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This study focused on resolving the relationship between
BMI and type 2 diabetes. The availability of multiple vari-
ants associated with BMI offers a new chance to resolve
the true causal effect of BMI on type 2 diabetes; however,
the properties of these associations and their validity as
genetic instruments need to be considered alongside es-
tablished and new methods for undertaking Mendelian
randomization (MR). We explore the potential for pleiotropic
genetic variants to generate bias, revise existing estimates,
and illustrate value in new analysis methods. A two-sample
MR approach with 96 genetic variants was used with three
different analysis methods, two of which (MR-Egger and
the weighted median) have been developed specifically to
address problems of invalid instrumental variables. We es-
timate an odds ratio for type 2 diabetes per unit increase in
BMI (kg/m2) of between 1.19 and 1.38, with the most stable
estimate using all instruments and a weighted median ap-
proach (1.26 [95% CI 1.17, 1.34]). TCF7L2(rs7903146) was
identified as a complex effect or pleiotropic instrument,
and removal of this variant resulted in convergence of
causal effect estimates from different causal analysis
methods. This indicated the potential for pleiotropy to af-
fect estimates and differences in performance of alterna-
tive analytical methods. In a real type 2 diabetes–focused
example, this study demonstrates the potential impact of
invalid instruments on causal effect estimates and the
potential for new approaches to mitigate the bias caused.

Observational studies have shown BMI to be associated with
risk of type 2 diabetes as well as with a range of diabetes-

related metabolic traits (1,2). However, it is well known that
confounding, reverse causation, and biases can generate
such associations and that even with careful study design,
incorrect inference is possible (3). One approach to circum-
venting these problems is to use genetic association results
within a Mendelian randomization (MR) framework (3,4).
In MR analyses, genetic variants act as proxies for an ex-
posure in a manner independent of confounders. If in ad-
dition the variants only affect an outcome of interest through
the chosen exposure, then they are said to be valid instru-
mental variables (IVs). This enables evaluation of the causal
effect of the exposure on the outcome, escaping some of
the limitations of observational epidemiology (5).

After the success of genome-wide association studies
(GWAS), the number of MR analyses using large numbers
of mostly uncharacterized variants associated with com-
plex health outcomes or intermediates is rapidly increasing
(6,7). In the case of BMI, there are now 97 genetic variants
reliably associated and there are examples where multiple
variants have been used as a composite IV to estimate the
causal impact of BMI on health (8). Although using many
IVs can increase the power of MR analyses, it brings with
it the concern that enlarged sets of genetic variants are
more likely to contain invalid IVs due to violations of the
assumptions necessary for valid causal inference using
traditional methods (9). In particular, horizontal pleiot-
ropy, where a genetic variant affects the outcome via
more than one biological pathway (10), is a concern.
Importantly, the properties of these associations and
their validity as genetic instruments need to be considered
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alongside established and new methods for undertaking
MR.

In response to the general issue of using multiple
genetic variants in MR, Bowden et al. (9) propose both
MR-Egger regression, an approach developed from the
original Egger regression technique for assessing small
study bias in meta-analysis, and a weighted median ap-
proach (11) as alternatives to the standard MR analysis.
The MR-Egger and weighted median approaches both
operate using distinct, but critically weaker, versions of
the IV assumptions, and therefore have the potential
to deliver robust causal effect estimates. The MR-Egger
method also provides a formal statistical test as to
whether or not the average pleiotropic effect of the ge-
netic variants is equal to zero (9).

RESEARCH DESIGN AND METHODS

With increasing evidence for multiple biological pathways
underlying type 2 diabetes (12,13) and increasing num-
bers of genetic variants available as IVs for BMI, we set
out to test the potential for bias in causal estimates from
MR using these state-of-the-art approaches. We compared
results from MR-Egger regression (9) and weighted median
(11) approaches to a traditional inverse-variance weighted
(IVW) method (which makes the strong assumption that all
variants are valid IVs) (14) in an investigation of the causal
relationship between BMI and type 2 diabetes. These meth-
ods all undertake two-sample MR whereby the GWAS results
for a disease outcome are unified with those of an exposure
of interest and together used to estimate the causal impact
of that exposure on disease. We used published data in a
two-sample analysis strategy taking single nucleotide poly-
morphism (SNP)–exposure and SNP-outcome associations
from different sources (15,16).

