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Abstract

Temporal action proposal generation is an challenging

and promising task which aims to locate temporal regions

in real-world videos where action or event may occur. Cur-

rent bottom-up proposal generation methods can generate

proposals with precise boundary, but cannot efficiently gen-

erate adequately reliable confidence scores for retrieving

proposals. To address these difficulties, we introduce the

Boundary-Matching (BM) mechanism to evaluate confi-

dence scores of densely distributed proposals, which de-

note a proposal as a matching pair of starting and ending

boundaries and combine all densely distributed BM pairs

into the BM confidence map. Based on BM mechanism,

we propose an effective, efficient and end-to-end proposal

generation method, named Boundary-Matching Network

(BMN), which generates proposals with precise temporal

boundaries as well as reliable confidence scores simultane-

ously. The two-branches of BMN are jointly trained in an

unified framework. We conduct experiments on two chal-

lenging datasets: THUMOS-14 and ActivityNet-1.3, where

BMN shows significant performance improvement with re-

markable efficiency and generalizability. Further, combin-

ing with existing action classifier, BMN can achieve state-

of-the-art temporal action detection performance.

1. Introduction

With the number of videos in Internet growing rapidly,

video content analysis methods have attracted widespread

attention from both academia and industry. Temporal action

detection is an important task in video content analysis area,

which aims to locate action instances in untrimmed long

videos with both action categories and temporal boundaries.

Akin to object detection, temporal action detection method

can be divided into two stages: temporal action proposal

generation and action classification. Although convincing

classification accuracy can be achieved by action recog-

nition methods, the detection performance is still low in

mainstream benchmarks [15, 5]. Therefore, many recent

methods work on improving the quality of temporal action

Figure 1. Overview of our method. Given an untrimmed video,

BMN can simultaneously generate (1) boundary probabilities se-

quence to construct proposals and (2) Boundary-Matching confi-

dence map to densely evaluate confidence of all proposals.

proposals. Besides being used in temporal action detection

task, temporal proposal generation methods also have wide

applications in many areas such as video recommendation,

video highlight detection and smart surveillance.

To achieve high proposal quality, a proposal genera-

tion method should (1) generate temporal proposals with

flexible duration and precise boundaries to cover ground-

truth action instances precisely and exhaustively; (2) gener-

ate reliable confidence scores so that proposals can be re-

trieved properly. Most existing proposal generation meth-

ods [3, 4, 8, 24] adopted a “top-down” fashion to gener-

ate proposals with multi-scale temporal sliding windows

in regular interval, and then evaluate confidence scores

of proposals respectively or simultaneously. The main

drawback of these methods is that generated proposals are

usually not temporally precise or not flexible enough to

cover ground-truth action instances of varies duration. Re-

cently, Boundary-Sensitive Network (BSN) [18] adopted a

“bottom-up” fashion to generate proposals in two stages:
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(1) locate temporal boundaries and combine boundaries as

proposals and (2) evaluate confidence score of each pro-

posal using constructed proposal feature. By exploiting lo-

cal clues, BSN can generate proposals with more precise

boundaries and more flexible duration than existing top-

down methods. However, BSN has three main drawbacks:

(1) proposal feature construction and confidence evalua-

tion procedures are conducted to each proposal respectively,

leading to inefficiency; (2) the proposal feature constructed

in BSN is too simple to capture enough temporal context;

(3) BSN is multiple-stage but not an unified framework.

Can we evaluate confidence for all proposals simultane-

ously with rich context? Top-down methods [19, 2] can

achieve this easily with anchor mechanism, where propos-

als are pre-defined as non-continuous distributed anchors.

However, since the boundary and duration of proposals are

much more flexible, anchor mechanism is not suitable for

bottom-up methods such as BSN. To address these difficul-

ties, we propose the Boundary-Matching (BM) mecha-

nism for confidence evaluation of densely distributed pro-

posals. In BM mechanism, a proposal is denoted as a

matching pair of its starting and ending boundaries, and

then all BM pairs are combined as a two dimensional BM

confidence map to represent densely distributed proposals

with continuous starting boundaries and temporal duration.

Thus, we can generate confidence scores for all proposals

simultaneously via the BM confidence map. A BM layer is

proposed to generate BM feature map from temporal fea-

ture sequence, and the BM confidence map can be obtained

from the BM feature map using a series of conv-layers. BM

feature map contains rich feature and temporal context for

each proposal, and gives the potential for exploiting context

of adjacent proposals. Codes are avaiable at PaddleVideo.

