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BMO FUNCTIONS AND THE 3-EQUATION

N. TH. VAROPOULOS

The o-equation associated with the Corona problem for
several complex variables is examined and the relation of
that equation with BMO functions on the boundary is brought
to light. A new characterisation, closely related with the
H' duality, for BMO functions is obtained.

0. Introduction. This paper came out of an unsuccessful attempt
to prove the Corona theorem for n-dimensions.

If we try to generalise L. Carleson’s 1-dimensional proof (with
the modifications introduced by L. Hormander) (cf. {1], [2], [9]), we
come up against the following problem:

Solve the 6-equation

ou =

in, say, the complex n-ball where ¢ is an arbitrary 5-closed differ-
ential form that satisfies an appropriate Carleson condition and where
we require the solution u# to have L~ boundary values (also in an
appropriate sense, ef. [9]). ‘

We shall show in Part 38 of this paper that it is not always
possible to solve the above equation, and that the best we can
obtain in general for the boundary values of the solution is'a BMO
condition.

However along the way a number of positive results will be
obtained. In Part 1 we obtain a new characterisation of BMO
functions which is closely related with the BMO, H' duality. -This
characterisation, grosso motto, runs as follows: f ¢ L'(R") is a. BMO
function in R” if and only if it is the boundary value of some function
F defined in the upper half space R”** such that

+ %[)d(Vol)

(| oF
FPF| =
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is a Carleson measure. Exact statements will be given later. The
extension F' of f in the upper half space is not, in general, the
harmonic extension and it is not easy to describe it explicitly. k

In Part 2 the above results are generalised to the complex ball
and to general strictly pseudoconvex domains. This generalisation
is tedious but essentially routine.

In Part 3 the real “raison d’etre’ of this characterisation appears
and it is used to study the d-equation and the Corona problem. It
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222 N. TH. VAROPOULOS

should be remarked however that for the proof of Theorem 3.1.2,
which is directly related to the Corona problem, the rather lengthy
and tedious Theorem 2.1.1 is not essentially (cf. the remark that
follows the proof of Theorem 3.1.2). All that one needs is the much
easier Theorem 1.1.1.

Part 1 uses entirely real variable methods. Part 2 uses some
of the geometry of pseudo-convex domains. Part 3 finally uses genuine
several complex variables methods and in particular the Henkin
Integral formulas.

Finally a few words about the style.

As it happens this paper is far too long. To avoid making it
longer still I have resorted to a few standard “tricks.” Often theorems
that are stated in full generality are only proved under some special
restrictive condition. This is especially applicable to strictly pseudo-
convex domains where all the explicit calculations are carried out
only for the complex ball and often only in C®. But hopefull the
reader who possesses some technique will be able to see without too
much difficulty how the proofs can be made to work in full generality.

Part 1. The real variable theory.

1.1. Statement of the results. In this paper we shall adopt

the notations of [15].
Let us recall that BMO (R") (or simply BMO) is the space of
measurable functions f on R" that satisfy the following condition,

sup —LS If — filde < + o
| I] i
where I runs through all possible cubes of R with sides parallel to
the axes, | I| denotes the volume of T and f;, = |I |"S fdz, the average
of f over I. The key reference for BMO is [6]. 1Let us also recall
that a measure ¢ on Iéi“ (the interior of R*™') is said to satisfy the
Carleson condition, or simply to be a Carleson measure, if:

ya1es; o
SlIlp ¥i < +

where I is as before, |u¢| is the absolute value of ¢ and
I'={=y)eRr; nel, ye(0,h)

where h is the length of the side of I (ef. [3], 1], [15]).
The main result in this paragraph is summarised in the following
theorem.,
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THEOREM 1.1.1. Let f €BMO (R") and let us suppose that f has
compect support. Then there exists an infinitely differentiable
function Fe C°°(I°€1+‘) that satisfies the following conditions.

(i) lim,., F(z, y) — f(z) e L=(R").

(ii) The measure

\PF|dxdy = (g

oF { oF
= —1)dx d
oz, + oy > Y

satisfies the Carleson condition.
(iii) There extists some g(x)e L'(R") such that

syu>103IF(x, P = g(@) .
(iv) |FF| = 01/y).

The above theorem has a number of converses that can be sum-
marised in the following theorems:

THEOREM 1.1.2. Let F(z, y)eCl(Ié:‘.+ Y be a once continuously
differentiable function such that |VF|dxdy is a Carleson measure
and such that the limit

lim F(z, 4) = /()

exists for almost all x€ R*. Then the following assertions hold.
(i) If n =1 then f<BMO(R).
(i) If n =2 is arbitrary but in addition we suppose that:
[PF| = 0(1/y) then feBMO (R").

It should be remarked here, once and for all, that the condition
IPF| = 0(1/y), both in Theorem 1.1.1 and Theorem 1.1.2 is purely
technical and not very important in our context.

Let us denote by D = {z€C; |z| < 1} the complex disc.

THEOREM 1.1.3. Let F'e C‘(ﬁ) be a once continuously differentiable
function in D (the interior of the complex disc) and let us denote
F () = F(re?),e?’coD =T 0=r<1.

Let us suppose that |FF|dxdy is a Carleson measure in D and that

F, ey Se 2'(0=z)

in the weak distribution topology o(Z’, C~).
Then we have:
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<P, S>| = CI| Pil,

for all anal@ti“c polynomials P(z) = S a,2" where C is some con-
stant that is independent of P. .

The notion of a Carleson measure in D is analogous to that of
R,
(P, 8> indicates the scalar product ( sometimes abusively denoted
2r
as (1/271')8 P(e”)dS(ﬁ)) between <2’ and C=, and
0

1P, = —= |71 P(e) ds
27 Jo
denotes the L'(T) norm of P. Let Se . &'(R") be a temperate dis-

tribution. We say that S is of analytic type if
supp S {620 i=1,2 -+, n)

we have then:

THEOREM 1.1.4. Let F e C(R™) be a once continuously diﬁeren—
tiable function in Iéi“ and let us suppose that |V F|dzdy is a Carleson
measure. Let us suppose that the continuous functions F,(x) =
F(x, y) converge to a distribution Se&'(R") with compact support
when y— 0 (the convergence takes place in the weak distribution
topology). Then we have

1S, 2| = Clloll

for all infinite differentiable functions @, € P (R") of rapid decrease
at infinity and of anylytic type.

In §1.2 we shall give a direct and elementary proof of Theorem
1.1.1. In §1.8 we shall give an alternative approach to Theorem 1.1.1,
less elementary but which has the advantage that it generalises to
strictly pseudoconvex domains. In 1.4 we shall prove the converses
and examine the relation they bear with the Stein and Fefferman
BMO H* duality.

1.2. Proof of Theorem 1.1.1. We start with the slightly weaker

ProrosiTION 1.2.1. Let f € BMO (R") have compact support. Then
there exists F e L (R and g e L(R") such that:

(@) lim,., F(z, y) — f(z) e L™(R").

() |F(x, )| = 9(»). V(x, y)e Ry

(¢) |FF|, taken in the sense of distribution theory, is a Carleson
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measure n R

REMARK. In (a) and (b) what we mean of course is that there
exists a representative of F' in the class L{;, for which (a) and (b)
hold.

For simplicity’s sake, we shall give the proof of Proposition 1.2.1
for n = 1, but the proof readily generalises to arbitrary dimension.

The proof of Proposition 1.2.1 depends on the following two
lemamas.

LeEmma 1.2.1. Let f€BMO (R) and let us suppose that supp f C
[0, 1] and that the average of f im [0,1] is 0. Then there exists a
Jamily Q of distinet closed diadic subintervals of [0, 1] and a cor-
responding family {a, e C; w € 2} of complex numbers such that

(1.2.1) la,| = C Vwef
1.2.2) Z_I\wl < ClI) for all intervals I
(1.2.8) f(z) — Zﬂaw%w(x) e L=(R)

where Y, denotes in general the characteristic function of the set E,
and C 1s a constant that depends only on the BMO norm of f.

LEMMA 1.2.2. Let f be as in Lemma 1.1.1 and let o, g, be two
adjacent diadic intervals of equal length. We have then:

(1.2.4) \fo, =Sl £C

where C is a constant that depends only on the BMO norm of f
and where we denote as before f, = 1/|0| S fdzx.

ReEMARk. What is of some interest is that the conditions above,
(1.2.1)-(1.2.4) characterise B.M.O. functions. This is a consequence
of the proof below. (It can also be seen directly.)

Lemma 1.2.1, which, to my knowledge, has been proved for the
first time by J. Garnett (unpublished 1974) depends on a Calderon-
Zygmund argument, (stopping time) and holds also in the context
of diadic martingales. The proof will be omitted. Lemma 1.2.2 is
a trivial application of the BMO condition on the interval ¢, U o,.

Proof of Proposition 1.2.1. Let I =[a,a + k] be an arbitrary
interval and let us denote by

I={z9sa<zs<a+h, 0Sy<hCR:
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the square in the upper half plane with I as base.
Let now f be as in Proposition 1.2,1 with #» = 1 and supp fC
[0,1]. Let 2 and {a,; we 2} be as in Lemma 1.2.1 and let us define

Flz,y) = 3 ays@ y) vz, y)eRL

which is a function defined in the upper half space with support in
unit square which is easily seen (by econdition (1.2.2)) to belong to
L (R%). We shall prove that F satisfies the conditions of Proposition
1.2.1.

Indeed if we define

o(@) = 3@l 2
we have trivially:
(1.2.5) | F(z, y)| < g() V(z,y)eRL
(1.2.6) 1;?0 F(x, v) :w;gawxw p-p-reER.

Now condition (1.2.2) implies easily that g € L'(R) and from the above
we see that conditions (a) and (b) of Proposition 1.2.1 are satisfied.
Let us now denote:

in the sense of distribution theory.

