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Many tissues are maintained throughout the lifespan of
an organism by a small number of adult stem cells.
These cells are unique in that they have both the ability
to give rise to new stem cells via a process called self-
renewal and the ability to differentiate into the mature
cells of a tissue. To maintain tissue homeostasis, stem
cells have developed strict regulatory mechanisms to
self-renew, differentiate, and prevent premature senes-
cence and apoptosis (see review, ref. 1). The recent obser-
vation that Bmi1, a Polycomb group repressor, is essen-
tial for the self-renewal of adult murine hematopoietic
stem cells (HSCs) and neuronal stem cells, in part via
repression of genes involved in senescence, suggests that
stem cells have evolved specific mechanisms to repress
senescence and to prolong their capacity to proliferate.
In this Perspective, we discuss the possible role of Bmi1
in the prevention of senescence in stem cells.

What makes a cell a stem cell?
HSCs are among the best-characterized stem cells. The
existence of these cells was proven using clonal assays and
retroviral marking (2, 3). Flow cytometry was then used
to isolate HSCs based on cell-surface marker expression
(4, 5). Subsequently, other types of somatic stem cells
such as neuronal stem cells from the peripheral and cen-
tral nervous systems have been identified (6, 7).

Stem cells possess three fundamental properties (1).
First, they must self-renew, allowing the maintenance
of the original stem cell population. Self-renewal is a

cell division in which one or both of the daughter cells
are stem cells that retain the same developmental
potential as the mother cell. In contrast, proliferation
is a more general term that refers to all types of mito-
sis, whether they yield stem cells, restricted progenitors,
or terminally differentiated cells. Second, stem cells
must be able to differentiate into multiple types of
mature cells in order to replace the mature cells that
turn over in adult tissues. Third, the total number of
stem cells is strictly regulated via both extrinsic and
intrinsic mechanisms, resulting in the stability of a sta-
ble stem cell pool (8–11).

Stem cells and senescence
Senescence is a state in which a cell no longer has the
ability to proliferate. Since stem cells maintain many
tissues during the lifetime of an animal, it follows that
stem cell senescence must be prevented to maintain an
organ throughout life. Several studies suggest that cel-
lular senescence is accompanied by changes in gene
expression, which might be regulated by epigenetic
mechanisms. In support of this hypothesis, histone
deacetylase inhibitors, which decondense chromatin
and activate the transcription of some genes, can
induce a senescence-like state in human fibroblasts
(12), suggesting that conversion of some heterochro-
matin to euchromatin may be a feature of replicative
senescence (13, 14). Other studies suggest that chro-
matin condensation and subsequent downregulation
of certain genes might regulate senescence. Senescence
accompanies changes in nuclear morphology and for-
mation of a distinct chromatin structure, called senes-
cence-associated heterochromatic foci (SAHF) (15).
SAHF do not contain active transcription sites, and
they recruit heterochromatin proteins to the genes
that are to be stably repressed during senescence. It
was shown that SAHF contained the retinoblastoma
protein (pRB) in the E2F-responsive promoters, such
as cyclin A and proliferating cell nuclear antigen pro-
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moters, and silenced the expression of E2F-responsive
genes during senescence but not during quiescence
(15). Formation of SAHF and silencing require an
intact pRB pathway, since inhibition of p16Ink4a pre-
vents SAHF formation and leads to DNA replication.
These results provide a molecular mechanism for the
maintenance of the senescent state and demonstrate
the importance of pRB as a tumor suppressor.

HSCs have an impressive regenerative potential, as
demonstrated by transplantation experiments using
limited numbers of cells. In mice, serial transplantation
is possible for four to six passages, suggesting that indi-
vidual HSCs are capable of extensive self-renewal but
may not be immortal. Even though HSCs express
telomerase (16, 17), it is not sufficient to completely
prevent telomere erosion during aging (18). Overex-
pression of the catalytic subunit of the telomerase
enzyme in hematopoietic cells prevents telomeres from
shortening during serial transplantation of bone mar-
row. However, even HSCs overexpressing telomerase
could be serially transplanted no more than four times,
as is the case with wild-type HSCs; this suggests that a
telomere-independent mechanism regulates replicative

senescence of mouse HSCs during serial transplanta-
tion (19). On the other hand, telomerase-deficient
HSCs can be serially transplanted only twice, accom-
panied by an increased rate of telomere shortening,
indicating that telomerase is nonetheless needed to
prevent premature loss of telomere function during
serial transplantation (20, 21).

Role of Bmi1 in stem cell self-renewal
Since epigenetic events such as histone modification
have been implicated in senescence, it follows that
genes involved in chromatin remodeling and gene
expression, such as members of the Polycomb and
Trithorax families, might be directly involved in deci-
sions that affect stem cell fate, including self-renewal,
senescence, and possibly aging. Polycomb and Trithorax
proteins form large multimeric structures, which can
lead to repression or activation of gene expression,
respectively, via a concerted process of chromatin
modifications (22, 23).