In summary, our work has three main contributions:

1. We introduce the Boundary-Matching mechanism for

evaluating confidence scores of densely distributed

proposals, which can be easily embedded in network.

2. We propose an efficient, effective and end-to-end tem-

poral action proposal generation method Boundary-

Matching Network (BMN). Temporal boundary prob-

ability sequence and BM confidence map are gener-

ated simultaneously in two branches of BMN, which

are trained jointly as an unified framework.

3. Extensive experiments show that BMN can achieve

significantly better proposal generation performance

than other state-of-the-art methods, with remarkable

efficiency, great generalizability and great perfor-

mance on temporal action detection task.

2. Related Work

Action Recognition. Action recognition is a fundamen-

tal and important task of video understanding area. Hand-

crafted features such as HOG, HOF and MBH are widely

used in earlier works, such as improved Dense Trajec-

tory (iDT) [29, 30]. Recently, deep learning models have

achieved significantly performance promotion in action

recognition task. The mainstream networks fall into two

categories: two-stream networks [9, 25, 32] exploit appear-

ance and motion clues from RGB image and stacked optical

flow separately; 3D networks [27, 22] exploit appearance

and motion clues directly from raw video volume. In our

work, by convention, we adopt action recognition models

to extract visual feature sequence of untrimmed video.

Correlation Matching. Correlation matching algorithms

are widely used in many computer vision tasks, such as

image registration, action recognition and stereo matching.

Specifically, stereo matching aims to find corresponding

pixels from stereo images. For each pixel in left image

of a rectified image pair, the stereo matching method need

to find corresponding pixel in right image along horizon-

tal direction, or we can say finding right pixel with min-

imum cost. Thus, the cost minimization of all left pixels

can be denoted as a cost volume, which denotes each left-

right pixel pair as a point in volume. Based on cost vol-

ume, many recent works [26, 21, 17] achieve end-to-end

network via generating cost volume directly from combin-

ing two feature maps, using correlation layer [21] or feature

concatenation [6]. Inspired by cost volume, our proposed

BM confidence map contains pairs of temporal starting and

ending boundaries as proposals, thus can directly generate

confidence scores for all proposals using convolutional lay-

ers. We propose BM layer to efficiently generate BM fea-

ture map via sampling feature among starting and ending

boundaries of each proposal simultaneously.

Temporal Action Proposal Generation. As aforemen-

tioned, the goal of temporal action detection task is to detect

action instances in untrimmed videos with temporal bound-

aries and action categories, which can be divided into tem-

poral proposal generation and action classification stages.

These two stages are taken apart in most detection methods

[24, 36, 35], and are taken together as single model in some

methods [19, 2, 14]. For proposal generation task, most

previous works [3, 4, 8, 12, 24] adopt top-down fashion to

generate proposals with pre-defined duration and interval,

where the main drawback is the lack of boundary preci-

sion and duration flexibility. There are also some methods

[36, 18] adopt bottom-up fashion. TAG [36] generates pro-

posals using temporal watershed algorithm, but lack con-

fidence scores for retrieving. Recently, BSN [18] gener-

ates proposals via locally locating temporal boundaries and

globally evaluating confidence scores, and achieves signif-

icant performance promotion over previous proposal gen-

eration methods. In this work, we propose the Boundary-

Matching mechanism for proposal confidence evaluation,

which can largely simplify the pipeline of BSN and bring

significant promotion in both efficiency and effectiveness.
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Figure 2. Illustration of BM confidence map. Proposals in the

same row have the same temporal duration, and proposals in the

same column have the same starting time. The ending boundaries

of proposals at right-bottom corner exceed the range of video, thus

these proposals are not considered during training and inference.

3. Our Approach

3.1. Problem Formulation

We can denote an untrimmed video X as frame se-

quence X = {xn}lvn=1
with lv frames, where xn is the

n-th RGB frame of video X . The temporal annotation set

of X is composed by a set of temporal action instances as

Ψg = {ϕn = (ts,n, te,n)}Ng

n=1
, where Ng is the amount of

ground-truth action instances, ts,n is the starting time of ac-

tion instance ϕn and te,n is the ending time. Unlike tempo-

ral action detection task, categories of action instances are

not taken into account in proposal generation task. During

inference, proposal generation method should generate pro-

posals Ψp which cover Ψg precisely and exhaustively.