It is an easy matter to see that y¢ and v are bounded Radon
measures in R:. Indeed let I = [a, @ + k] be an arbitrary interval
of R, then oy;/ox (in the distribution sense) is the Lebesgue linear
measure concentrated on the two vertical segments {x = ¢, ¢ < y < b}
and {# = a + k, 0= y < h} (with sign +1 in fact) and dy7/ox is the
Lebesgue linear measure on the horizontal segment {¢ £z <a-+h, y=h}
(with sign —1). From this and conditions (1.2.1) and (1.2.2) it follows
that the two series

ol v
wel o we® 8y

converge normally in M(R?) (the space of bounded measures in R2)
and this proves our assertion

To prove condition (c) we must verify separately the following
inequalities

(1.2.7) vi(l) = C|I|
(1.2.8) D) = CII|
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for an arbitrary diadic interval I R with C some constant indepen-
dent of I.

From what has been said just above, the inequality (1.2.7)1is an
immediate consequence of conditions (1.2.1) and (1.2.2). The inequality
(1.2.8) is harder however (condition (1.2.4) has to be used here). The
rest of the proof will be devoted to the proof of (1.2.8).

Let

I:IO::[—ZQ;,Z);;I:‘ n=0 sz

be arbitrary and let us denote:

I:[p—lﬂl Izﬂgiiﬂiﬁ]
1 2% b 2,n b 2 2,”’ b 2'!b

the two adjacent intervals. Let us denote:

m=>a §=01,2.

sef, 0%
Mm=Sa% gep w:[—p—, b] for some b>2T1L
ox 2 2°
>u2=2awax:'we!2 w:[a,p'*— ] for some a < L.
0% 2" A

(The intervals @ in , and \, contain I, have a common end point with
I and are among the ones that have not already been counted in p,.)

P, = Zawam wed @ = [a,f—] for some o< 22
ox 2" A

0,=3 a2 wep w:[p+ ,b] for some b>P2E2
ox 2" A
(The intervals @ in p,, 0, have a common end point with I, have
empty intersection with @ and are among the ones that have not
already been counted in the f, ¢ =1, 2.)
It is quite clear that to prove (1.2.8) it suffices to prove the
following inequalities.

£(1.2.9) (D)= ClIl i=0,1,2
(1.2.10) v+ o () = ClT
(1.2.11) .+ p.1(T) = ClI .

(1.2.9) is an immediate consequence of conditions (1.2.1) and (1.2.2).
Let us prove (1.2.10) the proof of (1.2.11) is identical. Let us consider
the measure
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g, = [?\,1 + p1|X7 .

Then 6, can be computed explicitly. It is equal to the Lebesgue
linear measure on the vertical segment {x = p/2",0 <y < 27"} mul-
tiplied by the constant %, = |I, — »,| where

L=a wef a):[ép;,b} for some b>-p—;T1

rn=3Sa, weh w:[a,—;ﬂ for some a<p2—%

We must prove therefore that
(1.2.12) kE=C.
Towards that let us denote

m, =3, Q|0 i=01,2
we 2
wCl;
s = >, a, (& is the interior of w).

pi2me @
we

We have then:

f,=s+ll+l—”§°i—+hz

m,

fn=stmt g

+ hy,
where ke L~(R) is the remainder term in (1.2.3). We conclude
therefore that:

ko=l ] S 1 ol Ll o
and our assertion (1.2.12) follows then from (1.2.2) and (1.2.4).

We almost have a proof of Theorem 1.1.1 now. Indeed the
function F constructed above can be easily smoothed out in R: to
be made C= and satisfy conditions (i), (ii), and (iii). The only thing
that can give a little trouble is condition (iv). It can be shown that
provided that the smoothing out above is done with care we can
achieve condition (iv) also. We shall not do that however for two
reasons, firstly because condition (iv) is totally unessential and secondly
because we will be able to get condition (iv) for free (so to speak)
in our alternative approach in the next paragraph.

1.3. Alternative approach to Theorem 1.1,1. We shall give
here an alternative approach to Theorem 1.1.1. We shall treat the
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compact case D = {z€C; |z| £ 1} of the complex unit dise. We do

that to avoid unnecessary complications at infinity and also because

this method is designed to generalise to bounded pseudoconvex domains,

and the disc is an (essentially the only) example of a pseudoconvex do-

main in C. The modifications needed to deal with R**' are rather easy.
The starting point of our approach is the following.

ProposITION 1.3.1. Let feBMO (D) =BMO(T) (i.e., a 2zx-
periodic BMO function on R), then there exists a Carleson measure

in D such that
(1.3.1) 5@ -\ _Pdpe e L-0D).
Conversely any function f that satisfies (1.8.1) ¢s @ BMO function

on the circle 0D. Here we denote:

_ -]z _ 1—4* _
PZ(Q)_CII——ZzF cl—2rcos(t9——gz>)+7'2 P.(0)

where z =re*eD and { = e¢?®caD, for the Poisson kernel of the
cirele (¢ is the normalisation constant).

This Proposition is an immediate consequence of the BMO, H!
duality. A direct proof of this proposition (i.e., one that does not
depend on the duality) has also been given by L. Carleson in [4].

Let us define a new function.

Pz(u) = Pz(C)X(r,l)(p)
Ve=re?eD, u=pleD, 0<r,p<l (€D,

where %, denotes the characteristic function of the interval (r, 1).

Let now f€BMO (0D) be some BMO function on the circle and
let ¢ be some Carleson measure that satisfies (1.3.1). Let us then
define

Flu) = S _Pudpz) uweD
9(0) = SzeﬁPz(C)d 1l (2) CeaD.

It is perfectly clear then that Fe LTZC(ZD)), that g € BMO(GD), and that:
(1.3.2) [Fu)l < 9(0) Yu=p 0<p<1l {ecoD.

Also an easy passage to the limit under the integral sign implies that

(1.3.3) lim F(p0) = | _P.(0dp(a)
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for all £ €6D such that g({) < + <. We shall prove the following

LEmmA 1.3.1.
(i) oF/op is a Carleson measure,
(ii) oF/o6 is a Carleson measure,
where of course u = pe’® and the derivatives are taken in the sense

of the distribution theory of D.

It is quite clear that (1.3.2), (1.8.3), and the above lemma provide
us with an alternative proof of Proposition 1.2.1. The proof of
Lemma 1.3.1 will be broken up in a number of separate steps.

Let us fix z¢ D and let us denote by

uf%,gu) w=pe" 0<p<1.
We have then:

LEMMA 1.8.2. v, is for every fized z € D a measure that satisfies:
(i) oFjap = v.du(z),

z€D
(i) [iv.ll=s1.

Proof. v, is of course just the Lebesgue linear measure on the
circle u = |2z]|e"(0 < 6 < 27) multiplied by the Poisson kernel P,(6).

From this and the fact that 1/27 S"Pz(a)do —1 (i) follows. (i), on

the other hand, is immediate by thoe definition of F.
Let now {,€0D be fixed and let us denote

(1.3.4) I,=1{zeD; |z — )| < h}.

It is quite clear from the above that we have:

3.5 |v,d) = chﬁ Vz=re® 0<r<ls.t. |z—C|>1000%
— S0
(1.3.6) v,|(T) =0 Vz=re? 1 —1r>h
and we deduce from (1.3.5) and (1.8.6) that
.87 v, (L) < 'I—WC—F Ve=re® 0<r<ls.t.|z—0|>1000% .
2 — &

We can now give the proof of Lemma 1.3.1 (i).

Proof. Let I, be as in (1.3.4) and let

v.d|p|(2) .

y, = S v.d|pi(2); v, = S
lz—Col£1000k 12—Zg!>1000R
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It suffices to verify separately the following two inequalities.
(1.3.8) v(I,) £ ¢ch
(1.3.9) v(I}) < ch

where ¢ is some constant independent of A. For indeed we always
have |0F/op| < v, + v, and our lemma follows.
We have now:

v(l,) < S v 11111 (G) < [t {z € D |2 — &] = 1000 h} < ch

Iz~ <1000k
by Lemma 1.3.2 (ii) and the hypothesis on g. This proves (1.3.8).
On the other hand using (1.3.7) we see that ’

(1.8.10) Mmémf°wm

w00k £
where
F@)=|pl{zeDliz — | <t}
Our hypothesis on g implies that
F@) £ et

and an easy integration by parts in (1.3.10) then proves the required
inequality (1.8.9), and completes the proof of the first part of Lemma
1.8.1.

For every fixed ze D let us define

the derivative being taken in the distribution sense. We have then:
LEMMA 1.3.3. p, is for every fized z ¢ D o measure that satis fies:

(1) oFjos =\ p.dpcz)

(it) flp.ll =C,
where C is some numerical constant.

Proof. That p, is a measure and that (i) holds is obvious. To
prove (ii) we just have to observe that for all fixed 2 = re’* we have

te.ii={_ale = | apfiar.o)

< o(l — ) Max, | P(6)] < ¢

since P,(0) is a function that is monotone in two pieces as 6 varies in
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[0, 2r]. This proves the lemma., Let now {,€0D be fixed and let
I, be as in (1.3.4). We have then

131 o (L) < - Chzc : vzeDs.t. |z — | > 1000k .
0
To prove this we just have to use the estimate
16P(¢9) . (1~fr)|s1n(0—q>)1 < c
1z w|4 =lz—“ewi2

valid for all z = r¢* and all 6 ¢]0, 2x].

From estimate (1.3.11) and Lemma 1.3.3 (ii) we can give the
proof of Lemma 1.3.1 just as before. This concludes the proof of
Lemma 1.3.1.

Now to give a proof ofNTheorem 1.1.1 with this method we have
to modify the definitions of P, and of the function F so as to obtain

a C~ function in B. But this is easy. It suffices to truncate P,
with a smooth function rather than the characteristic function and
define:

1.3.12)  Pu) = P(C);D(—I%ZI') vu=|ul|l, CedD

where @(t) 0 <t is some positive C~ function chosen once and for
all that satisfies

p=0 t>2 =1 te]0,1].

If we define F(u) then as before we obtain a function that satisfies
all the conditions of Theorem 1.1.1. The condition (iv) is the only
new thing that has to be verified but it is easy and will be left as
an exercise for the dedicated reader.

1.4. The converse of Theorem 1.1.1 and the use of Stoke’s
formula.

Proof of Theorem 1.1.2 (i). Let F' be as in the theorem and let
us denote by:

I={@ y)eR;zc(@a+h),ye@ ).
Then by our hypothesis

(L.4.1) S;,,' PF|dwdy < ch

where ¢ is of course independent of A and @¢. Then by Fubini’s
theorem there exists some h,€ (0, &) such that
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|17 PG, h)lde < o

and this of course implies that
(1.4.2) |F(z, h) — Fla, h)| = ¢ VYxe(a,a+ h).