Both HSCs and neuronal stem cells express high lev-
els of Bmi1 (24–26), a member of the Polycomb group of
transcription repressors that was initially identified as
an oncogene cooperating with c-myc in a murine model
of lymphoma (27, 28). Bmi1 has a RING finger at the
amino-terminus and a central helix-turn-helix domain.
The RING finger domain is required for the generation
of lymphoma in Eµ-Bmi1 transgenic mice (29, 30).
Postnatal mice lacking Bmi1 exhibit defects in hema-
topoiesis, skeletal patterning, neurological functions,
and development of the cerebellum (31).

It has recently been shown that Bmi1 is necessary for
efficient self-renewing cell divisions of adult HSCs as
well as adult peripheral and central nervous system
neural stem cells, but that it is less critical for the gen-
eration of differentiated progeny (25, 26). Transplan-
tation of Bmi1–/– fetal liver cells resulted in only tran-
sient hematopoietic cell reconstitution, suggesting
that the transplanted mutant fetal liver HSCs failed to
generate more HSCs but gave rise to multipotent pro-
genitors that could sustain hematopoiesis for up to
4–8 weeks. Similarly, Bmi1 is needed for the mainte-
nance of neural stem cells found in both the central
and peripheral nervous systems. As with HSCs, the
reduced self-renewal of Bmi1-deficient neural stem
cells led to their postnatal depletion in vivo, but the
proliferation and survival of committed progenitor
cells were essentially normal (26). Given the broad
ranges of phenotypic changes in Bmi1-deficient mice,
including posterior transformation and neurological
abnormalities (31), and its broad tissue distribution
(32), it is likely that Bmi1 regulates the self-renewal of
other types of somatic stem cells.

Bmi1 may also play a key role in some types of cancer
(33–35). In approximately 11% of cases of mantle cell
lymphoma, the malignant cells have a three- to seven-
fold amplification of Bmi1 DNA and express high lev-
els of the protein, implicating this gene in this invari-
ably lethal form of lymphoma. In a mouse model of

Figure 1
Postulated Bmi1 targets. Extrinsic signals for a stem cell to self-renew
result in elevation of the Bmi1 level in stem cells. This allows repres-
sion of various genes including the Ink4a locus genes, p16Ink4a and
p19Arf, and possibly activation, via indirect mechanisms, of some
genes including telomerase, apoptosis inhibitor-6 (Ai6), and platelet-
activating factor acetylhydrolase (PAF-AHγ). These genes are likely
play a role in stem cell fate decisions including self-renewal and dif-
ferentiation. *Sites of frequent mutations associated with cancer.
TJP, tight junction protein. RDC1, chemokine orphan receptor 1.
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leukemia, Bmi1 was essential for the maintenance of
leukemic cells (36). Enforced expression of Hoxa9/Meis-1
in both normal and Bmi1-deficient mouse fetal liver
cells, followed by transplantation, initially resulted in
infiltration of the bone marrow by cells that looked like
acute myeloid leukemia (AML) blasts, and mice devel-
oped a bone marrow infiltrate that resembled AML.
However, only Bmi1 wild-type AML could be serially
transplanted. Taken together with the detection of
high levels of Bmi1 in human AML stem cells (25), these
results suggest that Bmi1 is also required for the self-
renewal of leukemic stem cells.

Bmi1 and senescence
In WI-38 human fetal lung fibroblasts, Bmi1 is down-
regulated when the cells undergoreplicative senescence,
but not when they are quiescent. Additionally, Bmi1
extends replicative lifespan but does not induce immor-
talization when overexpressed (37). In the absence of
Bmi1, both the p16Ink4a and the p19Arf genes from the
Ink4a locus are expressed (38). Lifespan extension by
Bmi1 is mediated in part by suppression of the p16Ink4a-
dependent senescence pathway and requires an intact
pRB pathway, but not the p53 tumor-suppressor pro-
tein. The RING finger and helix-turn-helix domains of
Bmi1 were required for lifespan extension and p16Ink4a

suppression. Furthermore, a RING finger deletion
mutant acted as a dominant negative, inducing p16Ink4a

and premature senescence (37).
Normal mouse embryonic fibroblasts (MEFs) reach

replicative senescence after seven passages in culture,
whereas MEFs from Bmi1–/– mice show a premature-
senescence phenotype at the third passage. This was
correlated with increased expression of p16Ink4a. Re-
expression of Bmi1 in Bmi1–/– MEFs prevented pre-
mature senescence (28). Overexpression of Bmi1 gave
a proliferative advantage and extended MEF lifespan.
Furthermore, unlike human fibroblasts, Bmi1 could
immortalize MEFs.