3.2. Feature Encoding.

Following recent proposal generation methods [3, 8, 12,

18], we construct BMN model upon visual feature sequence

extracted from raw video. In this work, we adopt two-

stream network [25] for feature encoding since it achieves

great action recognition precision and is widely used in

many video analysis methods [11, 19, 36]. Concatenating

the output scores of top fc-layer in two-stream network, we

can get encoded visual feature ftn ∈ RC around frame xtn ,

where C is the dimension of feature. Therefore, given an

untrimmed video X of length lv , we can extract a visual

feature sequence F = {ftn}
lf
n=1 ∈ RC×lf with length lf .

To reduce the computation cost, we extract feature in a reg-

ular frame interval σ, thus lf = lv/σ.

3.3. BoundaryMatching Mechanism

In this section, we introduce the Boundary-Matching

(BM) mechanism to generate confidence scores for densely

distributed proposals. First we denote a temporal proposal

ϕ as a matching pair of its starting boundary ts and ending

boundary te. Then, as shown in Fig 2, the goal of BM mech-

anism is to generate the two dimensional BM confidence

Figure 3. Illustration of BM layer. For each proposal, we conduct

dot product at T dimension between sampling weight and tempo-

ral feature sequence, to generate BM feature of shape C ×N .

.

map MC , which is constructed by BM pairs with different

starting boundary and temporal duration. In BM confidence

map, the value of point MC(i, j) is denoted as the confi-

dence score of proposal ϕi,j with starting boundary ts = tj ,

duration d = ti and ending boundary te = tj + ti. Thus,

we can generate confidence scores for densely distributed

proposals via generating BM confidence map.

Boundary-Matching Layer. How can we generate two di-

mensional BM confidence map from temporal feature se-

quence? In BM mechanism, we introduce the BM layer to

generate BM feature map MF ∈ RC×N×D×T from tem-

poral feature sequence SF ∈ RC×T , and then use MF to

generate BM confidence map MC ∈ RD×T with a series

of convolutional layers, where D are pre-defined maximum

proposal duration. The goal of BM layer is to uniformly

sample N points in SF between starting boundary ts and

ending boundary te of each proposal ϕi,j , and get proposal

feature mf
i,j ∈ RC×N with rich context. And we can gener-

ate BM feature map MF via conducting this sampling pro-

cedure for all proposals simultaneously.

There are two difficulties to achieve this feature sam-

pling procedure: (1) how to sample feature in non-integer

point and (2) how to sample feature for all proposals si-

multaneously. As shown in Fig 3, we achieve this via dot

product between temporal feature sequence SF ∈ RC×T

and sampling mask weight W ∈ RN×T×D×T in temporal

dimension. In detail, first, for each proposal ϕi,j , we con-

struct weight term wi,j ∈ RN×T via uniformly sampling N
points between expanded temporal region [ts − 0.25d, te +
0.25d]. For a non-integer sampling point tn, we define its

corresponding sampling mask wi,j,n ∈ RT as

wi,j,n[t] =











1− dec(tn) if t = floor(tn)

dec(tn) if t = floor(tn) + 1,

0 if t = others

(1)
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Figure 4. The framework of Boundary-Matching Network. After

feature extraction, we use BMN to simultaneously generate tem-

poral boundary probability sequence and BM confidence map, and

then construct proposals based on boundary probabilities and get

corresponding confidence score from BM confidence map.

where dec and floor is decimal and integer fraction func-

tions separately. Thus, for proposal ϕi,j , we can get weight

term wi,j ∈ RN×T . Second, we conduct dot product in

temporal dimension between SF and wi,j

mf
i,j [c, n] =

T
∑

t=1

Sf [c, t] · wi,j [n, t]. (2)

Via expanding wi,j ∈ RN×T to W ∈ RN×T×D×T

for all proposals in BM confidence map, we can generate

BM feature map MF ∈ RC×N×D×T using dot product.

Since the sampling mask weight W is the same for differ-

ent videos and can be pre-generated, the inference speed of

BM layer is very fast. BM feature map contains rich fea-

ture and temporal context for each proposal, and gives the

potential for exploiting context of adjacent proposals.

Boundary-Matching Label. During training, we denote

the BM label map as GC ∈ RD×T with the same shape

of BM confidence map MC , where gci,j ∈ [0, 1] represents

the maximum IoU between proposal ϕi,j and all ground-

truth action instances. Generally, in BM mechanism, we

use BM layer to efficiently generate BM feature map MF

from temporal feature sequence SF , and then use a series of

convolutional layers to generate BM confidence map MC ,

which is trained under supervision of BM label map GC .