On the other hand we always have

(1.4.3) lim F'(z, y) — F(z, hy)
y—0

= I7F@, vl

for every fixed xc(a, @ + k). From (1.4.2) and (1.4.3) we conclude
therefore that

@) — Flo, k)| S ¢ + | I7F@, )\ dy

for all (e, @ + k) and integrating the above inequality in z¢
(¢, & + k) and using (1.4.1) we get

S”"|f(x) — Fla, h)|dz < ch

which proves the required result.

The proof of part (i) is identical only simpler; for, by our addi-
tional hypothesis, we do not need to use Fubini to get the preliminary
inequality (1.4.2).

Proof of Theorem 1.1.3. Let F and P be as in the theorem.
Let r<(0,1) and let us apply Stokes’s formula to D, = {z&C; |z| Z 7}
we get then

S OF pydz A dz = ¢ S F(2)P(2)dz .
Dr 02 3D,
From this we conclude, letting »-—1, that

(S, Pyl se | rFl|Plddy

(where z = 2 + ty) and this together with our hypothesis on |F/F|
proves our theorem.
Proof of Theorem 1.1.4. Let us consider the poly-half space
P ={2=1(2,2,--)eC Imz; =0},

the distinguished boundary of P* can then be identified with R* and
any function fe.2”(R") of analytic type admits a unique extension
f to an analytic function in P~,
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We shall also identify R?*' with a closed subspace of P” by the
correspondence

R o (@, 2y =0+, @y Y) — (0, + 1Y, T, + 1y, )P,

and we shall choose F'e C}(P") an extension of F' (F is a function
as in the statement of Theorem 1.1.4) that satisfies |pF| < C|VF|at
every point of R+ (this is always possible) and we shall, as we may,
suppose that the supports of both F and ¥ are bounded.

An application of Stokes’ formula gives then

(1.4.4) gAf(z)F’(z)dzl Adzg A ven = SB F@aF(2) A de A dey A -+

where:

A ={(z, -,z )ePImz, =¢1=1,2, .-}
B.={(z, -+, 2)ePsImz,=Imz, >¢ 4, k=12 -}

for all ¢ > 0. If we let e—0 in (1.4.4) we obtain that
S, DS TF T, + iy, 5+ g, o) lda dy
+

and [FF|dxdy being a Carleson measure, our theorem follows.

I would like to finish this paragraph with some comments on
Theorems 1.1.3 and 1.1.4.

Theorem 1.1.8 exhibits another aspect of the well known duality
between B. M. O. and H® for the dise D. It can be used of course
to prove that duality, or if we take the duality for granted, it can
be thought of as a converse of Theorem 1.1.1.

To be able to do the same for higher dimensions we must combine
Theorem 1.1.4 with the following theorem of L. Carleson [4].

THEOREM (L. Carleson). Let f e H'(R") (the Stein and Weiss H*
space). Then there exist finitely many functions f,e L'R") (4 =
1,2, ---, N) where N depends only on n such that

£=3F LAl S CUF

and such that each f, becomes of analytic type after an appropriate
rotation of the axes (i.e., p,(f)®) = f(0,(x)) is of analytic type for
an appropriate 0, € SO(R") 1 =1,2, ---, N).

Indeed if Theorem 1.1.4 is combined with the above result the
duality between BMO and H® is again obtained. (The only trouble
of course here is that Carleson’s theorem depends on the fact that
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Calderon-Zygmund operators operate on H', a fact which itself is
best proved via the H', BMO duality!)

Part 2. Extension of the results to strictly pseudoconvex
domains.

2.1. Statements of the theorems. Let & = {p <0} C" be a
bounded strictly pseudoconvex domain in C* where p is sufficiently
differentiable and dp # 0 in some Nhd of 0= (peC* will do for
most purposes) c¢f. [8]. Our first goal will be to define the notions
of a BMO function on 07 and of a Carleson measure in 2.

Let us define a normalized (i.e., of Euclidean length equal to 1
everywhere) vector field v, in some Nhd of 07 that is normal and
directed inwards to 02 at every point {e€d<2. Let us denote by
Y, = Jv, the vector field obtained from v, by applying J, the almost
complex structure underlying C", cf. [12] (Jis the operator on the
tangent space which is obtained by “multiplication by 4,” that is why
one sometimes sees the notation v, instead of Jy, cf. [16], 1 prefer
to use the notation Jy, to avoid possible confusion when the tangent
space is complexified). ¢, is then a normalized field in some Nhd of
057 that is tangential to 0.7 at every point {,€o0=.

Let us now complete the orthonormal basis by constructing fields

Py Moy 0y Pon s

such that at every point v, f, f4, ***, twm_. fOorm an orthonormal basis
of the tangent space. This can be done at least locally; i.e., for
every {,€0< there exists £ some Nhd of {, in C” in which g, ---,
Mn_. can be constructed. It is also clear the fields v, 4, &, <, fon_s
can be made to have the same degree of smoothness as 0. For
every {,€0<7 we shall now define B,({,) the “ball” centered at {, of
radius £ > 0. In the tangent space T, (0.2) of 0z at the point ¢,
let B}(,) c T;,(0=) be the paralleliped centered at 0 of side ¢ in the
!, direction and side V't in the directions f4, «+-, f,,. We shall
define then B,(,) as the image of B}, by the exponential mapping
T, (0=)— 0= which is well defined provided that ¢ is small enough.
(There is nothing essential here, of course, about the exponential
mapping; in fact any other “ball” of the same “shape” and dimensions
as B,(,) could be used in its place.) Let us also define

By = (BALY) + mu(); M€ (0, 1))

which is a box inside & with base BNt(CO) and height ¢ along the
normal at £,. It is the analogue of I in §1.1. We shall say now
that f a measurable function on 0= is a BMO function f =
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BMO (0=) if:

sup L |~ fyldo < + o
s |B| =B

where B runs through the collection of all balls B = B,({) ({,€0=Z
0 <t <t) and where we denote as before

~ 1
Ja = B SBf do
the average of f on B; do is of course the Euclidean 2n — 1 area
element on 0=, and |B| denotes the measure of B for that area.
Note that we have (cf. [16], [11])

ct" S IByL) | = et” Vi, e0z 0<t <t

for two positive constants ¢, ¢,, We shall say that p,eM(Q) a
measure in &7 (the interior of =) is a Carleson measure if:

1B
coeas@ttgt<to ‘Bt(CO)! < +

Note that the above two notions of a BMO function and of a Carleson
measure are independent of the particular choice of the vector fields
Yoy tor ths ***, Meu_s that we have taken. (The B,({,) do depend on the
choice of the fields but in a very inessential way.)

Before we can state our main theorem we shall have to introduce
one more notion, the notion of the nonisotropic gradiant near the
boundary of <.

Let FeC(Z). We shall then define

DF| = [(F)| + | (F)] + [0 3| y(F)] .

(Let us recall that the ;s are vector fields and therefore act on
functions; p;(F') is the differentiation in the direction g;.) | DF| is then
well defined in every Nhd 2 of every point {,€0<= in which the
fields vy, fty, « -, tn_. have been defined. It does depend on the choice
of these fields but not in an essential way. In fact if », g, <« -, th,
is a different choice of fields in 2 and if we define |D'F| as above
with these new fields we then have

¢,|D'F| < |DF| =< ¢,| D'F|

at every point @ € 2 where ¢, ¢, are two positive constants indepen-
dent of @. We have then the following.

THEOREM 2.1.1. Let f € BMO (3=). Then there exists F e C=()



BMO FUNCTIONS AND THE §-EQUATION 237

such that

(1) lim,, F(C + W) — f()e L~(0.=2).

(ii) |DF|dV is a Carleson measure in <& (dV is the volume
element in Q).

(iiliy There exists some ge L(0<Z) and some N\, > 0 such that

sup |F (& + Myl = 9(C) Vi eoz
(iv) |DE| = 0{1/p.

The above theorem has a number of converses which can be
summarised in the following theorems.

THEOREM 2.1.2. Let FeCYD) be a once continuously differen-
tiable fumction in < and let us suppose that |DF| is a Carleson
measure and that it satisfies the condition |DF| = 0(1/|p|). Let us
Surther suppose that

Um F(C+ W) = f(Q) (eoz

exists for almost every point cor. Then f is a BMO function
of 07,

To simplify notations we shall state our next theorem for the
complex ball

B={z=1(2, -+, 2)€C" |2+ -+« + |2,/ < 1}

let Se &'(0B) be a distribution on the boundary of the ball. We
say that S is of analytic type if there exists F'e A(E), some analytic
function defined in the interior B of B, such that

F, ;—_—)1» S in o(=z’; C~)
where F,eC~(6=) is defined by:
Fo(Q) = F(pl) 0<p<1 {eoB.

Analogous definitions exist of course for general domains. We have
then the following.

THEOREM 2.1.3. Let F'eg Cl(f?) be a once continuously differentiable
Sunction in the interior of the ball B, and let us suppose there exists
some distribution Se 2'(0B) such that

Fﬂ‘;:f S in o(Z'; Cv).
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Then the following assertions hold:

(i) If we suppose that |DF|AV is a Carleson measure then
S e BMO (3B).

(ii) If we suppose that (|F| + |[VF|)dV is a Carleson measure
and in addition that S is of analytic type then SeBMO (0B). adV
denotes of course the volume element in B and FVF is the Euclidean
gradiant (cf., §1.1).

The above theorem holds of course also for general strictly
pseudoconvex domains. We only state it here for the ball for sim-
plicity’s sake. In fact right through this paragraph we shall have
to negotiate generality of general pseudoconvex domains & against
the simplicity of the notations of the complex ball B. All of the
explicit calculations will be carried out for the ball but they all
generalise easily to strictly pseudoconvex domains. A dedicated
reader can do it for himself. In fact in what follows we shall
push the simplification one step further; we shall suppose that the
dimension of C™ is n = 2, this case is perfectly typical.