The effect sizes for BMI-associated SNPs with associ-
ated SE from a mixed-sex cohort of European ancestry
were taken from the Genetic Investigation of ANthropo-
metric Traits (GIANT) consortium (17) along with results
for type 2 diabetes from the DIAbetes Genetics Replica-
tion And Meta-analysis (DIAGRAM) consortium (18). To
avoid sample overlap, GIANT estimates were recalculated
in the absence of DIAGRAM cohorts, yielding a maximum
sample size at any given locus of 189,079. To aid inter-
pretation of the effects of BMI on type 2 diabetes, effect
sizes were transformed to BMI units prior to analysis,
assuming one SD = 4.5 kg/m2 (17). For the corresponding
SNP-outcome association, we took odds ratios (ORs)
and CIs from a GWAS meta-analysis conducted by the
DIAGRAM consortium. This genome-wide meta-analysis
includes data from 12,171 case subjects with type 2 di-
abetes and 56,862 control subjects of mainly European
descent imputed at up to 2.5 million autosomal SNPs
(DIAGRAMv3) (18). All but one (rs4787491, INO80E) of
the BMI-associated SNPs (P , 5 3 1028) from GIANT
had results listed in the DIAGRAMv3 data set so 96
SNPs with results in both data sets were taken forward
for analysis.

SNP-exposure and SNP-outcome associations were com-
bined using the three different approaches outlined
above. All analyses were conducted in R 3.2.0 (19). First,
an IVW method was implemented to provide a weighted
average of the causal effect estimates (14). This method
assumes that all genetic variants satisfy the IV assumptions

Figure 1—Genetic associations with BMI and type 2 diabetes from
96 variants measured in GIANT (17) and DIAGRAM (18), respec-
tively. TCF7L2(rs7903146) and FTO(rs1558902) are marked with an
“X” and labeled. A: Funnel plot of minor allele frequency–corrected
genetic associations with BMI (interpreted as instrument strength)
against causal estimates based on each genetic variant individually,
where the causal effect is expressed in log OR of type 2 diabetes for
each unit increase in BMI. The overall causal estimates (b-coefficients)
of BMI on type 2 diabetes estimated by IVW (solid black line),
MR-Egger (dashed black line), and weighted median (dotted black
line) methods are also shown. Gray solid line represents x = 0, which
is a causal estimate of zero. B: Scatter plot of genetic associations
with type 2 diabetes against associations with BMI, with causal es-
timates (b-coefficients) of BMI on type 2 diabetes estimated by IVW
(solid line), MR-Egger (dashed line), and weighted median (dotted
line) methods.
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(including zero pleiotropy) and uses weights that as-
sume the gene-exposure association estimates are mea-
sured without error (the no measurement error [NOME]
assumption).

Second, we performed MR-Egger regression (9), which
assumes NOME but allows each variant to exhibit pleiot-
ropy. MR-Egger estimates remain consistent only if the
magnitude of the gene exposure associations across all
variants are independent of their pleiotropic effects (the
InSIDE assumption) (9). As recommended by Bowden et al.
(9), the extent to which pleiotropy was balanced across the
set of instruments as a whole was visually assessed by plot-
ting the causal effect estimates against their precision, using a
funnel plot and checking for asymmetry (Fig. 1A). The NOME
assumption was assessed for MR-Egger via an adaptation of
the I2 statistic (I2GX) (20) and adjusted for by combining
MR-Egger with the method of simulation extrapolation
(SIMEX) (21). Using SIMEX, new data sets are created
by simulating gene-exposure association estimates under
increasing violations of NOME and recording the amount of
attenuation in the estimate that occurs. The set of attenuated
estimates are then used to extrapolate back to the estimate
that would have been obtained if NOME had been satisfied.

Finally, a weighted median estimation method was
applied (11). The weighted median provides a consistent
estimate of causal effect if at least 50% of the information
in the analysis comes from variants that are valid IVs. For a
more detailed description of the three methods applied, see
the Supplementary Methods. A leave-one-out permutation
analysis was conducted across all methods to assess the
influence of potentially pleiotropic SNPs on the causal
estimates (22). In the case of the linear models (IVW
and MR-Egger), two additional analyses were conducted
(23,24). First, the extent to which the causal estimate
from each SNP in the set could be considered an outlier

was assessed using studentized residuals. Second, Cook’s dis-
tance (25) was used as a measure of the aggregate impact of
each SNP on the model.

