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Abstract: Multibaseline (MB) phase unwrapping (PU) is a key processing technique in MB interfero-
metric synthetic aperture radar (InSAR). As one of the most popular methods, the cluster analysis
(CA)-based MBPU method often suffers from the problem of low noise robustness. Therefore, the
block-matching and 3D filtering (BM3D) algorithm, one of the most effective filtering methods for
image denoising, is applied to improve the performance of the method. Five different filtering
strategies for applying BM3D are proposed in the paper: interferogram filtering (IFF), intercept
filtering (ICF), cluster number filtering (CNF), unwrapped phase filtering (UPF), and simultaneous
filtering (STF). In particular, while keeping the general structure of BM3D, four different similarity
measures are defined for interferograms, intercepts, clusters, and unwrapped phases to accommodate
the special characteristics of different filtering objects. Experiments on synthesized and real InSAR
datasets prove their feasibility and effectiveness, and the experiment results show that (1) the PU
accuracy and robustness of the CA-based MBPU method can be greatly improved by adding BM3D
denoising; (2) simultaneous filtering of interferograms, intercepts, cluster numbers, and unwrapped
phases works best, but with the worst time complexity; (3) when filtering is performed for only one
object of the CA-based MBPU method, the filtering effect of CNF and UPF is better than that of IFF
and ICF; and (4), considering the three indicators of PUSR, NRSE, and time consumption, CNF and
UPF should be the best choices.

Keywords: interferometric synthetic aperture radar (InSAR); multibaseline (MB); phase unwrapping
(PU); cluster analysis (CA); BM3D

1. Introduction

Interferometric synthetic aperture radar (InSAR) can acquire multiple synthetic radar
images of an observed region and measure their interferometric phases to obtain the
corresponding terrain height information (such as a digital elevation model, DEM) or
deformation information [1–5]. However, the measured interferometric phase is wrapped
into the principal value interval, which is modulo 2π. In order to obtain the correct absolute
interferometric phase, phase unwrapping (PU) must be performed [6]. The accuracy of
the target elevation is directly related to the PU accuracy, so PU has always been a key
processing step in InSAR applications.

Researchers first proposed single-baseline phase-unwrapping (SBPU) methods to
reconstruct the unwrapped phase, and several representative works are introduced in [7–9].
However, the traditional SBPU method must assume that the actual phase jump between
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adjacent pixels is less than π to ensure the uniqueness of the solution, which is called the
phase continuity assumption. When the phase jump between adjacent pixels of the observed
terrain is greater than π, the accurate phase-unwrapping results cannot be obtained using
the SBPU technique.

Therefore, multibaseline phase-unwrapping (MBPU) algorithms are further proposed
to overcome the limitation of SBPU. According to [6], there are two main categories of MBPU
methods: parametric-based methods and nonparametric-based methods. The parametric-
based methods construct a statistical framework according to the probability density
function of the interferometric phase and regard the elevation or elevation difference as the
parameters to be estimated. In [10], a PU method for reconstructing highly discontinuous
ground elevation profiles using ML technology was proposed. In [11], an improved
technique based on ML estimation was proposed to reconstruct the elevation information.
In this method, a multifrequency independent phase dataset obtained by nonoverlapping
band-pass filtering the interferometric SAR raw data pair was used, and the unknown
surface was approximated by the local plane assumption. In [12], a maximum a posteriori
(MAP) estimation method based on multifrequency interferometry and a Markov random
fields (MRFs) model was proposed. In [13], the MAP estimation method was improved
based on the total variation model and graph-cut-based optimization algorithms. In [14],
an enhanced MBPU method by combining an unscented Kalman filter with an enhanced
joint phase gradient estimator was proposed. In [15], an extended Kalman filter (EKF)-
based MBPU approach, which has the ability of handling phase discontinuities, was
proposed. In [16], a nonlocal denoising method based on patch similarities and total-
variation regularization was proposed to realize resolution-preserving denoising and
robust MBPU for DEM reconstruction.