2.2, The geometry of BC C? Let B be the unit ball in C®
and let 1 = (1, 0) be its north pole. We shall introduce then local
coordinates in N, some Nhd of 1 in 9B, by setting

(2.2.1) E=01—a +18,a,+1i8)e NCiB.

(B, @5 B,) become then local coordinated of N as they run through
a Nhd of zero in R® and «, satisfies:

(2.2.2) 20, = af + B+ a3 + B .
We can choose our fields g, t, so that they satisfy:

=0 =0 40

o = 28, Ja oa, e 35,

at the point 1. The one parameter family of balls B,(1) (0<¢ < ¢,)
is then equivalent to the family

Ct(l) = {IBII =t ]a2|’ ]Bz! = VT} o=t to) ’

where we say that two one parameter families of sets (A,)x (Byizo
are equivalent if there exist two positive constants ¢, ¢, > 0 s.t.

B,CcA,cCB,, Vt.

Using these local coordinates it is easy to show that the family C,(1)
is also equivalent to the family
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{CeoB; |1 - (| <t}

and since the above relations are rotation invariant we deduce that
for every {,€ 0B the two families

B0 =t=t;{{eoB; |1 —(-{I<t} 05t t,
are equivalent and also the two families
BIL)O0=t=t)h{zeB |1 -zl <t} 0=t=t,
are equivalent where we denote:
Zeu = ZuU, -+ Zu, Vz,ucC*.
We shall denote now by

P == sep, zeon
(1 — 2|
the Poisson-Szego kernel of the ball (cf. [16]), which for { € N becomes
in terms of our local coordinates P,(8, «,, G, for { = (B, &, B.).
We have then the following.

LeMma 2.2.1. There exists two positive constants C and ¢ such
that

(i) 0P, (L) | < 9 _ C

6181 Imll”‘l'z‘e' lleLP
(ii) 0P.(0) N 0P (%) | - 9

o, 08, |7 |1 —=1-zp2"

Jor all LeB,(1) and all ze€ B that satisfy |1 — 1-2] > ¢t (0 <t <ty

Proof. (i) We have of course

oP.| - o —[2f){1 —2-C|( + |0e,/08.))
08,1 |11 —2.f
using (2.2.2) we get
oa, _ B,
08, 1—a

On the other hand provided that ¢ is large enough we have
(2.2.3) L —-2-C|=Cl|1l —1-2]=CA — |z

for (z, {) in the required range. From this (i) follows.
(i) If we set
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z = (2, + W, T + W) .
The kernel P,({) becomes
P,

_, (@ — |z

[(1 — & + .0 — '!/151 — Tylly— y2182)2 + (x1/5)1 —Y + Y10, =+ szz - yzaz)zlz

and we deduce that

‘ oP,(£) ’ < oL |2yl — 2Ly
oa, 11—z

B + 19l + (2] + [9.])]0a/0a.]}

but we have:
|2,], [9:] S 2] S el — |2]) = ¢]1 — 12"
and also using (2.2.2)

ox,
oc,

aZ
1l—a

<CvV't {eB().

From this and (2.2.8) it follows that for #z, { in the required range
we wave

oP,
oa,

- C cvVE C
ST =12/ 1—1.2° " [1—1-zP"

and this proves the lemma.

2.3. Proof of Theorem 2.1.1. Our construction of the function
F of Theorem 2.1.1 from the function f € BMO (0B) is based on the
following:

ProprosiTiON 2.3.1. Let feBMO (0B) then there exists [t some
Carleson measure in B such that

@.3.1) f) — SzeéPz(C)dp(z) e L=(B) .

Conversely if p is a Carleson measure and f satisfies (2.3.1) then
f e BMO (6B)

A very easy proof of the above proposition can be given if we
use the BMO, H' duality (cf. [5]). Alternatively, Carleson’s argu-
ment can be adapted in this setting to give a direct proof. (This
was done by Y. Meyer, unpublished.) At any rate we intend to take
it for granted.

Let us define (in analogy with §1.3)
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P (u) = Pz("?:‘l/_')X([zl,l)(tu!) z,ueB
||
where |z|* = |2,]* + |2,|% of course, and where ¥, ., is the charac-
teristic function of the interval (|z], 1).
Let now f € BMO (6B) be given and let ¢ be some Carleson measure
that satisfies (2.3.1) and let us define

Fw = | _Pawdpa), ueB; 9@ = | P.OdI1IE), CeiB.

It is an easy matter to verify then just as in §1.3 that FeLi’i’)c(B)
that

(2.3.2) | F(w)i < g<f—7;_|> vue B
and that
(2.3.3) lim F(o?) = SzeéPz(C)d#(z)

for all {e€4B such that g({) < + . We have then:

LEMma 2.8.1. Let F be defined as above, then | DF'| (interpreted
in the sense of the distribution theory of B) is a Carleson measure
of B.

Observe that by the remarks made in §2.1 the conclusion of the
lemma is independent of the particular choice of vector fields v, t,
!, s that we take. The proof of the lemma will be given in several
distinet steps.

The first thing we do is to observe that there exists some Nhd.
2 of 1 in C?* which (8, «,, 8,), the local coordinats of 2 NoB and
0 = |u| form a set of local coordinates of w = ple 2, { = (B, @, B¢
0B. We shall use these local coordinates to take partial derivatives
in 2. Let now P,(u) be as above and let us define for each fixed z e B
the partial derivatives with respect to 3/3p, 3/38,, -+ of P.(u) (con-
sidered as a function of u={p, 5, ,, B,)) in the sense of distribution
theory in 2N B. We have then:

LEMMA 2.3.2. For each fized z<€ B the following distributions
O'Y) — aﬁz(u); 0-;2) — aPz(u) ;
ap a8,

2z —1/2 ap’z(u). z —1/2 a?z(u) .
é ) — 1 — / ; i ) — 1 —_ / ;
o = (1 — )72 = i @ — o)== B
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o = (L — oy (8t + ai + gy 2L
3,

are measures in 2 N B. Furthermore there exist two positive con-
stants C and ¢ such that

2.8.4) |6 |(B,(1)£C 1<ig5,2=(,0 0<r=<1 Vh>0

and

(2.3.5) ol By sc—2" | 1<i<s
1T—1.2p2

Jor all ze B and h > 0 that satisfy

(2.3.6) 1 —1-2| = ch.

The proof of the above lemma which consists of eight distinct
parts will be deferred until the next paragraph.

Let 2 be some Nhd of 1 in €? in which we have our local
coordinates (o, B, &, B,). If £ is small enough we can take our
normal field v, (ef. §2.1)

yo = —-ﬁ in
50
and we can also choose our fields g, f, # such that
0 0 0
2.3.7 50:—‘—-———, 1:—-, 2:__
(2.3.7) JZ 3R th=< 2, =3 2,

at the point 1.
Let us denote by:

’—-.._?___ ':_Q_ ':—a—
o 8. y M o, s M 3B,

which are vector fields in 2. (2.3.7) implies then that:
(2.3.8) o= th+ Sag, i=012.

where a,; are functions in 2 that satisfy
(2.3.9) i ;(uw) = 0(|1 —ul) uel

where | | indicates of course the Euclidean distance in C°. For every
fixed ze B we can now take the derivatives g,(P,(u) in the sense of

distribution theory of P,(u) (considered as a funcEion of we B) along
the fields (¢ =0,1,2). The distributions pg(P,(u)) are in fact
measures. Let us denote
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7 = |p (B ) |; 78 = | ol Po(w))!
T = (1 — p)—llzlﬂi—z(Pz(u))! 1=34.

We have then:

LEMMA 2.8.3. The measures t°(1 < 1 < 4) satisfy the following
relations:

(2.3.10) PB,A)=C z=@@0 r>0 h>0

(B Che/?
(2.3.1) B S

Proof. For i+ =1,2 both the above inequalities are immediate
consequences of Lemma 2.3.2 a for 7 = 3,4 we have to be but little
more careful because of the factor (1 — p) V2% We shall give the
proof for ¢ = 3, the proof for ¢ = 4 is identical. Using (2.8.8) and
(2.8.9) we see that

7?(Bi(1) = Clof(Bi(1)) + o7(Bi(1)) + oi(By ()] -

(This is the only point where o¢{® is used and the extra factor
(8 + ai + BY)“* is supplied by (2.3.9).) (2.3.10) follows then again by
Lemma 2.3.2.

Using again (2.3.8) and (2.3.9) we see that

(PO = Cl P + [1(PO) + V'R 5P

for all {¢B,(1). (Observe that { e B,(1) we have |1 —{|<V'Rh.)
From this and Lemma 2.2.1 we deduce that

C

(2.3.12) PO S T
for all e B,(1) and all ze B that satisfies |1 — 1-z| > ch, where ¢
is as in Lemma 2.2.1. Inequality (2.3.11) follows then from (2.8.12)
exactly as in §2.4 (proof of 2.8.5 for o{". This completes the proof
of Lemma 2.3.3.

Let us finally remark that once we have passed to the fields
Yoy M, M it is no longer necessary to keep z of the form (r, 0) (0=r<1)
in (2.8.10). Indeed, the situation is invariant by rotation and therefore
we deduce that

(2.3.13) BN <C1<i<4, zeB, h>0.

The only provision being that % should be small enough for B,(1) to
stay in some set where the fields g, #, can be defined.
It is clear now from the definition of F(u) that if we take the
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derivatives of F' in the distribution sense in 2 N B we obtain:
3, = u(F) = Szeéfi’”d,u(z)
%= pF) =\ e
5= - o) = | rap)
To= Q= o) = | cvapa)

It is also clear from Lemma 2.3.2 that Y,(1 <7 < 4) are measures
in 2N B we have then

LEMMA 2.3.4. There exists a constant c¢ that depends only on
© such that

|2 (Ba(1)) = ch* Vh > 0.

Proof of Lemma 2.3.4. Let h >0 be arbitrary but fixed and
let us define the following measures

P = | 1P ldlpl) 1<i<4

li—t-zl=ch

Q= | o ld|ple) 1Si<4

I1—1-zl>ch

where ¢ is as in (2.3.6).
We have then clearly:

(2.3.14) |3, /(Bi(D) £ P(Bi(D) + QB (1), 1=i1=4, B>0.
We also have by (2.3.13)

PEW=| e |(BIW el )

11—1-z|Sch
<Clpl{zeB;[1—1-z| <ch}, 1=5i<4.
From this and the hypothesis on p it follows that
(2.8.15) P(By(1)) < ch*.