RESULTS

All three approaches provide evidence of a positive causal
relationship between BMI and type 2 diabetes. This is
demonstrated in Fig. 1B where the slope of the lines show
the causal effect estimates as predicted by the IVW,
MR-Egger, and weighted median approaches. Estimates
correspond to an OR for type 2 diabetes per unit increase
in BMI (kg/m2) of 1.19, 1.26, and 1.38 for the IVW,
weighted median, and MR-Egger analyses, respectively,
and are in line with a previous MR estimate of 1.27 (95%
CI 1.18, 1.36) (2) (Table 1). Assessment of the NOME as-
sumption with respect to the MR-Egger estimate gave I2GX =
0.83, suggesting an ;15% attenuation of the causal esti-
mate toward zero. Bias adjustment via SIMEX gave a cor-
rected MR-Egger causal estimate of 1.46 (95% CI 1.16,
1.84) for type 2 diabetes per unit increase in BMI (kg/m2).

Considering the individual SNP-based contributions to
MR analysis, there is one clear outlier in the distribution
of effects shown in Fig. 1, and that is TCF7L2(rs7903146).
TCF7L2(rs7903146) shows an association with BMI that
is in the opposite direction to the overall trend (and weak
relative to its effect on type 2 diabetes), resulting in a large
negative causal estimate from this SNP alone. The presence
of at least some unbalanced pleiotropy was detected within
the set of variants, as reflected by the intercept estimate
of 20.019 (P = 0.10) in the MR-Egger analysis.

To illustrate the impact of TCF7L2(rs7903146) on
causal estimates, we performed a sensitivity analysis in
which each SNP in turn was removed from the set in a
leave-one-out permutation analysis. We saw a shift in the
causal estimates from the IVW (an increase) and MR-Egger

Table 1—Estimates from the application of IVW, MR-Egger, and weighted median MR methodologies

Method Estimate 95% CI P value

Complete variant set (n = 96 SNPs)
IVW 1.20 1.09, 1.30 8.00 3 10205

MR-Egger 1.39 1.14, 1.68 1.53 3 10203

MR-Egger* 20.019 20.041, 0.004 0.10
Weighted median 1.26 1.17, 1.34 5.26 3 1029

TCF7L2(rs7903146) removed from the
variant set (n = 95 SNPs)

IVW 1.22 1.16, 1.28 1.49 3 10211

MR-Egger 1.34 1.17, 1.51 9.71 3 10206

MR-Egger* 20.011 20.024, 20.024 0.13
Weighted median 1.26 1.19, 1.32 3.29 3 10210

FTO(rs1558902) removed from the
variant set (n = 95 SNPs)

IVW 1.16 1.06, 1.27 1.31 3 10203

MR-Egger 1.30 1.01, 1.65 0.04
MR-Egger* 20.012 20.038, 0.014 0.34
Weighted median 1.21 1.13, 1.28 6.81 3 10208

Estimates represent the estimated causal effect of BMI on type 2 diabetes. *The average pleiotropic effect of a genetic variant on
type 2 diabetes risk.
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(a decrease) as a result of the removal of TCF7L2(rs7903146)
but no difference in the estimate from the weighted me-
dian approach (Table 1 and Fig. 2). The results of the
leave-one-out permutation analysis showed that the im-
pact of removing TCF7L2(rs7903146) from the variant
set on the IVW and MR-Egger estimates was greater
than that of removing almost any other variant, with
the exception of FTO(rs1558902) (Fig. 2A and B). When
FTO(rs1558902) was removed, causal estimates from
both the IVW and MR-Egger analysis decreased (Table 1
and Fig. 2). In this instance we also observed movement
in the causal effect estimate from the weighted median
(Table 1 and Fig. 2C). The estimate of the intercept
from MR-Egger moved closer to zero after the removal
of both TCF7L2(rs7903146) and FTO(rs1558902) (Fig. 2D).

TCF7L2(rs7903146) was also identified as an outlier in both
IVW and MR-Egger (studentized residuals, Bonferroni-
corrected P , 1 3 10219) but FTO(rs1558902) was not
(Supplementary Fig. 1A and B). Calculation of Cook’s dis-
tance showed both variants to have a disproportionate level
of influence on the model compared with other variants in
the set (Supplementary Fig. 2A and B).