The nonparametric-based methods do not need the probability density function of
the interferometric phase and directly use multiple interferograms with different baseline
lengths to reconstruct the absolute phase. In [17], H. Yu et al. proposed a two-stage program-
ming approach (TSPA), which transplants the SBPU framework to MBPU. In [18,19], two
refined TSPA methods were presented. The first method is abbreviated as LPM-TSPA [18],
and it improves the performance of stage one of the TSPA by approximating the terrain
surface to a local plane, which allows more interferometric phase information to be used to
estimate the ambiguity number gradient. The second refined TSPA-based MBPU method
proposed in [19] uses an unscented Kalman filter (UKF) to improve the performance of
stage two of the TSPA. As one of the most popular methods, the cluster analysis (CA)-based
MBPU method has also been widely studied. In [20], the ambiguity vectors corresponding
to each pixel are solved according to the closed-form robust Chinese remainder theorem
(CRT), and then clustering is performed according to the ambiguity vectors. In order to
improve the noise robustness of the conventional CRT-based MBPU method, a fast CA
algorithm was proposed in [21], which clusters pixels with the same ambiguity vector into
a group according to the recognizable mathematical pattern, i.e., intercept information,
and the ambiguity vectors of all pixels in the same cluster can be estimated through the
group-by-group clustering center information. In [22], a refined CA-based method was
proposed by linearly combining multiple InSAR interferograms with different baseline
lengths, which makes the new combined interferogram have a larger ambiguity interval.
In [23], the recognizable mathematical patterns were expanded into row, line, and intercept,
which further improves the noise robustness of the CA-based method. In [24], a new
closed-form robust CA-based MBPU and filtering algorithm (MBPUF) was proposed to im-
prove the efficiency, height reconstruction accuracy, and noise robustness of the CA-based
MBPU method.

In addition, the application of deep learning in PU is becoming more and more
extensive. In [25], deep learning was applied to the CA algorithm, and an unsupervised
deep convolutional neural network named CANet was proposed. In [26], a novel deep
convolutional neural network (DCNN), abbreviated as PGNet, was proposed for estimating
the phase gradient information instead of phase continuity assumptions. In [27,28], by
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reformulating the definition of the problem of directly obtaining the continuous original
phase as the wrap count obtained on each pixel through semantic segmentation, a novel
framework called PhaseNet that uses a deep, fully convolutional neural network to unwrap
the phase network was proposed. In [29], a comprehensive overview of InSAR phase
unwrapping based on artificial intelligence was provided, which reviews the SBPU and
MBPU methods based on artificial intelligence. In addition to PU, deep learning also has
many applications in SAR and InSAR, and readers can refer to [30–34].

As a representative MBPU method, the CA-based MBPU method has the following
problems: (1) it has poor noise robustness and is sensitive to phase noise, i.e., small
phase noises may cause large unwrapping errors [23]; (2) when the intercepts of the
cluster with fewer pixels and the cluster with more pixels are very close, the two clusters
will be merged into one cluster due to the presence of phase noise, resulting in wrong
clustering results [23]; and (3) it does not have phase-filtering capability [24]. In order to
solve the above problems, this paper introduces filtering techniques into the CA-based
MBPU method. In SAR and InSAR applications, traditional methods mainly use filtering
techniques for interferograms [35–38] or SAR images [39,40].

However, in this paper, we consider the application of the current state-of-the-art
BM3D technology to the four objects involved in the CA-based MBPU method: interfer-
ogram, intercept, cluster number, and unwrapped phase. The main advantages of the
BM3D technology are as follows [41]: (1) it has achieved the most advanced denoising
performance in terms of peak signal-to-noise ratio and subjective visual quality; (2) it
can be adapted to various noise models by modifying the coefficient variance calculation
in the basic and Wiener parts of the algorithm; and (3) it preserves relatively complete
information about the structure of the original image. Therefore, five different filtering
strategies for applying BM3D are proposed: interferogram filtering (IFF), intercept filtering
(ICF), cluster number filtering (CNF), unwrapped phase filtering (UPF), and simultaneous
filtering (STF). In particular, while keeping the general structure of BM3D, four different
similarity measures are defined for interferograms, intercepts, clusters, and unwrapped
phases to accommodate the special characteristics of different filtering objects.

The rest of this paper is organized as follows. First, Section 2 reviews the principle of
the CA-based MBPU method and points out the shortcomings of this method. Section 3
briefly reviews the structure of the BM3D algorithm. Section 4 introduces the application
of the BM3D algorithm to the CA-based MBPU method. In Section 5, experiments on
simulated and real data are introduced to prove the effectiveness and feasibility of the
proposed method, and the results are discussed. Finally, the conclusions are given in
Section 6.

2. Basic Principle of the CA-Based MBPU Method

For an InSAR system, the terrain height can be obtained from the unwrapped phase
and other system parameters [18]:

h(p) =
λ·r(p)·sinθo

4π·Bi
·ψi(p) (1)

where h(p) is the terrain height of the p-th pixel, λ is the working wavelength of the InSAR
system, r(p) represents the slant range of the p-th pixel for the main channel, θo is the look
angle, Bi is the length of the orthogonal baseline for the i-th interferogram, and ψi(p) is the
flattened absolute interferometric phase of the p-th pixel for the i-th interferogram. The
measured phase of the target obtained by the system, namely the wrapped phase, can be
expressed by [7]:

ϕi(p) = ψi(p)− 2π·ki(p) (2)

where ϕi(p) is the wrapped phase of the p-th pixel of the i-th interferogram (from 0 to
2π in this paper) and ki(p) is the unknown integer ambiguity of the p-th pixel of the i-th
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interferogram. It can be seen from (2) that the purpose of PU is to find the correct value of
ki(p) to obtain the correct unwrapped phase ψi(p).