We have similarly

QB () = S 12® | (By(1)d| ] (2)

l1—1-z|>ch

< crn [ 4EQ

cn 152

(2.3.16)
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where we denote by:
F(t) =|p#{zeB; [1 — 12| <t}
But by our hypothesis we have
F@)<ct*.

An integration by parts in the last member of (2.3.16) gives then
at once that

(2.3.17) QB (1)) = ch*.

And if we combine (2.3.14), (2.3.15) and (2.3.17) we obtain our lemma.
We can now give the

Proof of Lemma 2.3.1. It follows from Lemma 2.3.4 that:
(2.3.18) | DF|(B% (1) = Ch?,

where C is a constant that only depends on # and in faet only on
the Carleson constant of g which in turn only depends on the BMO
norm of the original function f. Since that norm is rotation invariant
we see that we can rotate (2.8.18) and finally obtain the Carleson
condition

[DF|(B7(Z) < Ch* V{,€0B h>0.

This proves the lemma.

Proof of Theorem 2.1.1. To satisfy the conditons (i), (ii), and
(iii) of Theorem 2.1.1 we only have to modify the definition of P, in
a manner analogous to the one in (2.3.12). This makes the function
F infinitely differentiable. Conditions (i), (ii), and (iii) follow then
from (2.3.2), (2.3.3), and Lemma 2.3.1. The verification of (iv) has
to be done separately but for the same reasons as before it will be
omitted.

2.4. Proof of Lemma 2.3.2.

The proof for ¢”. For every fixed z e]_f?, o!¥ is seen at once to
be the 8-dimensional Lebesgue on the sphere 6B, = {u = |2|{; { € 3B}
multiplied by the function P,{). (2.3.4) follows therefore from the
fact that ||P,||.105 = 1. On the other hand:

(0 1(BT(1) < | B ; sup 1 P.C0)|

< h? (1 _ I__z ]2)2
cig;gl)ll —_— C.z)‘
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But for 1 — |z| > &k we also have ¢((B,(1)) = 0 and for z € B satisfying
(2.3.6) with ¢ > 0 large enough we have

11 —C-2|=ClLl—1-2|=C1 —|z]) V{eB;(1)
and from this, (2.3.5) follows.
Proof of (2.3.5) for o{”, 0i®, 6{*, and ¢\’. That ¢, ¢{*, 0, and
0" are all measures is evident. We have further

oP.(5)
98,

P ik

|02 | (BY(D) = | BY(1)| sup Sl —12P T 11z

A1)

in the required range by Lemma 2.2.1 (i), provided that ¢ is large
enough in (2.8.6) which is the required result for ¢{*. We also have
for i1 =3, 4

o B = ([ 8- o) s | 220 220
g C Ok

[ — 1.2 |1 —1-2°?

in the required range by Lemma 2.2.1(ii). We finally have

o2 1B = 1BWI(]_ @~ 07do) sup| (8.1 + e + 16:D)] 2

e C1/h ch¥'*
[21) 1 135[1_1 e

)
< Bl —

again by Lemma 2.2.1 (observe that the 8, a,, 8,, which are the local
coordinates of £ in B,(1), are bounded by V'%). To complete the
proof it suffices to prove (2.3.4) for 1 = 2, 3,4,5. Towards that we
shall show that:

@241) |6P|(@NB)=C;25i<5 z2=(0 0sr=<1,

where 2 is some fixed Nhd of 1 in €* (in which we have our local
coordinates).
Since z = (v, 0) we have:

L — 2%y
[ — 7 + ra) + 7B
d -
[(1 —r+ (B + a; + B)) + A

P=P()=C
(2.4.2)

Proof of (2.4.1) for + = 2. Using Fubini’s theorem we obtain
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o)(@n B = o - || l%!dﬂld%dﬁz
(2.4.3) v
—C—r) Hdazaﬁzs

oP
a_l‘;(lgu az; 182) dlel

where the integration in B, @, 8, ranges through some fixed small
cube (depending only on 2).

Now it is clear that for every fixed «,, 5, in the range of integra-
tion we can split the range of integration in B, into N intervals on
each of which P(8, &, £,) is a monotone function of 5,.. N, the
number of intervals, is bounded by some numerical constant.

From this we deduce that for every fixed «,, 8, in the range of
integration we have

oP
S 6_,81(8“ az, .82)

Using (2.4.2) to get the above max and substituting its value in
(2.4.3) We finally obtain

aB, =C max | P(B,, &y B5)] -

: do,dp
éH.Q B£01_3 2 2 SC, 0§‘§1
@B 5 00—y || S < 7

which gives the required result.

Proof of (2.4.1) for ¢ = 3. The argument runs as before. A
use of Fubini gives that

wienB=cla- o raplf] o dsanas.

= Ot -y || Max | P8, @, 546,08,

because here again P, as a function of a, for fixed £, and B, is
monotone in “finitely many pieces.” If again we obfain the maximum
from (2.4.2) and substitute it in the above integral we obtain

eylad | ; — 5/2 dBIdBZ
071@ 0 B) 5 €L~y SS[((1~¢)+B%+B§)2+B?]2

= o\ dR| Rdg
0 o [(t + R*)? + R?cos® @f
where we have set 1 — » = ¢{. But
SZ* Rdyp - ZS Rdop
o[(t + B+ RPcos* @ T Jaieoseizsi[(E + R + R*cosio]?
< CS“ Rsinpde < CS*‘” do
= o [+ R+ Rcos’p] —=[(t 4 R*)* + o*]°
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as we obtain by the substitution Rcosp = 0. The substitution ¢ =
(t + R®)S in the last integral gives therefore that:

° o oo
|0.éz) | (_Q N B) é Ct5/2 SO (t iRRZ)SS_oo (1 issz)z .

A final substtituion R = 1"t R* implies therefore the required result.
e (@NB=C.

The proof of (2.4.1) for ¢ = 4 is identical. It remains therefore to
give the

Proof of (2.4.1) for 1 =5. A use of Fubini gives as before:

oi@n B = o~ nf{@ + e + o) 2l asasas,

(2.4.4) <ca - r)“z[“ai + Bé)‘“dazdﬁzg .| ag,

08,

+ {{aenas, |

d,BlJ .

oP,
'815,@:

We shall estimate the two integrals separately. The first one can be
estimates as in the proof of (2.4.1) for < = 2 by:

e ([ (@ - B dadB,
R\ e sy S

To estimate

Vo3

we have to use once more the fact for fixed a, and 5, the function
P, is monotone in each of N disjointed intervals (N < C) and to
integrate by parts on each interval. We obtain therefore

S )

P
z < .
x| s, < 0| Max 8.P.(8,, @, 81 + (P06
But we have as before:

as,

B

(L — r) dadB, _ o
A—r+ai+ By

(1 — rye{{ Max |8.P.(8,, o, )] ddp, < C
and also

SSSP (B, & Br)dBdasds, < C .
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If we substitute all these estimates back in (2.4.4) we obtain the
required result.

2.5. Proof of the converse of Theorem 2.1.1. The proof of
Theorem 2.1.2 is identical to the proof of Theorem 1.1.2(ii), and will
be therefore omitted. Before we give the proof of Theorem 2.1.3
we shall prove the following geometric

LemMmA 2.5.1. Let = ={p <0} be a strictly pseudoconvex domain
and let us suppose that F e C(D) is such that | DF|dV is a Carleson

measure (4V denotes the volume elemeot in ). Let us consider
the following two forms:

oF =Y, a,dzZ,

1 - - — —_
—_8 /\ aF = ”dzl YA\ dzi .
Vo &

Then the measures
v =% lasl oV

i<g

are both Carleson measures in <.

Proof. That g is a Carleson measure is immediate. To prove
that v is a Carleson measure we have to choose a special set of
coordinates on the cotangent space.

Let y, and &, be as in §2.1 and let us choose g, ft;, <+, .,
smooth vector fields in some Nhd 2 of some point £, <> such that
the fields

(2-5-1) Yoy J”o: s Jf’ln Moy J)uz: ey Moty Jl"n——l

form an orthonormal basis of the tangent space at every point of
2. Such a choice is clearly possible., Let us then choose differential
forms w,, @, -++, ®,_, in 2 such that the forms

@, “on: @, —‘qu et

form a basis of the cotangent space that is dual to the basis (2.5.1)
(we denote of course Jo(X) = w(JX)). The complex differential forms

(2.5.2) @, + 1o, w, £ iJw, <+, ©,_, + iJo,_,

form then a basis of the complexified cotangent space and since dp
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is proportional to w, it follows that
(2.5.3) w, + iJw, = kdp; w, — tJw, = 1o ,

where & and ! are smooth funections.
Let us now express dF and 0F in terms of the basis (2.5.2).
We obtain then

AF = S aj(o; + iJw;) + S, Biw; — iJo))
éF = “ilaj(wj -+ 'LJ(!),) .
=0

To prove that v is a Carleson measure it suffices therefore to prove
that

v %{gm”]dV

is a Carleson measure. But we have

fl

2a; = dF(¢; + py) = p(F) + iWJp(F) (52 1)

(i.e., «; involves only complex tangential derivatives of F') and this
of course together with the hypothesis on F' completes the proof of
the lemma.,

We shall also need the following two facts about functions and
distributions of analytic type on 6B the boundary of the complex
ball Bc C~.

ProposITION 2.5.1. (i) Let fe L'(dB) and let us suppose that:
|7 Ay =0
8B

for all + smooth in some Nhd of B and of type (n,n — 2). Then
[ 1s of analytic type.

(ii) Let us denote by P the orthogonal projection of L*(0B) on
the subspace

H*6B) = {f € L*(9B); of analytic type},
Then P[BMO(éB)] < BMO(@G.B).