Table 1. The detailed architecture of BMN, where the output fea-

ture sequence of base module is shared by temporal evaluation and

proposal evaluation modules. T and D are length of input feature

sequence and maximum proposal duration separately.

layer kernel stride dim act output size

Base Module

conv1d1 3 1 256 relu 256×T

conv1d2 3 1 128 relu 128×T

Temporal Evaluation Module

conv1d3 3 1 256 relu 256×T

conv1d4 3 1 2 sigmoid 2×T

Proposal Evaluation Module

BM layer N - 32 128×32×D×T

conv3d1 32,1,1 32,0,0 512 relu 512×1×D×T

squeeze 512×D×T

conv2d1 1,1 0,0 128 relu 128×D×T

conv2d2 3,3 1,1 128 relu 128×D×T

conv2d3 1,1 0,0 2 sigmoid 2×D×T

3.4. BoundaryMatching Network

Different with the multiple-stage framework of BSN

[18], BMN generates local boundary probabilities sequence

and global proposal confidence map simultaneously, while

the whole model is trained in an unified framework. As

demonstrated in Fig 4, BMN model contains three modules:

Base Module handles the input feature sequence, and out-

puts feature sequence shared by the following two modules;

Temporal Evaluation Module evaluates starting and ending

probabilities of each location in video to generate boundary

probability sequences; Proposal Evaluation Module con-

tains the BM layer to transfer feature sequence to BM fea-

ture map, and contains a series of 3D and 2D convolutional

layers to generate BM confidence map.

Base Module. The goal of the base module is to handle

the input feature sequence, expand the receptive field and

serve as backbone of network, to provide a shared feature

sequence for TEM and PEM. Since untrimmed videos have

uncertain temporal length, we adopt a long observation win-

dow with length lω to truncate the untrimmed feature se-

quence with length lf . We denote an observation window

as ω = {tω,s, tω,e,Ψω, Fω}, where tω,s and tω,e are the

starting and ending time of ω separately, Ψω and Fω are

annotations and feature sequence within the window sepa-

rately. The window length lω = tω,e− tω,s is set depending

on the dataset. The details of base module is shown in Table

1, including two temporal convolutional layers.

Temporal Evaluation Module (TEM). The goal of TEM is

to evaluate the starting and ending probabilities for all tem-

poral locations in untrimmed video. These boundary prob-

ability sequences are used for generating proposals during

post processing. The details of TEM are shown in Table

1, where conv1d4 layer with two sigmoid activated filters

output starting probability sequence PS,ω =
{

pstn
}lω

n=1
and
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ending probability sequence PE,ω =
{

petn
}lω

n=1
separately

for an observation window ω.

Proposal Evaluation Module (PEM). The goal of PEM

is to generate Boundary-Matching (BM) confidence map,

which contains confidence scores for densely distributed

proposals. To achieve this, PEM contains BM layer and

a series of 3d and 2d convolutional layers.

As introduced in Sec. 3.3, BM layer transfers temporal

feature sequence S to BM feature map MF via matrix dot

product between S and sampling mask weight W in tem-

poral dimension. In BM layer, the number of sample points

N is set to 32, and the maximum proposal duration D is

set depending on dataset. After generating BM feature map

MF , first we conduct conv3d1 layer in sample dimension

to reduce dimension length from N to 1, and increase hid-

den units from 128 to 512. Then, we conduct conv2d1 layer

with 1 × 1 kernel to reduce the hidden units, and conv2d2
layer with 3 × 3 kernel to capture context of adjacent pro-

posals. Finally, we generate two types of BM confidence

map MCC ,MCR ∈ RD×T with sigmoid activation, where

MCC and MCR are trained using binary classification and

regression loss function separately.

3.5. Training of BMN

In BMN, TEM learns local boundary context and PEM

pattern global proposal context. To jointly learn local pat-

tern and global pattern, an unified multi-task framework is

exploited for optimization. The training details of BMN are

introduced in this section.

Training Data Construction. Given an untrimmed video

X , we can extract feature sequence F with length lf . Then,

we use observation windows with length lω to truncate fea-

ture sequence with 50% overlap, where windows containing

at least one ground-truth action instance are kept for train-

ing. Thus, a training set Ω = {ωn}Nω

n=1
is constructed with

Nω observation windows.