For simplicity, only the case of two different baselines is considered for now. Then, the
following equation can be obtained according to (1) and (2):

B1

B2
=

ϕ1(p) + 2π·k1(p)
ϕ2(p) + 2π·k2(p)

(3)

i.e.,

k2(p) =
B2

B1
k1(p) +

B2·ϕ1(p)− B1·ϕ2(p)
2π·B1

(4)

It can be seen from (4) that the information of each pixel is reflected by a linear equation.
Because B1 and B2 are constants, the slope of the straight line is also a constant,

while the intercept varies with ϕ1(p) and ϕ2(p). According to [21], the term ambiguity
vector [k1(p), k2(p)] is defined as the ambiguity numbers corresponding to a pixel in two
different interferograms. Additionally, a cluster is defined as a set of pixels with the same
ambiguity vector. Obviously, the intercepts of the pixels in a cluster are the same since
their corresponding straight lines pass through the same integer point [k1, k2] and with the
same slope: B2/B1. Therefore, the cluster to which a pixel belongs can be determined by its
corresponding intercept information.

Through the above analysis, the main steps of the CA-based MBPU method can be
summarized as follows: (1) the intercepts of all pixels are calculated according to the input
interferograms; (2) the cluster to which each pixel belongs is obtained by using the CA
algorithm; (3) the cluster ambiguity vectors of each cluster are calculated according to
CRT and the intercept of each cluster’s centerline; and (4) the final unwrapped phases of
each pixel are acquired by the cluster ambiguity vectors and wrapped phases. Although
the CA-based MBPU methods can meet the requirements of PU to a certain extent, the
poor noise robustness makes the algorithm prone to produce erroneous clustering results.
It should be noted that when the clustering is finished, a natural number is assigned to
each cluster, which is called the cluster number. A cluster number is a natural number we
artificially set for each cluster, and the purpose is to number the clustering results. Different
cluster numbers represent different clusters. Therefore, we can use Figure 1 to show the
influence of noise on the clustering results.
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Figure 1. Problems of the CA-based MBPU methods. (a) Noiseless clustering results; (b) noisy
clustering results.

Figure 1a shows the clustering results under noiseless conditions, where different
colors represent different clusters. It can be seen from Figure 1a that there are obviously four
different clusters. Figure 1b is the noisy clustering result generated by the CA algorithm,
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and there are some wrong clustering results due to the existence of noise. In addition,
although the CA algorithm improves the noise robustness and reduces the time complexity
to a certain extent when the cluster with fewer pixels is very close to the cluster with
more pixels, these two clusters will be merged into one cluster due to the presence of
phase noise [23], resulting in erroneous clustering results. Therefore, the BM3D algorithm
can be applied to the CA-based MBPU method to improve PU accuracy. According to
the main steps of the CA-based MBPU method, BM3D can be applied to the following
four objects: (1) the interferograms; (2) the intercepts; (3) the cluster numbers; and (4) the
unwrapped phases.

3. BM3D Algorithm and Similarity Measures Improvement

In this section, we first review the basic processing procedure and then define four
similarity measures for the four different objects to be filtered in this paper: interferograms,
intercepts, clusters, and unwrapped phases.

3.1. BM3D Algorithm

The basic flow chart of the BM3D algorithm is shown in Figure 2. According to [30],
the BM3D algorithm was originally proposed for Gaussian white noise, which combines
nonlocal methods with wavelet domain shrinkage and Wiener filtering. Then, the main
steps of the BM3D algorithm can be described as follows [30].
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3.1.1. The First Stage, Basic Estimate

(1) Block-matching grouping: Find blocks that are similar to the reference block and
named as similar blocks, and the similarity is determined by calculating the predefined
distance between the reference block and the block to be matched. Then, the similar
blocks are stacked into a 3D array according to the similarity, which is called a
3D group.

(2) Collaborative hard thresholding: Perform 3D transformation processing on the 3D
groups, attenuate noise through hard thresholding, and then use 3D inverse transfor-
mation to obtain the estimated values of the 2D similar blocks.

(3) Aggregation: Since there are often overlapping parts between the blocks, the result is
the same pixel often being contained in several different blocks. Therefore, the pixel
value of each pixel is repeatedly estimated, and a weighted average of these multiple
estimates is needed to obtain the basic estimate for each block.

3.1.2. The Second Stage, Final Estimate (the Basic Estimate Is Used as the Input)

(1) Block-matching grouping: Find the position of similar blocks by means of block-
matching in basic estimation. Block-matching grouping consists of two parts, which
can obtain two 3D groups, one from the noise image and the other from the basic
estimated image.