Downstream targets of Bmi1
Gene-profiling studies suggest that Bmi1 modulates
HSC self-renewal through the regulation of genes
important for stem cell fate decisions, as well as sur-
vival genes, antiproliferative genes, and stem cell–
associated genes (Figure 1) (25). The previously men-
tioned Bmi1 target, the Ink4a locus (28), encodes
p16Ink4a and p19Arf using different promoters (38).
Enforced expression of p16Ink4a and p19Arf in HSCs led
to senescence and apoptosis, respectively (25). In neu-
ral stem cells, p16Ink4a deficiency partially restored the
ability of Bmi1-deficient stem cells to self-renew (26).
Figure 2 illustrates regulation of the cell cycle and
senescence by p16Ink4a and p19Arf. During the cell
cycle, pRB is hyperphosphorylated by the cyclin D/
cyclin-dependent kinases 4 and 6 (cyclin D/Cdk4/6)
complex (39). The hyperphosphorylated pRB is unable
to bind and inhibit E2F transcription factor, allowing
transcription of E2F target genes that are important

for the G1/S transition, such as DNA polymerase II,
cyclin E, p19, myb, and dihydrofolate reductase (40).
This allows cell cycle progression. In the absence of
Bmi1, p16Ink4a is upregulated and prevents binding of
Cdk4/6 to cyclin D, inhibiting the kinase activity. This
results in hypophosphorylated pRB, which then binds
E2F and inhibits E2F-mediated transcription, leading
to cell cycle arrest and senescence (39). p19Arf se-
questers mouse double minute 2 (MDM2) and in-
hibits p53 degradation, resulting in p53-mediated cell
cycle arrest and apoptosis (41, 42). Point mutations
and deletion of p16Ink4a and p19Arf are frequently found

Figure 2
Regulation of cell cycle, apoptosis, and senescence by Bmi1. In nor-
mal stem cells, p16Ink4a and p19Arf genes are repressed in a Bmi1-
dependent manner. In the absence of p16Ink4a, the cyclin D/Cdk4/6
complex can phosphorylate pRB, allowing the E2F-dependent tran-
scription that leads to cell cycle progression and DNA synthesis. In
addition, MDM2-mediated p53 degradation causes low p53 levels in
the absence of p19Arf, thus preventing cell cycle arrest and apoptosis.
The absence of Bmi1 relieves the repression of the Ink4a locus, result-
ing in the expression of p16Ink4a and p19Arf. p16Ink4a inhibits binding of
cyclin D to Cdk4/6, resulting in inhibition of the kinase activity. This
leads to a hypophosphorylated pRB, which then can bind E2F and
inhibit E2F-dependent transcription, resulting in cell cycle arrest and
senescence. p19Arf inhibits MDM2, which mediates ubiquitin-depend-
ent degradation of p53, thus leading to accumulation of p53 protein
in the cell. This leads to induction of various p53 target genes involved
in cell cycle arrest and apoptosis. Proteins affected by high and low
levels of Bmi1 are shown by black and red arrows, respectively. *Sites
of frequent mutations associated with cancer.
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human breast cancer. However, Bmi1 induction of
telomerase is cell type specific; Bmi1 fails to induce
telomerase in fibroblasts (45). This is consistent with
the observation that Bmi1 overexpression did not
immortalize human fibroblasts (37). It is not known
whether Bmi1 is involved in telomere function in nor-
mal breast stem cells.

Future directions
Bmi1 maintains the stem cell pool by preventing pre-
mature senescence, either through repression of genes
involved in senescence or perhaps through induction
of telomerase to prevent telomere shortening. It is
very likely that Bmi1 is important for maintenance of
multiple types of somatic stem cells, since it is widely
expressed and Bmi1-deficient mice have developmen-
tal defects in other organs. Bmi1 is also important for
maintenance of leukemic stem cells and perhaps
other tumorigenic stem cells; therefore, Bmi1 could be
used as a molecular target to induce senescence in
cancer stem cells (50).

Since Bmi1 maintains the HSC pool size and regu-
lates key genes implicated in senescence and aging, it is
of interest to determine whether expression of Bmi1
and its target genes changes during stem cell trans-
plantation and/or aging. Whether stem cells undergo
senescence during aging is controversial (51–53). In
C57BL mice, in which most HSC studies have been per-
formed, HSC numbers increase with age without los-
ing overall function (54–56). However, HSC senescence
might occur during aging in certain other strains of
mice (57, 58). The number of times that HSCs can
reconstitute the bone marrow of lethally irradiated
mice is limited in serial-transplantation experiments.
This observation might be either a result of an intrin-
sic stem cell aging program that occurs only when stem
cell proliferation far exceeds that seen during normal
aging, or a result of damage to the stem cells that is sec-
ondary to the stress of the transplant. In either model,
it is possible that the loss of stem cell activity is medi-
ated by Bmi1 or its downstream targets.
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