Label Assignment. For TEM, we need to generate tem-

poral boundary label sequence GS , GE ∈ RT . Following

BSN[18], for a ground-truth action instance ϕg = (ts, te)
with duration dg = te − ts in annotation set Ψω , we denote

its starting and ending regions as rS = [ts − dg/10, ts +
dg/10] and rE = [te−dg/10, te+dg/10] separately. Then,

for a temporal location tn within Fω , we denote its local re-

gion as rtn = [tn−df/2, tn+df/2], where df = tn−tn−1

is the temporal interval between two locations. Then we cal-

culate overlap ratio IoR of rtn with rS and rE separately,

and denote maximum IoR as gstn and getn separately, where

IoR is defined as the overlap ratio with groundtruth propor-

tional to the duration of this region. Thus we can generate

GS,ω =
{

gstn
}lω

n=1
and GE,ω =

{

getn
}lω

n=1
as label of TEM.

For PEM, we need to generate BM label map GC ∈
RD×T . For a proposal ϕi,j = (ts = tj , te = tj + ti),
we calculate its Intersection-over-Union (IoU ) with all ϕg

in Ψω , and denote the maximum IoU as gci,j . Thus we can

generate GC =
{

gci,j
}D,lω

i,j=1
as label of PEM.

Loss of TEM. With generated boundary probability se-

quence PS,ω , PE,ω and boundary label sequence GS,ω ,

GE,ω , we can construct the loss function of TEM as the

sum of staring and ending losses

LTEM = Lbl(PS , GS) + Lbl(PE , GE). (3)

Following BSN[18], we adopt weighted binary logistic

regression loss function Lbl for both starting and ending

losses, where Lbl(P,G) is denoted as:

1

lω

lω
∑

i=1

(

α
+ · bi · log(pi) + α

− · (1− bi) · log(1− pi)
)

, (4)

where bi = sign(gi − θ) is a two-value function used to

convert gi from [0, 1] to {0, 1} based on overlap threshold

θ = 0.5. Denoting l+ =
∑

bi and l− = lω − l+, the

weighted terms are α+ = lw
l+

and α− = lw
l−

.

Loss of PEM. With generated BM confidence map MCC ,

MCR and BM label map GC , we can construct the loss

function of PEM, which is the sum of binary classification

loss and regression loss:

LPEM = LC(MCC , GC) + λ · LR(MCR, GC). (5)

where we adopt Lbl for classification loss LC and L2 loss

for regression loss LR, and set the weight term λ = 10.

To balance the ratio between positive and negative samples

in LR, we take all points with gci,j > 0.6 as positive and

randomly sample gci,j < 0.2 as negative, and ensure the

ratio between positive and negative points nearly 1:1.

Training Objective. We train BMN in the form of a multi-

task loss function, including TEM loss, PEM loss and L2

regularization term:

L = LTEM + λ1 · LPEM + λ2 · L2(Θ), (6)

where weight term λ1 and λ2 are set to 1 and 0.0001 sepa-

rately to ensure different modules are trained evenly.

3.6. Inference of BMN

During inference, we use BMN to generate boundary

probability sequences GS , GE and BM confidence map

MCC , MCR. To get final results, we need to (1) generate

candidate proposals using boundary probabilities, (2) fuse

boundary probability and confidence score to generate fi-

nal confidence score, (3) and suppress redundant proposals

based on final confidence scores.

Candidate Proposals Generation. Following BSN [18],

we generate candidate proposals via combining temporal

locations with high boundary probabilities. First, to locate
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high starting probability locations, we record all temporal

locations tn with starting pstn (1) higher than 0.5 · max(p)
or (2) being a probability peak, where max(ps) is the max-

imum starting probability of this video. These candidate

starting locations are grouped as BS = {ts,i}NS

i=1
. We can

generate ending locations set BE in the same way.

Then we match each starting location ts in BS and end-

ing location te in BE as a proposal, if its duration is smaller

than a pre-defined maximum duration D. The generated

proposal ϕ is denoted as ϕ = (ts, te, p
s
ts
, pete , pcc, pcr),

where psts , pete are starting and ending probabilities in ts
and te separately, and pcc, pcr are classification confidence

score and regression confidence score from [te−ts, ts] point

of BM confidence map MCC and MCR separately. Thus we

can get candidate proposals set Ψ = {ϕi}Np

i=1
, where Np is

the number of candidate proposals.

Score Fusion. To generate more reliable confidence scores,

for each proposal ϕ, we fuse its boundary probabilities and

confidence scores by multiplication to generate the final

confidence score pf :

pf = psts · p
e
te
· √pcc · pcr. (7)

Thus, we can get candidate proposals set Ψp =

{ϕi = (ts, te, pf )}Np

i=1
, where pf is used for proposals re-

trieving during redundant proposals suppression.

