance of persistence for uncommitted data. Evaluations
of our BPPM implementation show that Blurred Persistence
is an effective and efficient software-based mechanism for
transactional persistent memory.

ACKNOWLEDGMENTS

We would like to thank our shepherd Raju Rangaswami and
the anonymous reviewers for their comments and suggestions.
This work is supported by the National Natural Science
Foundation of China (Grant No. 61232003, 61433008), the Na-
tional High Technology Research and Development Program
of China (Grant No. 2012AA011003), Samsung Electronics
Co., Ltd., Huawei Technologies Co., Ltd., and the State Key
Laboratory of High-end Server and Storage Technology (Grant
No. 2014HSSA02).

REFERENCES

[1] 1. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better I/O through byte-addressable, persistent memory,”
in Proceedings of the 22nd ACM SIGOPS Symposium on Operating
Systems Principles (SOSP). New York, NY, USA: ACM, 2009, pp.
133-146.

(2]

(3]

(4]

(5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Venkataraman, N. Tolia, P. Ranganathan, R. H. Campbell et al., “Con-
sistent and durable data structures for non-volatile byte-addressable
memory.” in Proceedings of the 9th USENIX Conference on File and
Storage Technologies (FAST). Berkeley, CA: USENIX, 2011, pp. 61—
75.

H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). New York, NY, USA: ACM, 2011, pp.
91-104.

J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson, “NV-Heaps: Making persistent objects fast
and safe with next-generation, non-volatile memories,” in Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). New
York, NY, USA: ACM, 2011, pp. 105-118.

X. Wu and A. L. N. Reddy, “SCMFS: A file system for storage class
memory,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). New
York, NY, USA: ACM, 2011, pp. 39:1-39:11.

J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu, “A case
for efficient hardware/software cooperative management of storage and
memory,” in Proceedings of Fifth Workshop on Energy Efficient Design,
2013.

S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proceedings of the Ninth European Conference on Computer Systems
(EuroSys). New York, NY, USA: ACM, 2014, pp. 15:1-15:15.

J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: closing
the performance gap between systems with and without persistence
support,” in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). ACM, 2013, pp. 421-432.

Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-ordering consistency for
persistent memory,” in Proceedings of the IEEE 32nd International
Conference on Computer Design (ICCD). 1EEE, 2014.

C. Frost, M. Mammarella, E. Kohler, A. de los Reyes, S. Hovsepian,
A. Matsuoka, and L. Zhang, “Generalized file system dependencies,”
in Proceedings of the 21st ACM SIGOPS Symposium on Operating
Systems Principles (SOSP). New York, NY, USA: ACM, 2007, pp.
307-320.

E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn, “Rethink
the sync,” in Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI). Berkeley, CA: USENIX, 2006,
pp. 1-14.

V. Prabhakaran, T. L. Rodeheffer, and L. Zhou, “Transactional flash,”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI). Berkeley, CA: USENIX, 2008,
pp. 147-160.

Y. Lu, J. Shu, J. Guo, S. Li, and O. Mutlu, “LightTx: A lightweight
transactional design in flash-based SSDs to support flexible transac-
tions,” in Proceedings of the IEEE 31st International Conference on
Computer Design (ICCD). IEEE, 2013, pp. 115-122.

Y. Lu, J. Shu, J. Guo, S. Li, and O. Mutlu, “High-performance and
lightweight transaction support in flash-based SSDs,” IEEE Transac-
tions on Computers, 2015, to appear.

I. Moraru, D. G. Andersen, M. Kaminsky, N. Binkert, N. Tolia,
R. Munz, and P. Ranganathan, “Persistent, protected and cached:
Building blocks for main memory data stores,” Parallel Data Laboratory,
Carnegie Mellon University, Tech. Rep. CMU-PDL-11-114v2, 2011.

S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,”
in Proceedings of the 41st ACM/IEEE International Symposium on
Computer Architecture (ISCA), 2014, pp. 265-276.

D. Narayanan and O. Hodson, “Whole-system persistence,” in Proceed-
ings of the Seventeenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS).
New York, NY, USA: ACM, 2012, pp. 401-410.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” in Proceedings of the

36th annual International Symposium on Computer Architecture (ISCA).
New York, NY, USA: ACM, 2009, pp. 2-13.

[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in Proceedings of the 36th annual International Symposium on Com-
puter Architecture (ISCA). New York, NY, USA: ACM, 2009, pp.
24-33.

P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in Proceedings
of the 36th annual International Symposium on Computer Architecture
(ISCA). New York, NY, USA: ACM, 2009, pp. 14-23.