Part (i) is standard and well known (cf. [10], [18]). Part (ii)
holds because P is given by the Szego kernel that is a singular integral
operator (cf. [17]). Both parts (i) and (ii) hold for general strictly
pseudoconvex domains, although part (ii) is much harder to show in
general,
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Proof of Theorem 2.1.3(1)). We can now give the proof of Theorem
2.1.3(1). Towards that we shall suppose in addition that SeC~(6B)
and we shall prove the a priori estimate

(2.5.4) |Sllewo = CK(IDF'[dV)

where K(|DF|dV) denotes the constant involved in the definition of
the Carleson measure. Once the estimate (2.5.4) is known, Theorem
2.1.3(i) follows at once by an easy regularisation process.
Let then F' be as in the theorem using then our hypothesis on
F, Lemma 2.5.1 and Theorem 8.1.1(i). It follows that there exists
some @ € BMO(6B) such that:
ll@lleno = CK(IDF|dAV)

and such that:
lLorv=[Fnv
3B B

for all form +, smooth and o-closed, in some Nhd of B of type
(n, n — 1).

On the other hand an easy use of Stokes’s theorem in the ball
B, = {zcC"; |z]| < p} and a passage to the limit as p-—1 gives us

SaBS A = SééF A ¥

for the same class of +’s as above.
We conclude therefore that:

S =@ Av=0

again for the same +’s, and from that and Proposition 2.5.1(i) we
conclude that there exists some function a of analytic type such that

(2.5.5) S=¢p+a.

But the hypothesis of our theorem are clearly stable by complex
conjugation. We conclude therefore that there exist ¢ and @ such
that @ is of analytic type and such that:

(2.5.6) S=%+a ||P|lswo < CK(DF|dV).
From (2.5.5) and (2.5.6) we conclude therefore that:

S = (I~ P} + a) + PP + &)
= (I — P)p + P($) + P(@)
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but @ being the complex conjugate of an analytic function, it follows
that P(@) is a constant; and since constants do not affect the BMO
norm (]| |lsmo. It is not a norm, it is only a norm on functions
modulo constants.). We obtain

1S1lsx0 = [ — P)pllsxo + || P(P)lsxo

and (2.5.4) follows then from Proposition 2.5.1(ii).
For the proof of the second part of the theorem we shall need
the following.

LEMMA 2.5.2. The exists some @ € C3,_.(C*) such that
oo =] 0@ veec-oB)
éB {edB
where do is the normalised Lebesgue measure on oB.

Proof. Let 7 =Z,dz, ANdz, \ -+« Ndz, NdZ, A\ +++ NdZ,_,. It
is clear then by Stokes’s theorem that

S T#0.
aB

7 determines then some € M(0B) by the equation
2.5.7) S o = S P()IME) Vo eC=(3B) .
aB {edB -

Let now ac SU(n) be some complex rotation on C* and denote by
7, € Cy,_(C") the form 7w, = a*(w) where:

az—az.
Let us also denote by ., the measure that is determined by 4B from
7, by the analogue of (2.5.7) and let us define

® = S _mdaeCro (€ N = S \da & M(9B)
aeSU(n)

ae SU(n

where da denotes the normalized Haar measure on SU(n). dy is
rotation invariant and it satisfies

(2.5.8) [,90 =\, 20 vpec-eB)
==

dye is therefore proportional to the normalised uniform measure on
0B do and (2.5.8) proves the lemma.
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Proof of Theorem 2.1.3(1). Let us suppose that F' and S are as
in the theorem and let us suppose in addition the Se C=(dB).

Let f(z) be an analytic polynomial in 2eC*. We see then by
an easy application of Stokes’s theorem to B, = {#€C"; [z] £ p} and
a passage to the limit as p —1 that

SCeangdG(C) = SanSw = Sﬁd(fﬁ’a;)

and therefore:

S fgda(C)lglgafa‘FAw‘+IS°fF'/\5a)!.
{€dB B B
By our hypothesis on F' it follows therefore that

(25.9) ... 75d00)| < CK| f e

where C is a numerical constant and K is the constant associated to
the Carleson measure ([FF|+|F|)dV. From (2.5.9) it follows therefore
that there exists ¢, 6 € L*(0B) such that

S =@+ 6;llell. = CK

and ¢ is orthogonal to every analytic polynomial in L*0B). Let P
now by the projection of Proposition 2.5.1(ii). We have then P4 =0
and therefore

S=PS=Pyp

by our hypothesis on S. And this implies by Proposition 2.5.1 (ii)
that:

| Sllzwo = CK

and with this a priori estimate we can complete the proof of
Theorem 2.1.3 at once.

Part 3. The d-equation and the Corona problem.

3.1. Statement of the results. One novelty in this paragraph
will be the systematic use of differential forms. Let 2 CC® be an
open subset. We shall then denote by C;(2) and L) (2) the
differential forms of type (p, q) in 2 with coefficients in C* and L*
respectively. We shall also denote by M, (2) the “differential
forms” in 2 with coefficients in M(Q2), the space of bounded measures
in Q. Strictly speaking M, (2) is not a space of forms but a space
of currents, but we shall ignore this complication here and will not
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use the (irrelevant for our purposes) formalism of currents. (We
shall tacidly identify currents of degree 0 with distributions.)

The only thing that has to be correctly understood is the
meaning of the form dy for:

# = [z} #I,szI /\ dZJ € Mp,q(Q); #I,J € M(.Q) V.I, J .

We shall simply define:

=3 Lrigz, A dz, A dz € D), Q)

5 0Z,

where the derivatives oy, ;/0Z, are taken in the sense of distribution
of 2 2'(2). We can verify that dp satisfies all the obvious formal
properties.

We shall use the notation C;,(K) where K is a closed subset of
C* to indicate the space of (p, q) forms defined and smooth in some
Nhd of K.

Together with the above spaces of forms we shall need to
consider spaces of forms on 0<2, the boundary of a strongly
pseudoconvex domain <. e.g., we shall need to consider the spaces
Cr(022) (resp. BMO, ,(0B), L; ,(0B)). These are not spaces of forms
on the differential manifold §<; they are spaces of forms in C”
(this is why we are allowed to talk about the type (p, g) which
comes about from the 9, & decomposition), but the coefficients are
only defined on 0= and are C*(0B) (resp. BMO(6B), L°(dB)) functions
on 9B, using the editoriolizing language of the topologists C;(0B)
is a C™ section of 4,,T*(C") over 0.2.

Before we can state our main theorem we shall need to introduce
the following definition. Let

t= 5 02 A dZ; M, (D)

where &7 = {p < 0} is as in §1.1. We shall say that g satisfies the
Carleson condition if the measure g = >, ;|#;,,| and the measure
Yy = 3,7|v:.,] are Carleson measures in <2, where we denote

Y = IZIJ. V5,,82; N\ dZ; = |72 A 510 eMp,qﬂ(g) .
We have then:

THEOREM 3.1.1.

(i) Let peM, (2) (¢ = 1) satisfy the Carleson condition and
be such that ag¢ = 0 in <. Then there exists some g € BMO, ,_(0.2)
such that
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(3.1.1) Sa GAp= S #A

for all e Cs_, . (D) that satisfy 04 = 0 in some Nhd of <

(ii) Conversely let us suppose that geBMO,, (02). Then
there exists ﬂeMp,q(Q) a form that satisfies the Carleson conotion
in & and fe L*(5=) such that:

Sa g/\«,’r:SU/vl/\«,’f-i-S VAT

.-

for all q;feC;'f_M,q(\g) that satisfies o4 = 0 in some Nhd of .

Equation (8.1.1) is, of course, a global formulation of the so-
called d,-problem.

When the dimension of the space n =1, Theorem 3.1.1 (i) can
be improved and we can choose g c L*(0.=2) cf. [2], [9], and this is
crucial for the proof of the Corona theorem.

TarorEM 3.1.2. Let B be the unit ball in C*. Then there exists

some feCe(B) such that of = 0 and such that the form f satisfies
the Carleson condition and such that whenever u e L'(0B) satisfies
the equation

S.Bu/\szm SBf/\éD
Jor all peCy(B) that are d-closed in some Nhd of B then
esssup {u| = +oo .

Another way to express the above theorem is to say that the d,u = ¢
problem for / satisfying the Carleson condition is not always solvable
in L”(oB).

3.2. The Henkin construction. In this paragraph we shall
content ourselves in recalling and explicitating some of Henkin’s
notations and theorems from [7]. They will be basic for the proof
of Theorem 3.1.1 (i).

Let & cC” and p be as before and (following Henkin) let us
suppose for simplicity that <7 is in fact strictly convex.

We shall denote then

P(C ) = 3PS, A — )i p = (B Pa -+, D)

p*(, 2) = kEZ]lp;“(C, )& — 2); 0* = {pf, 0, -+, 0¥}
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where

pﬂmh%%&ﬁ@@=m@@-

We set w({) = AL, dl, and we orient C* by
| (~re@ A w© >0.

Let 7 = () Mo -+, M) = Y&, 2, \) be a smooth vector valued function
of {, ze C* and the real parameter ». We set then

n

@'() = 2 (=1 A 7,
k=1 ik

The differential form o'(n) A @({) A @(z) =6 may be decomposed

then as the sum.

0 =3 o) A Q) A 0z)

where @,(7) is a form of degree ¢ with respect to dZ and, corres-
pondingly of degree (n — q — 1) with respect to d{ and dr. We
shall further write

o + 2) = pz;wp(l 1 7)

where ®,({ + 2) is a form of type (p, 0) in z and of type (n — p, 0)
in {. We shall now introduce the following definition. We shall say
that fe C2(02) satisfies 3,f = 0 if f admits some C* extension f
in some Nhd of < such that

(8.2.1) of =3p A h + pk

in some Nhd of 6 where h and k are forms defined in some Nhd
of 07 (observe that the above definition is independent of the
particular extension f cf. [13]). We shall also introduce the follow-
ing condition which is stronger than the condition 8,f = 0. Let
felLll (0=). We shall say that H,(f) = 0 if

(3.2.2) Swf/\ =0

for all e Cz_,,_,.(0<) such that d,p = 0. (Notice that we do not
attempt to give an intrinsic meaning to H,(f) or to 4,1, as far as
we are concerned o,f = 0 and H,(f) = 0 are just abbreviations for
(3.2.1) and (3.2.2).)

G. M. Henkin has proved in [7] the following basie:
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THEOREM (Henkin). Let feCy(052) be such that H,f = 0, and
q < n. Let us define

(3.2.3)

) _ap, 2) (&, 2)
7 A 0o (= S A B A0 ).