Redundant Proposals Suppression. After generating can-

didate proposals, we need to remove redundant proposals

to achieve higher recall with fewer proposals, where Non-

maximum suppression (NMS) algorithm is widely used

for this purpose. In BMN, we mainly adopt Soft-NMS

algorithm[1], since it has proven its effectiveness in pro-

posal generation task [18]. Soft-NMS algorithm suppresses

redundant results via decaying their confidence scores.

Soft-NMS generates suppressed final proposals set Ψ′

p =
{

ϕn = (ts, te, p
′

f )
}N ′

p

n=1

, where N ′

p is the final proposals

number. During experiment, we also try normal Greedy-

NMS for fair comparison.

4. Experiments

4.1. Dataset and Setup

Dataset. We conduct experiments on two challenging

datasets: THUMOS-14 [15] dataset contains 413 tem-

poral annotated untrimmed videos with 20 action cate-

gories; ActivityNet-1.3 [5] is a large-scale action under-

standing dataset, containing action recognition, temporal

detection, proposal generation and dense captioning tasks.

ActivityNet-1.3 dataset contains 19994 temporal annotated

untrimmed videos with 200 action categories, which are di-

vided into training, validation and testing sets by ratio 2:1:1.

Implementation Details. For feature encoding, following

previous works [18, 12], we adopt two-stream network [33]

Table 2. Comparison between our method and other state-of-the-

art temporal action proposal generation methods on validation set

of ActivityNet-1.3 dataset in terms of AR@AN and AUC.

Method [7] [13] [20] [10] [18] BMN

AR@100 (val) - - 73.01 73.17 74.16 75.01

AUC (val) 59.58 63.12 64.40 65.72 66.17 67.10

AUC (test) 61.56 64.18 64.80 - 66.26 67.19

Table 3. Comparison between our method with state-of-the-art

proposal generation methods SCNN [24], SST [3], TURN [12],

TAG [36], CTAP [10], BSN [18] on THUMOS-14 dataset in terms

of AR@AN, where SNMS stands for Soft-NMS.

Feature Method @50 @100 @200 @500 @1000

C3D SCNN-prop 17.22 26.17 37.01 51.57 58.20

C3D SST 19.90 28.36 37.90 51.58 60.27

C3D TURN 19.63 27.96 38.34 53.52 60.75

C3D BSN+NMS 27.19 35.38 43.61 53.77 59.50

C3D BSN+SNMS 29.58 37.38 45.55 54.67 59.48

C3D BMN+NMS 29.04 37.72 46.79 56.07 60.96

C3D BMN+SNMS 32.73 40.68 47.86 56.42 60.44

2Stream TAG 18.55 29.00 39.61 - -

Flow TURN 21.86 31.89 43.02 57.63 64.17

2Stream CTAP 32.49 42.61 51.97 - -

2Stream BSN+NMS 35.41 43.55 52.23 61.35 65.10

2Stream BSN+SNMS 37.46 46.06 53.21 60.64 64.52

2Stream BMN+NMS 37.15 46.75 54.84 62.19 65.22

2Stream BMN+SNMS 39.36 47.72 54.70 62.07 65.49

pre-trained on training set of ActivityNet-1.3, where spatial

and temporal sub-networks adopt ResNet and BN-Inception

network separately. The frame interval σ is set to 5 and 16

on THUMOS-14 and ActivityNet-1.3 separately.

On THUMOS-14, we set the length of observation win-

dow lω to 128 and the maximum duration length D to 64,

which can cover length of 98% action instances. On Activi-

tyNet, following [18, 20], we rescale each feature sequence

to the length of the observation window lω = 100 using

linear interpolation, and the duration of corresponding an-

notations to range [0,1]. The maximum duration length D
is set to 100, which can cover length of all action instances.

To train BMN from scratch, we set learning rate to 0.001,

batch size to 16 and epoch number to 10 for both datasets.

4.2. Temporal Action Proposal Generation

The goal of proposal generation task is to generate high

quality proposals to cover action instances with high recall

and high temporal overlap. To evaluate proposal quality,

Average Recall (AR) under multiple IoU thresholds are cal-

culated. Following conventions, IoU thresholds [0.5 : 0.05 :
0.95] and [0.5 : 0.05 : 1.0] are used for ActivityNet-1.3 and

THUMOS-14 separately. We calculate AR under different

Average Number of proposals (AN) as AR@AN, and calcu-

late the Area under the AR vs. AN curve (AUC) as metrics

on ActivityNet-1.3, where AN is varied from 0 to 100.
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Table 4. Ablation comparison between BSN [18] and BMN in

validation set of ActivityNet-1.3 in terms of AR@AN, AUC and

inference speed. Inference speed here is the second (s) cost for

processing a 3-minute video using a Nvidia 1080-Ti graphic card,

including network inference time Tinf , proposal generation and

proposal-feature generation (for BSN) time Tpro and the total in-

ference time Tsum = Tinf + Tpro. e2e here means modules of

network are trained jointly.