(2) Collaborative Wiener filtering: Apply 3D transformation to the above two 3D groups,
use the 3D group in the basic estimation as the energy spectrum of the real signal,
use the energy spectrum to perform collaborative Wiener filtering on the noise image,
and finally, the processed data are inversely transformed and returned to the original
position of the similar block to obtain the final estimated value.

(3) Aggregation: Because the blocks obtained after grouping and filtering may overlap
each other, weighted average processing on pixels with multiple estimated values is
performed to obtain the final estimation.

3.2. Similarity Measures Improvement

In the block-matching grouping of the original BM3D algorithm, the similarity be-
tween two blocks is usually expressed by the inverse of some distance measured between
them [30]. The smaller the distance is, the more similar the two blocks are. Since there are
four different processing objects involved in the CA-based MBPU method, interferograms,
intercepts, cluster numbers, and unwrapping phases, four different similarity measures are
defined to accommodate the special characteristics of different filtering objects.

For the interferogram, the similarity of two pixels can be measured by the cosine value
of their wrapped phase difference:

S(ϕ1, ϕ2) =
1 + cos(ϕ1 − ϕ2)

2
(5)

where ϕ1 and ϕ2 represent the wrapped phases corresponding to two different pixels,
respectively.

For the intercept, the similarity of two pixels is measured by the following formula:

S(b1, b2) = 1− |b1 − b2|
max

1<p<n
(bp)− min

1<p<n
(bp)

(6)

where b1 and b2 represent the intercepts of two different pixels, max
1<p<n

(bp) represents the

largest intercept value among all the pixels, and min
1<p<n

(bp) represents the smallest intercept

value among all the pixels.
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For the cluster, the greater the difference between two cluster numbers, the greater the
difference between the two pixels, so the similarity of the two pixels can be measured by:

S(m1, m2) = 1− |m1 −m2|
max

1<p<n
(mp)− min

1<p<n
(mp)

(7)

where m1 and m2 represent the cluster numbers of two different pixels, max
1<p<n

(mp) repre-

sents the largest cluster number among all the pixels, and min
1<p<n

(mp) represents the smallest

cluster number among all the pixels.
For the unwrapped phase, the similarity can be measured by:

S(ψ1, ψ2) = 1− |ψ1 − ψ2|
max

1<p<n
(ψp)− min

1<p<n
(ψp)

(8)

where ψ1 and ψ2 represent the unwrapped phases of two different pixels, max
1<p<n

(ψp) rep-

resents the largest unwrapped phase among all the pixels, and min
1<p<n

(ψp) represents the

smallest unwrapped phase among all the pixels.
According to the definitions of Equations (5)–(8), the closer the value of S is to one, the

stronger the similarity of the two pixels; on the contrary, the closer the value of S is to zero,
the weaker the similarity of the two pixels.

4. BM3D Denoising for the CA-Based MBPU Method

Considering that it can perform denoising well and retain some original details of an
image, the BM3D algorithm is applied to the CA-based MBPU method.

According to the main steps of the CA-based MBPU method described in Section 2,
the BM3D algorithm is applied to the following four objects separately or simultaneously:
(1) the wrapped phases, i.e., interferogram; (2) the intercepts; (3) the clustering results,
i.e., cluster numbers; and (4) the unwrapped phases. There can be five different filtering
strategies in total, and the corresponding basic flow charts are shown in Figure 3. Among
them, the first four filtering strategies filter only one object, while the fifth filtering strategy
filters all four objects at the same time. Moreover, all the five filtering strategies contain four
main steps: data preprocessing, BM3D denoising, denormalization, and post-processing.
In the following, we will describe these four main steps for applying the BM3D algorithm
to the CA-based MBPU method in detail.

4.1. Data Preprocessing

The interferogram, intercept, cluster number, and unwrapped phase datasets to be
filtered are first obtained according to the CA-based MBPU methods.

In order to uniformly use BM3D in the four objects of the CA-based MBPU methods,
they need to be normalized, and the value range of these inputs should be changed to
zero–one. Therefore, the normalization of these four objects can be implemented using the
following four equations:

ϕnorm(p) =
ϕ(p)
2π

(9)

bnorm(p) =
b(p)− min

1<s<n
(b(p))

max
1<s<n

(b(p))− min
1<s<n

(b(p))
(10)

mnorm(p) =
m(p)

M
(11)
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ψnorm(p) =
ψ(p)− min

1<s<n
(ψ(p))

max
1<s<n

(ψ(p))− min
1<s<n

(ψ(p))
(12)

where ϕnorm(p) represents the normalized wrapped phase of pixel p, bnorm(p) repre-
sents the normalized intercept of pixel p, max

1<p<n
(b(p)) represents the maximum intercept,

min
1<p<n

(b(p)) represents the minimum intercept, mnorm(p) represents the normalized cluster

number of pixel p, M represents the total number of clusters, ψnorm(p) represents the nor-
malized unwrapped phase of pixel p, max

1<p<n
(ψ(p)) represents the maximum unwrapped

phase, and min
1<p<n

(ψ(p)) represents the minimum unwrapped phase.