Then ge L., (0=) and g satisfies the equation:

=
(g, edrx{o,1]

(3.2.4) Sw g Aodp=C Sa A

for all peC, poo (D), wherec C+# 0 is a constant that depends
only on n, p, q.

We shall specialise now the above formulas to n =2, p =2,
g = 1. We have then

w’(ﬁ) = 771d772 - 772d7]1
from which it readily follows that

o (1 — 022 |\ p7C ) Bpd = papl g
[( P& 2 P z)] PP s

where 3 is a form that involves d{. On the other hand w,(z + () is
equal to dz, A dz,. If we substitute the above expressions in the
formula (3.2.3) of Henkin’s theorem we obtain:

_ {2 ApiE, 2) — pAE, 2)pE(E, 2)
9 Say; P, 2)p*(, 2) f(O)dz, A dz,

where of course:

We shall now specialise further and suppose that < = B, the interior
of the unit ball, and that p({) = |{,|* + |42 — 1. We have then:

pl2)=C pH ) =% 1=12
Pl 2)=1{P~C2 @2 =2 — [2]
with the usual notation .z =,z + {2, and C-{=|{ We
deduce that:

plp; - pzpl* — Ziz—z - —(:221
pp* (1¢F — C-2)z-C — |2])

let us then set:
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Kz, ) = 2o = &6
11— C-2f

&, —2 . L, —%
K, 0)=—t"% . g = _S—%
(= &) 11— Z-z[ 11— 2P

which are all well defined for z, { ¢ B except when z = {coB. We
have then:

w@;#ﬁ:K@Q vz, LedB, az+(
PP
K , — _1 Cz __Ez = Zl ’_~§1 — 7 —_ .
(,0) =z 1—Czp Zz}l BT z2,K.(2, ) — 2,Ky(z, )

and by an easy computation we obtain that for {edB:

3K1 — Z Cz — 2
0z, 1 —Zez (L — C-2)
aKl :C zz'——z_z
0z, 11— Lzl —¢-2)
aKl :Z zz_zz
9z, L —CezP(l —C-2)
aI{1 — C E1 _ zl
07, 11— Lzl —(7)

and the analogous expressions for K,. From the above we conclude that

‘:aKia_p_aKii{(l: — 1)t 5-2—12}2 . =19
L= wm mae Y i iaa-cn CTLP
and

L = g@_ﬁ - (E‘I:{‘_a'g = zzKl + leZ - zlLl - Esz
0%, 0%, 0z, 0%,
_ Tz — laf
:z2K1+z1K2+z' = e
ST Cef(~C3)
(3.2.5) = 2K, + 2.K, + 7-¢ 1—jzf
T 1—C2f(1 — %)
- Cz—1
+2:C = =
11— -2 — -2)
:M1+M2+M3
where

M, = z,K, + 2z, K,
1— |z
11— C-2P(1 —C-7)

M, =12
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M, =_—%% |
(z-C—1y
Let us now denote by
(3.2.6) T: L} ,(3B) — C*(B)

the linear mapping:
_ -1
Tfe) = 2| K@ 0RO

where C is the constant of equation (3.2.4). If we take the deriva-
tives of Tf with respect to 2z we see that the coordinates of FTf
can be expressed as a linear combination (with coefficient functions
in C*(B), i.e., C* up to the boundary) of following ten integrals

e2n | Koo | e om: | e om0

with 4,7 =1, 2.
Let us now denote by A.(z, () (k =1, 2, 3, 4) the following four
kernels:

(3.2.8) (A= |2 —T) (L= [2[)%E; — §)
1-2lf1 -2 J1-2l1-27)

for j =1,2. It follows then from the expressions of the derivatives
obtained above that the last two integrals in (8.2.7) can be expressed
as linear combinations with constant coefficients of integral of the
form: ‘

(3.2.9) (1 — |z SaB Az, D)) (&) k=1,234

where a({) e C*(dB) (in fact a({) is any of the four functions {, {,
Z,, T, restricted to dB). We also have

Lemma 8.2.1. Let fe L} (0B). Let us suppose that H,(f) =10
and let us define I'(z) e C(B) by the equation

oTF) A op = I'(z)dz, A dZ, .

I'(2) is then a linear combination with coefficients in C~(B) (in fact
the coefficients are polynomials in z and Z and are C= in the whole
of C?) of the following four integrals.

[, EGor0; | Beouf©: ii=12
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where:

_ 1 lep
e T et

Proof. The proof is an immediate consequence of the expres-
sion of L in (3.2.5) and the fact that our hypothesis H,(f) =0
implies that:

|, Mz OFD =0 vzeB

3.3. Estimates on the kernels. In this paragraph we shall
make a number of estimates on the kernels that were introduced in
the previous paragraph.

LEMMA 3.3.1. The two kernels K, (1 =1, 2) defined in §3.2
satisfy the following conditions:

supS sup |K(rC, &)|da(§) < + o

{€dB JEeaB 0<r<1

sup |  sup|K(rl, §)do(@) < +<o .

£edB J(ecdB 0<r<1

Proof. The two kernels K,, K, taken together, are rotation
invariant in the sense that if g€ SU(2) is a complex rotation of C*
then we have

K9z, 90) = a;°Ki(2, {) + b,"K,(z, {)

where a}”, b\’ are constants that only depend on g. From this we
see that it suffices to show that:

(3.3.1) S sup | K(r1, £)|do(0) < +<

(3.3.2) S sup | K(rC, 1)|do(l) < + o .
9B 0<r<1

Introducing then the coordinates of §2.1 £ =1 — a;, + B, @, + 15:)

in some Nhd of 1. We see that (3.3.1) and (8.3.2) are both con-

sequences of the following two inequalities.

e

R

dBldaZdBZ < 4o

dB.da,dB, < + oo

where the integration is taken in some fixed cube of (8, @, 5.)
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centered at the origin. Now we have:
2 2 2)1/2 '
J = SS (,81—}—052—}-,82) da.d 0o
VGt e gy goRaaR, <

as an easy calculation readily shows. The change of variables
BE+ai+ Bi=R, B, = Rcosp and then the change of variables
R cos ¢ = ¢ shows that:

Ry Ry
I S dRS sup
1]

—Rg 0<I<1

(t + R)R
t + R + o°
Ry

== S:O RdAR S sup {ﬁ-—;}da

—Rg a>R%
<C SR"RdR{SR fw" + Wi‘i} < +oo
0 o R? 4 o° 2 g

and this completes the proof of the lemma.

As an immediate corollary of the above lemma we obtain the
following:

LemMma 3.8.2. Let feCy(0B). Then there exists some constant
C such that:

(3.3.3) ITfz)| < C  vzeB
we also have:

(3.3.4) Tf(rd) = 15 v{eoB
and the convergence in (3.3.4) is uniform with respect to L €oB,

Proof. (8.3.3) is an immediate consequence of the provious

lemma,
The convergence in (3.3.4) follows from the fact that:

|| KArE, &) — K., S)HLl(aB:dam) ‘;‘_:1" 0

uniformly in . The uniformity follows once more from the rotation
properties of the K;’s that allow us to bring any { to the point 1.

In what follows we shall denote by S(z, {) any of the following
12 kernels:

— Ei - Ci -
(3.3.5) Kz, 0) = e 1=1,2

1— 1z Relm{{, — 2z} Relm {1 — {-Z} i1 2
|1__Z.ZIA ’ ]

(3.3.6)
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3.7 @ —[z})Relm{l — -7}
.50 (1 —C2f*

where ReIm{ } means that either the real or the imaginary part
in { } has to be taken. Let us now take as before the local
coordinates { = (1 — a, + B, @, + i8,) in some Nhd of 1 on 0JB.
S(z, £) becomes then S(z; 8, a,, B;) a function of z and of the local
coordinates (8, «,, 5,). We have then:

LemmA 3.3.8. Let S be as above, then there exists two positive
constants C and ¢ such that:

() {1se0ie@=c  veeB

(ii) For all h > 0 we hawve:

(3.3.8) ‘2§‘ < __C
0B, 1 —1-2f
(3.3.9) o8] |aS1o__ G
o, 0Byt |1 —1.-2]"*

for all (z, L) in the range
{eB(1);2zeB |1 —1-z] > ch.

Proof. (i) Using, as in the proof of Lemma 3.3.1, the rota-
tion properties of the above kernels we see that if we may suppose
in (i) that 2 =(r,0) 0 <r < 1. When in (i) S is as in (3.3.5) our
assertion is already contained in Lemma 3.3.1. When it is one other
kernels an easy culculation shows that the integral in (i) is dominated
by a linear combination of the following two integrals:

@ = n ] [@—r+ éﬁidzédfzez)z + BIF”

e (8% + a3 + BY'*dB,da,dpB,
(L= “S (A — 7+ B+ ai + By + B

where the integration range is some fixed cube in (8, @, 8.). And
using the changes of variables 82 + a? - B = R, B, = Rcos and
then Rcos ¢ = g. We can verify readily that the above two integrals
are uniformly bounded in 0 < » < 1 as required by the lemma.

(ii) Proof of (3.3.8): For S as in (3.3.5), (3.3.6), and (8.3.7)
we have respectively.
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(3.3.11) ]%

. avve| 1 iz — (|
=0 — 120 [11 P (1o Z-z]*}

(3.3.12) ]g%‘ < C1T1———%ﬂ?|7

and if we use the inequality:

(8.3.13) il —2/<Cl1—C-2'"* zeB, (eiB

and the inequality:

(3.3.14) -1z =00~ |2) = Cl1 — 2|
<C|1—-1-2|£Cj1l —2:Q]

which is valid in our range of { and z provided that ¢ is large
enough. We obtain the inequality (3.3.8) in all three cases (3.3.10),
(3.3.11), and (8.3.12).

Proof of (8.3.9). For S as in (3.3.5), (3.3.6), and (3.3.7), we have
respectively:

oS

3.3.15
( ) e,

1 lz —C|
= C[u T Z~z|3]

T S SR T ST
=CQ1 IZ|)/L1 —Z’z']3+ 1 _Z.zr\]zzl * lﬁ

)

(3.3.16) ‘_gg
2

(8.3.17) {gg

=0 - iz]z)[rzz|1l+ | achlz/iazl] .