Method Module e2e @100 AUC Tinf Tpro Tsum

BSN TEM - 73.57 64.80 0.002 0.034 0.036

BSN TEM+PEM × 74.16 66.17 0.005 0.624 0.629

BMN TEM - 73.72 65.17 0.003 0.032 0.035

BMN TEM+PEM × 74.36 66.43 0.007 0.062 0.069

BMN TEM+PEM X 75.01 67.10 0.005 0.047 0.052

Figure 5. Ablation comparison between BSN and BMN in terms

of relative AR improvement (%) vs AN curve on validation set

of ActivityNet-1.3, where relative AR improvement is calculated

based on BSN-TEM results.

Comparison with State-of-the-art Methods. Table 2

demonstrates the proposal generation performance compar-

ison on validation and testing set of ActivityNet-1.3, where

our method significantly outperforms other proposal gen-

eration methods. Especially, our method significantly im-

proves AUC of validation set from 66.17% to 67.10% by

0.93%, which demonstrates that our method can achieve

overall performance promotion.

Table 3 demonstrates the proposal generation perfor-

mance comparison on testing set of THUMOS-14. Since

different feature encoding methods and redundant proposal

suppression methods can affect performance largely, fol-

lowing BSN [18], we adopt both C3D and two-stream fea-

ture, both normal Greedy-NMS and Soft-NMS for fair com-

parison. Experiment results suggest that (1) based on ei-

ther C3D or two-stream feature, our method outperforms

other methods significantly when proposal number varies

from 10 to 1000; (2) no matter Greedy-NMS or Soft-NMS

Table 5. Generalizability evaluation of BMN on validation set of

ActivityNet-1.3 in terms of AR@AN and AUC.

Seen Unseen

Training Data AR@100 AUC AR@100 AUC

Seen+Unseen 72.96 65.02 72.68 65.05

Seen 72.47 64.37 72.46 64.47

is adopted, our method outperforms other methods signif-

icantly; (3) Soft-NMS can improve average recall perfor-

mance especially under small proposal number, which is

helpful for temporal action proposal generation task. These

results together suggest the effectiveness of our method and

its effectiveness mainly due to its own architecture. Quali-

tative results are shown in Fig 6.

Ablation Comparison with BSN. To confirm the effect

of the BM mechanism, we conduct more detailed ablation

study and comparison of effectiveness and efficiency be-

tween BSN [18] and BMN. To achieve this, we evaluate

the proposal quality and speed of BSN and BMN under

multiple ablation configuration. The experiment results are

shown in Table 4 and Fig 5, which demonstrate that:

1. Under similar network architecture and training objec-

tive, TEMs of BSN and BMN achieve similar proposal

quality and inference speed, which provides a reliable

comparison baseline;

2. Adding separately trained PEM, both BSN and BMN

obtain significant performance promotion, suggesting

that PEM plays an important role in the “local to

global” proposal generation framework;

3. Jointly trained BMN achieves higher recall and faster

speed than separately trained BMN, suggesting the ef-

fectiveness and efficiency of overall optimization;

4. Adding separately trained PEM, BMN achieves signif-

icant faster speed than BSN, since BM mechanism can

directly generate confidence scores for all proposals si-

multaneously, rather than one-by-one respectively in

BSN. Thus, PEM based on BM mechanism is more ef-

ficient than original PEM. Combining TEM and PEM

jointly can further improve the efficiency.

Thus, these ablation comparison experiments suggest

the effectiveness and efficiency of our proposed Boundary-

Matching mechanism and unified BMN network, which can

generate reliable confidence scores for all proposals simul-

taneously in fast speed.