4.2. BM3D Denoising

The BM3D algorithm absorbs the processing idea of nonlocal filtering in the NL-means
algorithm. In the filtering process, it further uses the information of block groups in
the whole image. While keeping the general structure of BM3D, four different similarity
measures are defined in Equations (5)–(8) for the four different processing objects involved
in the CA-based MBPU method to accommodate the special characteristics of different
filtering objects: interferograms, intercepts, cluster numbers and unwrapping phases.
Moreover, five different filtering strategies for applying BM3D are proposed: interferogram
filtering (IFF), intercept filtering (ICF), cluster number filtering (CNF), unwrapped phase
filtering (UPF), and simultaneous filtering (STF).
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4.2.1. Interferogram Filtering (IFF)

Please refer to Figure 3a. In this method, the noisy interferogram is filtered directly by
BM3D and the other steps are essentially unchanged. The wrapped phases are damaged
due to the presence of noise, so filtering is performed on them. The noise interferogram is
used as the input noise image of the BM3D algorithm to obtain the filtered wrapped phase
ϕ f iltered(p), and then the filtered interferogram is used for the following other steps. This
method is abbreviated as the IFF method.

4.2.2. Intercept Filtering (ICF)

Please refer to Figure 3b. Since the CA-based MBPU methods use the intercept as
a clustering index, when they are contaminated by noise, the clustering results will be
affected. Therefore, the intercepts contaminated by noise can be filtered using BM3D to
obtain the filtered intercept b f iltered(p), and then the filtered intercept is used for subsequent
processing. This method is referred to as the ICF method in this paper.

4.2.3. Cluster Number Filtering (CNF)

Please refer to Figure 3c. Due to the presence of noise, errors will occur on the cluster
numbers. Therefore, BM3D can be used after the clustering is completed. The cluster
number distribution map is used as the input noise image of the BM3D algorithm, and the
filtered cluster numbers m f iltered(p) are used for the following other steps. This method is
abbreviated as the CNF method in this paper.

4.2.4. Unwrapped Phase Filtering (UPF)

Please refer to Figure 3d. After the CA algorithm is completed, the unwrapped phase
is restored. Due to the presence of noise, the obtained unwrapped phase contains errors.
Therefore, BM3D can be used on the unwrapped phase, and the unwrapped phase is used
as the input of the BM3D algorithm. Additionally, the filtered unwrapped phase ψ f iltered(p)
is obtained at last. This method is abbreviated as the UPF method in this paper.

4.2.5. Simultaneous Filtering (STF)

Please refer to Figure 3e. In fact, BM3D can be used to filter the interferogram, the
intercept, the cluster number, and the unwrapped phase at the same time, so the best
filtering results should be obtained. This method is abbreviated as the STF method in
this paper.

4.3. Denormalization

After filtering, the obtained interferogram, intercept, cluster number, and unwrapped
phase are, respectively, denormalized so that the subsequent clustering can be processed
normally and the correct unwrapped phase can be obtained, that is, processed according to
the following four equations:

ϕ f inal(p) = ϕ f iltered(p)·2π (13)

b f inal(p) = b f iltered(p)·( max
1<p<n

(b(p))− min
1<p<n

(b(p))) + min
1<p<n

(b(p)) (14)

m f inal(p) = m f iltered(p)·M (15)

ψ f inal(p) = ψ f iltered(p)·( max
1<p<n

(ψ(p))− min
1<p<n

(ψ(p))) + min
1<p<n

(ψ(p)) (16)

where ϕ f inal(p) represents the final wrapped phase, b f inal(p) represents the final inter-
cept, m f inal(p) represents the final cluster number, and ψ f inal(p) represents the final
unwrapped phase.
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4.4. Post-Processing

After being processed by the IFF method, the data obtained by filtering the interfero-
gram need to be used in the subsequent steps of the CA-based MBPU methods to obtain the
intercept, obtain the cluster number from the intercept, obtain the ambiguity number from
the cluster number, and finally obtain the unwrapped phase. After being processed by the
ICF method, the filtered intercept is used in the subsequent steps of the CA-based MBPU
methods to obtain the cluster number, after which the ambiguity number is obtained from
the cluster number and the unwrapped phase is finally obtained. After being processed by
the CNF method, the obtained cluster number is used in the subsequent steps to obtain the
ambiguity number and, finally the unwrapped phase. After being processed by the UPF
method, the filtered unwrapped phase is obtained.