M. K. Qureshi, S. Gurumurthi, and B. Rajendran, “Phase change
memory: From devices to systems,” Synthesis Lectures on Computer
Architecture, vol. 6, no. 4, pp. 1-134, 2011.

E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Eval-
uating STT-RAM as an energy-efficient main memory alternative,” in
Proceedings of 2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 1EEE, 2013, pp. 256—
267.

“NVDIMM,” http://en.wikipedia.org/wiki/NVDIMM.

R. Ramakrishnan and J. Gehrke, Database management systems.
Osborne/McGraw-Hill, 2000.

M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proceedings of the 20th Annual
International Symposium on Computer Architecture (ISCA). New York,
NY, USA: ACM, 1993, pp. 289-300.

T. Harris, J. Larus, and R. Rajwar, Transactional Memory (Synthesis
Lectures on Computer Architecture), 2010.

P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning of
word-based software transactional memory,” in Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP). ACM, 2008, pp. 237-246.

Z. Wang, H. Yi, R. Liu, M. Dong, and H. Chen, “Persistent transactional
memory,” Computer Architecture Letters, 2014.

“Intel(© cH++ stm compiler, prototype edition,”
https://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-
edition, 2014.

“AMD64 architecture programmers manual volume 3: General purpose
and system instructions,” 2011.

“Intel architecture instruction set extensions programming reference,
319433-015,” 2013.

“Tokyo Cabinet: a modern
http://fallabs.com/tokyocabinet/, 2014.
J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price,
F. Putzolu, and I. Traiger, “The recovery manager of the system R
database manager,” ACM Computing Surveys, 1981.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: a transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging,” ACM Trans-
actions on Database Systems, 1992.

implementation of DBM,”

S. C. Tweedie, “Journaling the linux ext2fs filesystem,” in The Fourth
Annual Linux Expo, 1998.

M. L Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith, C. A. Soules,
and C. A. Stein, “Journaling versus soft updates: Asynchronous meta-
data protection in file systems.” in Proceedings of 2000 USENIX Annual
Technical Conference. Berkeley, CA: USENIX, 2000, pp. 71-84.

X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K. Panda, “Beyond
block I/0: Rethinking traditional storage primitives,” in Proceedings
of the 17th IEEE International Symposium on High Performance
Computer Architecture (HPCA). 1EEE, 2011, pp. 301-311.

Y. Lu, J. Shu, and P. Zhu, “TxCache: Transactional cache using byte-
addressable non-volatile memories in SSDs,” in Proceedings of the
3rd IEEE Nonvolatile Memory Systems and Applications Symposium
(NVMSA). IEEE, 2014.

Y. Lu, J. Shu, J. Guo, and P. Zhu, “Supporting system consistency with
differential transactions in flash-based SSDs,” IEEE Transactions on
Computers, 2015, to appear.

J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swanson, “From
ARIES to MARS: Transaction support for next-generation, solid-state
drives,” in Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP). ACM, 2013, pp. 197-212.

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

D. E. Lowell and P. M. Chen, “Free transactions with Rio Vista,”
in Proceedings of the 16th ACM Symposium on Operating Systems
Principles (SOSP). New York, NY, USA: ACM, 1997, pp. 92-101.

M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere, and J. J.
Kistler, “Lightweight recoverable virtual memory,” ACM Transactions
on Computer Systems (TOCS), vol. 12, no. 1, pp. 33-57, Feb. 1994.

J. Guerra, L. Marmol, D. Campello, C. Crespo, R. Rangaswami, and
J. Wei, “Software persistent memory,” in Proceedings of the 2012
USENIX Annual Technical Conference (USENIX ATC). Boston, MA:
USENIX, 2012, pp. 319-331.

L. Sun, Y. Lu, and J. Shu, “DP2: Reducing transaction overhead
with differential and dual persistency in persistent memory,” to appear
in Proceedings of the ACM International Conference on Computing
Frontiers (CF). ACM, 2015.

V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Iron file systems,”
in Proceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP). New York, NY, USA: ACM, 2005, pp. 206-220.

V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Consistency without ordering,” in Proceedings of the 10th
USENIX Conference on File and Storage Technologies (FAST). Berke-
ley, CA: USENIX, 2012.

Y. Lu, J. Shu, and W. Wang, “ReconFS: A reconstructable file system
on flash storage,” in Proceedings of the 12th USENIX Conference on
File and Storage Technologies (FAST). Berkeley, CA: USENIX, 2014,
pp- 75-88.

Y. Lu, J. Shu, and W. Zheng, “Extending the lifetime of flash-based
storage through reducing write amplification from file systems,” in
Proceedings of the 11th USENIX Conference on File and Storage
Technologies (FAST). Berkeley, CA: USENIX, 2013.