These results suggest that TCF7L2(rs7903146) may be
pleiotropic with respect to the outcome, i.e., that it influ-
ences type 2 diabetes through an alternative pathway
(other than BMI). Evidence from existing literature sup-
ports this assertion as the type 2 diabetes risk-increasing
allele at TCF7L2(rs7903146) has been associated with
both increased fasting glucose (26) and decreased BMI
(17). Under the assumption that TCF7L2(rs7903146)

Figure 2—Distributions of regression estimates resulting from leave-one-out permutation analysis. Solid line, estimate from main analysis
(n = 96 variants); dashed line, estimate with TCF7L2(rs7903146) removed; dotted line, estimate with FTO(rs1558902) removed. A: Causal
estimates (b-coefficients) of BMI on type 2 diabetes estimated by an IVW method. B: Causal estimates (b-coefficients) of BMI on type 2
diabetes estimated by MR-Egger. C: Causal estimates (b-coefficients) of BMI on type 2 diabetes estimated by a weighted median method.
D: Estimates of the intercept by MR-Egger.
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demonstrates horizontal pleiotropy with respect to type 2
diabetes, we would expect its inclusion in the variant
set to bias the causal estimate predicted by the IVW
approach, but not that predicted by MR-Egger or the
weighted median. Removing TCF7L2(rs7903146) from
the variant set causes a slight shift in the causal estimates
from the IVW and MR-Egger approaches, bringing them
more in line with one another and also with the weighted
median estimate, which remained stable in this instance. Also
of note is the reduction in the 95% CI of the MR-Egger
estimate after removal of the TCF7L2(rs7903146). This in-
crease in precision after removal of a likely invalid instru-
ment from the set is another potentially favorable quality of
this estimator. The relatively small changes observed across
all methods as a result of removing TCF7L2(rs7903146) are
in line with the relatively weak effect of the SNP as shown
in Fig. 1B.

In contrast, the effect of removing FTO(rs1558902) is
more noticeable. Regardless of the method used, remov-
ing this variant results in a lower causal estimate (Table 1
and Fig. 2). The substantial influence of FTO(rs1558902)
was predictable given the strength of its effect relative to
the other variants (Fig. 1B), although properties of this
effect are not in line with other variants used to instru-
ment BMI as reported elsewhere for physical activity (27),
thyroid function (28), and depression (29). The concom-
itant increase in SE associated with the estimates here
point toward increased uncertainty moving the estimates
toward the null in the absence of FTO(rs1558902). The
weighted median appears robust, even to the removal of
FTO(rs1558902), as demonstrated by the relatively tight
distribution of estimates returned from the leave-one-out
permutation analysis (Fig. 2C). This is as expected given
the tolerance of weighted median approaches to outliers.

DISCUSSION

By applying new analytical techniques to an old question
(the causal relationship between BMI and type 2 diabetes),
we have explored the potential for invalid instruments to
bias causal estimates in MR. In this case where BMI is the
exposure, the opportunity to use a large instrument list
in causal analyses presents both opportunity, through
variance explained, but also cost, through complications
generated by instrument properties or methods used.
Results here suggest that both TCF7L2 and FTO appear to
have genetic variation that predicts BMI reliably, but for
which associations with type 2 diabetes do not fully align
with that for other variants (given BMI effects and as-
sumed causality).

For TCF7L2, only recently suggested to be associated
with BMI directly (17), this is not surprising and rein-
forces the important point that the validity of a specific
method’s MR estimate depends on whether the genetic
variants collectively satisfy its assumptions. In this case, it
is possible that the negative association with BMI observed
in GIANT is the product of a form of bias where the risk of
type 2 diabetes is leading to effective treatment, health

benefit, and BMI reduction. This is supported by the ap-
parently causal negative relationship between type 2 dia-
betes and BMI seen in a reciprocal analysis where BMI is
the outcome of interest (Supplementary Fig. 3), although
it is likely to be more a comment on study design than
biological effect.

In this example, the use of recently derived methods
(9,11) designed to overcome problems caused by direc-
tional pleiotropy yields estimates that are more stable
in the presence or absence of potentially invalid instru-
ments and confirm the likely magnitude of the average
effect of BMI on type 2 diabetes (i.e., from the most likely
and stable estimate, an elevation of odds of disease of
;26% for each additional unit of BMI). The comparison
of results from different methods for any set of potential
instruments is important when assessing the reliability of
causal inferences and is important for downstream inter-
pretation. In this case, although it is impossible to model
precisely, one can estimate the hypothetical impact of
an average population level change in life course BMI
on type 2 diabetes. Given a population size of 64.1 million
in the U.K. in mid-2013 (30) and a modeled prevalence of
type 2 diabetes (including nondiagnosed cases) of 7.4%
(31,32), the estimated reduction in odds for a 1 kg/m2 re-
duction would potentially yield a reduction in the number of
cases from;4.7 to 3.6 million (a shift in prevalence to 5.6%).
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