5. Results and Discussion

Experiments on synthesized and real InSAR datasets are shown in this section to
verify the feasibility and effectiveness of the improved CA-based MBPU method by adding
BM3D denoising.

The first experiment establishes a simple simulation scene, which shows smooth and
discontinuous regions. The height of the scene was settled to 35 m and 80 m, respectively
(the DEM is shown in Figure 4a), and the corresponding coherence coefficients were set to
0.5 and 0.6, respectively. The noiseless interferograms generated by simulation are shown
in Figure 4b,c. There are only two clusters, and the corresponding cluster intercepts are 1
and 1/3, respectively. The real intercept distribution is shown in Figure 4d. The real cluster
number distribution is shown in Figure 4e. The simulated noiseless unwrapped phase is
shown in Figure 4f,g. The simulated noisy interferograms are shown in Figure 4h,i. As
can be seen from the figure, the phase distribution becomes very ambiguous due to the
addition of noise. The noisy intercept distribution is shown in Figure 4j. The noisy cluster
number distribution obtained by the CA algorithm is shown in Figure 4k. The unwrapped
phases obtained by the CA-based MBPU method are shown in Figure 4l,m.

Next, the BM3D algorithm was applied to the CA-based MBPU method to verify the
effectiveness of the proposed method. First, the wrapped phases (interferograms) of long
and short baselines with noise are taken as the inputs of BM3D and then filtered. The two
filtered interferograms are shown in Figure 5a,b. They are used in the CA algorithm to
obtain the cluster number distribution, as shown in Figure 5c. Second, BM3D is used to
filter the noisy intercepts. The filtered intercept distribution map is shown in Figure 5d.
Additionally, it is then applied to the CA algorithm to generate a cluster number distribution
map, which is shown in Figure 5e. Third, the cluster numbers generated by clustering were
filtered, as shown in Figure 5f. Fourth, the recovered unwrapped phases were filtered. The
filtered unwrapped phases corresponding to the long and short baselines are shown in
Figure 5g,h. Finally, BM3D is applied to the above four objects simultaneously, and the final
unwrapped phases corresponding to the long and short baselines are shown in Figure 5i,j.
It can be seen from the experimental results that the performance greatly improved after
adding BM3D separately or simultaneously.
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Figure 4. The experimental results were obtained by the conventional CA-based MBPU methods
without BM3D denoising. (a) Reference DEM (unit: m); (b) simulated noiseless interferogram for
the long baseline (unit: rad); (c) simulated noiseless interferogram for the short baseline (unit: rad);
(d) true intercept distribution; (e) true cluster number distribution; (f) simulated noiseless unwrapped
phase for the long baseline (unit: rad); (g) simulated noiseless unwrapped phase for the short
baseline (unit: rad); (h) simulated noisy interferogram for the long baseline (unit: rad); (i) simulated
noisy interferogram for the short baseline (unit: rad); (j) noisy intercept distribution; (k) noisy
cluster number distribution; (l) unwrapped phase without filtering for the long baseline (unit: rad);
(m) unwrapped phase without filtering for the short baseline (unit: rad).
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Figure 5. BM3D denoising for the first simulated MB InSAR dataset. (a) Filtered wrapped phase of
IFF for the long baseline (unit: rad); (b) filtered wrapped phase of IFF for the short baseline (unit: rad);
(c) cluster number distribution of IFF; (d) filtered intercept distribution of ICF; (e) cluster number
distribution of ICF; (f) filtered cluster number distribution of CNF; (g) filtered unwrapped phase
of UPF for the long baseline (unit: rad); (h) filtered unwrapped phase of UPF for the short baseline
(unit: rad); (i) unwrapped phase of STF for the long baseline (unit: rad); and (j) unwrapped phase of
STF for the short baseline (unit: rad).

Then, the performance was quantitatively analyzed as follows. We used the phase
unwrapping success rate (PUSR) and normalized reconstruction square error (NRSE) to
check the accuracy of the results. First, the correctness of the unwrapped result was
judged according to the correctness of the final obtained ambiguity vectors corresponding
to all pixels. PUSR is defined as the percentage of pixels whose integer ambiguity is
correctly restored in an interferogram to the total pixels. The higher the success rate of
phase unwrapping, the higher the accuracy of representing the ambiguity number. When
the accuracy of the ambiguity number is more correct, it shows that the accuracy of the
clustering results is higher. Therefore, the success rate of phase unwrapping can be used to
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reflect the accuracy of the clustering results. Table 1 shows the PUSR of various methods
in the experiment. It can be seen from Table 1 that the PUSR has been greatly improved
after filtering. Obviously, it can be seen from Table 1 that the filtering effect of STF is the
best because the STF filters all of the four objects. However, if only one object is filtered,
the filtering effect of UPF and CNF is better than that of IFF and ICF. Second, the accuracy

of the unwrapped result is judged through NRSE = ‖
^
h− h‖

2

/‖h‖2, used in [11–13,21,25],

where
^
h is the height array estimated from the unwrapped phase array of an interferogram

and h is the reference height array.