Generalizability of Proposals. As a proposal generation

method, an important property is the ability of generating

high quality proposals for unseen action categories. To eval-

uate this property, following BSN [18], two un-overlapped

action subsets: “Sports, Exercise, and Recreation” and “So-

cializing, Relaxing, and Leisure” of ActivityNet-1.3 are

chosen as seen and unseen subsets separately. There are
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Table 6. Action detection results on validation and testing set of

ActivityNet-1.3, where our proposals are combined with video-

level classification results generated by [37].

validation testing

Method 0.5 0.75 0.95 Average Average

CDC [23] 43.83 25.88 0.21 22.77 22.90

SSN [34] 39.12 23.48 5.49 23.98 28.28

Lin et al. [20] 44.39 29.65 7.09 29.17 32.26

BSN [18] + [37] 46.45 29.96 8.02 30.03 32.87

Ours + [37] 50.07 34.78 8.29 33.85 36.42

Table 7. Action detection results on testing set of THUMOS14,

where video-level classifier UntrimmedNet [31] and proposal-

level classifier SCNN-Classifier [24] are combined with proposals.

Method classifier 0.7 0.6 0.5 0.4 0.3

SST [3] SCNN-cls - - 23.0 - -

TURN[12] SCNN-cls 7.7 14.6 25.6 33.2 44.1

BSN [18] SCNN-cls 15.0 22.4 29.4 36.6 43.1

Ours SCNN-cls 17.0 24.5 32.2 40.2 45.7

SST [3] UNet 4.7 10.9 20.0 31.5 41.2

TURN[12] UNet 6.3 14.1 24.5 35.3 46.3

BSN [18] UNet 20.0 28.4 36.9 45.0 53.5

Ours UNet 20.5 29.7 38.8 47.4 56.0

87 and 38 action categories, 4455 and 1903 training videos,

2198 and 896 validation videos on seen and unseen subsets

separately. And we adopt C3D network [28] pre-trained

on Sports-1M dataset [16] for feature extraction, to guaran-

tee the validity of experiments. We train BMN with seen

and seen+unseen training videos separately, and evaluate

both BMN models on seen and unseen validation videos

separately. Results in Table 5 demonstrate that the perfor-

mance drop is very slight in unseen categories, suggesting

that BMN achieves great generalizability to generate high

quality proposals for unseen actions, and can learn a gen-

eral concept of when an action may occur.

4.3. Action Detection with Our Proposals

Another important aspect of evaluating the proposal

quality is to put proposals in temporal action detection

framework and evaluate its detection performance. Mean

Average Precision (mAP) is adopted as the evaluation met-

ric of temporal action detection task, where we calculate

Average Precision (AP) on each action category respec-

tively. mAP with IoU thresholds {0.5, 0.75, 0.95} and av-

erage mAP with IoU thresholds [0.5 : 0.05 : 0.95] are

used on ActivityNet-1.3, while mAP with IoU thresholds

{0.3, 0.4, 0.5, 0.6, 0.7} are used on THUMOS-14.

To achieve this, we adopt the two-stage “detection by

classifying proposals” temporal action detection framework

to combine BMN proposals with state-of-the-art action

classifiers. Following BSN [18], on ActivityNet-1.3, we

adopt top-1 video-level classification results generated by

method [37] and use confidence scores of BMN propos-

Figure 6. Visualization examples of proposals and BM map gen-

erated by BMN on THUMOS-14 and ActivityNet-1.3 dataset.

als for detection results retrieving. On THUMOS-14, we

use both top-2 video-level classification results generated

by UntrimmedNet [31], and proposal-level SCNN-classifier

to generate classification result for each proposal. For

ActivityNet-1.3 and THUMOS-14 datasets, we use first 100

and 200 temporal proposals per video separately.

The experiment results on ActivityNet-1.3 are shown in

Table 6, which demonstrate that BMN proposals based de-

tection framework significantly outperform other state-of-

the-art temporal action detection methods. The experiment

results on THUMOS-14 are shown in Table 7, which sug-

gest that: (1) no matter video-level or proposal-level ac-

tion classifier is used, our method achieves better detection

performance than other state-of-the-art proposal generation

methods; (2) using BMN proposals, video-level classifier

[31] achieves significant better performance than proposal-

level classifier [24], indicating that BMN can generate con-

fidence scores reliable enough for retrieving results.

5. Conclusion

In this paper, we introduced the Boundary-Matching

mechanism for evaluating confidence scores of densely dis-

tributed proposals, which is achieved via denoting proposal

as BM pair and combining all proposals as BM confidence

map. Meanwhile, we proposed the Boundary-Matching

Network (BMN) for effective and efficient temporal action

proposal generation, where BMN generates proposals with

precise boundaries and flexible duration via combining high

probability boundaries, and simultaneously generates reli-

able confidence scores for all proposals based on BM mech-

anism. Extensive experiments demonstrate that BMN out-

performs other state-of-the-art proposal generation methods

in both proposal generation and temporal action detection

tasks, with remarkable efficiency and generalizability.
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