Table 1. PUSR of different filtering strategies.

Experiments Filtering Strategies Interferogram One Interferogram Two

Experiment 1

No filtering 79.84% 79.26%

IFF 97.78% 97.77%

ICF 99.08% 99.06%

CNF 99.85% 99.87%

UPF 99.87% 99.89%

STF 99.94% 99.94%

Experiment 2

No filtering 85.33% 84.21%

IFF 88.02% 88.76%

ICF 95.23% 95.37%

CNF 98.99% 98.21%

UPF 99.22% 98.87%

STF 99.47% 99.33%

Experiment 3

No filtering 82.46% 81.22%

IFF 89.21% 87.69%

ICF 91.22% 91.21%

CNF 95.41% 95.57%

UPF 95.86% 95.87%

STF 97.24% 98.41%

As shown in Table 2, the NRSE of before filtering, IFF, ICF, CNF, UPF, and STF is
0.1812, 0.0342, 0.0221, 0.089, 0.0080 and 0.0045, respectively. Therefore, IFF, ICF, CNF, UPF,
and STF can effectively improve the PU accuracy. Table 3 shows the time consumption of
the five filtering strategies. As can be seen from Tables 2 and 3, if the time consumption
is not considered, STF can better reduce the normalized square error and improve the PU
accuracy than the other filtering strategies. However, the STF method has the highest time
complexity. For the other four filtering strategies, they all have similar time complexity, but
the filtering effect of UPF and CNF is better than that of IFF and ICF.

The second experiment tested the performance of different filtering strategies on a
more realistic height profile. Figure 6a shows the reference DEM of Isolation Peak in
Colorado, USA. The corresponding ambiguity heights were set to 32.1 m and 53.5 m,
respectively. The simulated two noiseless interferograms are shown in Figure 6b,c. The real
intercept distribution is shown in Figure 6d. The real cluster number distribution is shown
in Figure 6e. The noiseless unwrapped phases for the long and short baselines are shown
in Figure 6f,g. The noisy interferograms are shown in Figure 6h,i. As can be seen from the
figure, the phase distribution became very ambiguous due to the noise. The noisy intercept
distribution is shown in Figure 6j. The noisy cluster number distribution obtained by the
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CA algorithm is shown in Figure 6k. The noisy unwrapped phases for the long and short
baselines obtained by the CA-based MBPU method are shown in Figure 6l,m.

Table 2. Normalized reconstruction square error (NRSE).

Experiments Filtering Strategies NRSE

Experiment 1

No filtering 0.1812

IFF 0.0342

ICF 0.0221

CNF 0.0089

UPF 0.008

STF 0.0045

Experiment 2

No filtering 0.2954

IFF 0.2349

ICF 0.1981

CNF 0.1211

UPF 0.1114

STF 0.0974

Experiment 3

No filtering 0.3478

IFF 0.3117

ICF 0.2498

CNF 0.1469

UPF 0.1413

STF 0.1347

Table 3. Time consumption.

Experiments Filtering Strategies Time (s)

Experiment 1

IFF 0.6275

ICF 0.6199

CNF 0.6229

UPF 0.6265

STF 0.9598

Experiment 2

IFF 1.7787

ICF 1.7474

CNF 1.7977

UPF 1.7545

STF 2.0869

Experiment 3

IFF 2.7977

ICF 2.8112

CNF 2.7776

UPF 2.7884

STF 4.4857
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Figure 7 shows the experimental results about Isolation Peak (CO, USA) with BM3D
denoising. The two filtered interferograms of IFF are shown in Figure 7a,b, and the
corresponding cluster number distribution is shown in Figure 7c. The filtered intercept
distribution of ICF is shown in Figure 7d, and the corresponding cluster number distri-
bution is shown in Figure 7e. The filtered cluster number distribution of CNF is shown
in Figure 7f. The filtered unwrapped phases of UPF corresponding to the long and short
baselines are shown in Figure 7g,h. The final unwrapped phases of STF corresponding to
the long and short baselines are shown in Figure 7i,j. The relevant quantitative indexes for
Experiment 2 are shown in Tables 1–3, respectively.

In the last experiment, a small-scale double-baseline TanDEM-X InSAR dataset with
736 × 191 pixels was tested by the proposed method. The scenario of this dataset is a
mountainous area in Tongchuan City, Shaanxi Province, China. Figure 8a is the reference
DEM obtained by the Space Shuttle Radar Topographic Mapping Mission (SRTM). The
main parameters of the TanDEM-X InSAR dataset are shown in Table 4. The two noisy
TanDEM-X InSAR interferograms are shown in Figure 8b,c. The noisy intercept distribution
is shown in Figure 8d. The noisy cluster number distribution obtained by the CA algorithm
directly is shown in Figure 8e. The filtered interferograms of IFF are shown in Figure 8f,g.
They are used to obtain the cluster number distribution. Figure 8h shows the cluster
number distribution of IFF. The filtered intercept distribution of ICF is shown in Figure 8i,
and the corresponding cluster number distribution of ICF is shown in Figure 8j. The
filtered cluster number distribution of CNF is shown in Figure 8k. The filtered unwrapped
phase of UPF corresponding to the long and short baselines are shown in Figure 8l,m.
The unwrapped phases of STF corresponding to the long and short baselines are shown
in Figure 8n,o. The relevant quantitative indexes for Experiment 3 are also shown in
Tables 1–3, respectively. Obviously, the results of this experiment are in perfect agreement
with the results of Experiment 1 and Experiment 2, thus strongly demonstrating the
effectiveness and reliability of the filtering strategy proposed in this paper.
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Figure 6. Experiment about Isolation Peak (CO, USA) without BM3D denoising. (a) Reference
DEM (unit: m); (b) simulated noiseless interferogram for the long baseline (unit: rad); (c) simulated
noiseless interferogram for the short baseline (unit: rad); (d) true intercept distribution; (e) true
cluster number distribution; (f) true unwrapped phase for the long baseline (unit: rad); (g) true
unwrapped phase for the short baseline (unit: rad); (h) simulated noisy interferogram for the long
baseline (unit: rad); (i) simulated noisy interferogram for the short baseline (unit: rad); (j) noisy
intercept distribution; (k) noisy cluster number distribution; (l) noisy unwrapped phase for the long
baseline (unit: rad); and (m) noisy unwrapped phase for the short baseline (unit: rad).
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(d) intercepts of all the pixels obtained by the linear combination of (b,c); (e) cluster number distribu-
tion obtained by the CA algorithm directly; (f) filtered wrapped phase of IFF for the long baseline
(unit: rad); (g) filtered wrapped phase of IFF for the short baseline (unit: rad); (h) cluster number
distribution of IFF; (i) filtered intercept distribution of ICF; (j) cluster number distribution of ICF;
(k) filtered cluster number distribution of CNF; (l) filtered unwrapped phase of UPF corresponding
to the long baseline (unit: rad); (m) filtered unwrapped phase of UPF corresponding to the short
baseline (unit: rad); (n) unwrapped phase of STF corresponding to the long baseline (unit: rad); and
(o) unwrapped phase of STF corresponding to the short baseline (unit: rad).

Table 4. Parameters of the TanDEM-X InSAR dataset.

Interferogram One Interferogram Two

TDX-1 TSX-1 TDX-2 TSX-2

Incidence angle 36.16◦ 36.07◦ 37.29◦ 37.05◦

Acquisition date 2 April 2014 21 October 2012

Normal baseline 129.25 m 361.90 m

Range pixel spacing 5.45 m

Azimuth pixel spacing 8.15 m

Center latitude 35.28◦N

Center longitude 109.27◦E

The three experimental results in Tables 1–3 demonstrate the effectiveness of the
BM3D filtering strategies for the CA-based MBPU method on the simulated and real
InSAR datasets.

6. Conclusions

MBPU is one of the key steps of InSAR processing. In order to improve the PU accu-
racy and the robustness of the CA-based MBPU method, five different filtering strategies
for applying BM3D are proposed: interferogram filtering (IFF), intercept filtering (ICF),
cluster number filtering (CNF), unwrapped phase filtering (UPF), and simultaneous fil-
tering (STF). In particular, while keeping the general structure of BM3D, four different
similarity measures are defined for interferograms, intercepts, clusters, and unwrapped
phases to accommodate the special characteristics of different filtering objects. Experi-
ments on simulated and real InSAR data prove the effectiveness and feasibility, and the
experimental results show that (1) the PU accuracy and robustness of the CA-based MBPU
method can be greatly improved by adding BM3D denoising; (2) simultaneous filtering
of interferograms, intercepts, cluster numbers, and unwrapped phases works best, but
with the worst time complexity; (3) when filtering is performed for only one object of the
CA-based MBPU method, the filtering effect of CNF and UPF is better than that of IFF and
ICF; and (4) considering the three indicators of PUSR, NRSE, and time consumption, CNF
and UPF should be the best choice. The above conclusions can serve as a guideline for the
future application of the BM3D algorithm in MBPU.
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