To obtain the inequalities (3.3.16), and (3.3.17) we use the same
calculation as in the proof of Lemma 2.2.1 (ii).

Using then (3.3.13), (3.3.14), and the same inequalities as in the
proof of Lemma 2.2.1 (ii), we see that we obtain (3.3.9) in all three
cases (3.3.15), (8.3.16), and (3.3.17). 0S/0B, behaves exactly as 4S/dc,.
We have finally:

LEMMA 3.3.4. Let S(z,{) be any one of the 12 kernels as in
(3.3.5), (3.3.6) or (3.3.7), and let e M(B) be a bounded measure in

o

B, then the integral

0=\ 560

converges absolutely for almost all {€oB and feL'(6B). If in
addition gt is a Carleson measure then f({) e BMO (6B).
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Proof. Let us denote by

#0 = | 156 01111

we have then

[, #0do© = [ | 18 01die @)

{edB

=\ am@| 186 01do@) < +e
zeB LedB
by Lemma 3.3.3 (i). This proves the first part of our lemma.

To prove the second part we first observe that it suffices to
verify the BMO condition on the balls B,(1) centered at 1. Indeed
as we have already observed twice before, the kernel S(z,{) trans-
form into linear combinations of themselves under complex rotations,
and by an appropriate rotation we can bring any point {,€dB to
the north pole 1.

Let & > 0 be arbitrary but fixed and let us denote by:

fl(C) = Sll—l-zfé
o=\

., Stz Odpta)
Sz Ddp(a)

1—1-z[>¢c

where ¢ is as in the Lemma 3.3.3.
We have then by our hypothesis on ¢ and by Lemma 3.3.3 (i):

6318 | 10140 = Clplle e Bi L — 12 < ch} = O

By Lemma 38.3.3 (ii) we also have:

G319 18,0~ 86D s O[Tt ]

for all
teBy(l); zeB, |1—1-z|>ch.
We conclude therefore from (8.3.19) that:

(3.3.20) 1£A0) — )| < Ch S ilg.(t_) + Ch S aF()

ch ch 1872
where, as before, we denote:

F(t) = |pl{ze B; |1 —~ 1-2]| < t}
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and if we integrate by parts in (8.3.20) and wuse the fact that
F(t) < ct?, which is a consequence of our hypothesis, we conclude
that:

S - DI =C vleB,(1)
which together with (3.3.18) implies that

Sma [F(©) — fl(D)do() = Ch*

and completes the proof of the lemma.

3.4. Proof of the first half of Theorem 3.1.1. Let
< = {p < 0} be as before and let us denote by >, M, (2) the
space of forms pe M, (<) that satisfy

lo™%6p A pe M, (D).

We can then identify C,, the space of (p, ¢)-forms that satisfy
the Carleson condition with a subspace of 3),,. The two spaces
> and C,, have a natural norm.

For arbitrary feC;,(0B) we shall denote

Qf@) = 5(Tf) A da, A dz, € Cs(B)
where T is the mapping defined in (8.2.5). We have then

PROPOSITION 3.4.1. There exists
A(z: C) = (Al(z! C)d§1 + Az(z; C)dzz) A dz, N dz,

a vector kernel of type (2, 1) that 1s defined and smooth for z¢ B and
L € 0B that has the following properties.
The integral:

Q) =\, 1) A 4,0

is absolutely convergent for all ne>,,, and almost all {coB and
it satisfies

(1) Eloen = Cllells

(ii) If peC,, then fic BMO (0B) and {|f{swoun = |2l
Jor all feC;.(0B) that satisfies H,(f) = 0.

Proof. Using a simple argment involving a partition of unity
we see that it suffices to prove the proposition locally.
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‘More explicitly it suffices to show that for all {, ¢ B there exists
2 some Nhd of {, in C® and a kernel A(z, {) = Ay(z, {) as in the
proposition such that the conclusion of the proposition holds for that
4, and all ¢ as above that satisfy the additional hypothesis

(8.4.1) supppcC 2.

Let us fix therefore some {,€ B and let us choose w e Cyy(2) a
normalised (i.e., of length 1) differential form in a small enough
Nhd 2 of {, such that

ap, 00, @, &

form a basis of the complexified cotangent space at every point of
2 (here of course p(z) = |z2{* — 1 but we prefer to keep the general
notation). :

Let also p e3>, be arbitrary but satisfying (3.4.1):

1= pdz, + Az, = ﬂlglo + fl0 .
By our hypothesis we have then:
(3.4.2) Bl | ], 1017 ] € M(B)

and if we suppose in addition that peC,; (satisfying the Carleson
condition) then the measures (3.4.2) are Carleson measures.
Let now f be as in part (iii) of our proposition. We have then:

oTf = Xop + Y@ .
Using now (3.2.7), (3.2.8), and (3.2.9) we see that

(3.4.3) X@) = lo@ ™ 3 8@ | St a0

where the summation extends over a finite number of kernels S(z, {)
taken out of the 12 kernels (8.3.5), (3.3.6), (3.3.7), and also a finite
number of @({) that are polynomials in { and C and a finite number

of B(z) e C*(B) that are bounded and continuous in B.
Using Lemma 3.2.1 we also see that

YO = 3 80| S 0a 00

where the summation is as in (3.4.3).
We conclude therefore that for y# and f as above we have:

(ABTS = (1Y — X0 A @ = 60z, OFC)

where
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6 0 = [A(A) 5 6@ 0a©)

(3.4.4) )
— (2} |71 fi(2) 3;.8 B(2)S(z, Ha()]op N @ .

If we express f, [, 0p, and @ in terms of p, p, dz, and dz, in
(3.4.4) we obtain

@(Z, C) = (#1/12 - #2/11)d§1 A dZ,

where Az, £) and A,(z, ) (zeB, {eoB) are two well determined
kernels.
Let us then set:

Ao(z, ) = (A(2, 0)dz, + 4z, 0)dz,) A\ dz, A dz, .
We have then
(3.4.5) Oz, O) A dz, A dz, = p(z) N\ Aoz, Q)

and 4, satisfies the conditions of (i) and (ii) in our proposition. To
see that, we observe that all the kernels in the summations of
(3.4.4) satisfy the conditions of Lemma 3.3.3. It suffices then to
use (3.4.2) to obtain our result.

(8.4.5) on the other hand implies that

pAQHER) = ) A Aol O A FE)
It therefore follows that: |
Lenar= | e Adde0n
= (0 A dae 0) n O = | 070
and this proves part (iii) of the proposition.

Before we give the proof of Theorem 3.1.1 (i) we shall need two
lemmas,

LEMMA 3.4.1. For every feC;(0B) that satisfies Hy(f) =0 we
have:

§ f/\q>=1im§ Qf Ap; VpeC=(B)
B -1 aB,

where B, = {z€C% |z| £ r}.
Proof. We have by Stoker’s theorem

S Qf/\cp=—-g Tf N 0@ A dz, A dz, .
a8, aB,
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But by Lemma 3.3.2 we also have

r—1

lim LB Tf A 3p A dz, A dz, = SBB Tf A 3 A dz, A dz, -

We deduce therefore that:

limSaB QA= —Sw Tf A 5p A dz, A dz, .

r—1

But by Henkin’s theorem in §3.2 we also have:

S Tf/\(’?go/\dzl/\dzz-—-—g fAp.
B éB
From this our lemma follows.

LEMMA 3.4.2. Let f be as in Lemma 3.4.1. Then for all
u € C*(B) the integral § ou N\ Qf 1is absolutely convergent and it
B
satisfies

(3.4.6) SBB wAS= SB Ju A Qf.

Proof. The first part of the lemma follows from (3.2.7), (3.2.8),
and (3.2.9) which show that the behavior of Qf near the boundary
is controlled by | 0|72, To obtain (3.4.6) we use our previous lemma
and Stokes’s theorem in B, and then let » —1; we have

[, uns=tim{ wnar=im{ suner={sunar.

The following theorem is essentially due to Henkin [14].

THEOREM (Henkin). For every (e, such that or=0. We
have:

Sﬁﬂ/\q[r: Sas‘aq/f

for all v e Ce(B) that satisfies o4 = 0 in some Nhd of B (& is the
function defined in Proposition 3.4.1).

We shall give a quick proof of the above result making the
additional hypothesis that peCy(B). Let peCr(B) and let us
suppose that 32t = 0 in some Nhd of B. Using then standard methods
we can find some u € C*(B) such that

in some Nhd of B.
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It follows therefore from Stokes’s theorem that

(3.4.7) Lwnv={rnry

for all 4 as in the statement of the theorem.
But by Lemma 3.4.2 and Proposition 3.4.1 we also have:

(3.4.8) Lenv={rnew=1 m

for the same class of +’s. From (3.4.7) and (3.4.8) therefore our
theorem follows. (Observe that the above +’s satisfy H,(+) = 0.)

The difficulty in obtaing the general case from the above lies
in the fact that the condition that determines the space 3, has a
singularity at the boundary. It is therefore not trivial to regularise
in that space (say by convolution) and to approximate a general
element of 35, by one that satisfies our special conditions. It can
be done however, the interested reader should look, for example,
in Skoda [16]. (In [16] Skoda has obtained formulas that are
equivalent to Henkin’s and for the same purpose. Although I have
not gone through the details I am convinced that one could obtain
the BMO estimates from Skoda’s formulas as well.)

It shouid be observed, however, that the above special case
which gives the solution with a priori estimates is sufficient for
most practical purposes.

Proof of Theorem 3.1.1 (i). It now suffices to combine the
above theorem (of Henkin) with Proposition (3.4.1) (ii) to obtain our
theorem.

3.5. Proof of the second part of Theorem 3.1.1 and the
Corona problem.

Proof of Theorem 3.1.1 (ii). Let g € BMO (6B). Then by Theorem
1.1.1 there exists some F e C=(B) and fe L (3B) such that

(3.5.1) g @-NAp=lm| FAp vpeCiuB)

r1

where B, = {z€C?% |z| £ r}, and such that
| DF'|d(Vol)

is a Carleson measure in B.
It follows therefore by Stokes’s theorem and a simple passage
to the limit as —1 that
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Sag(-"“ HAgp= SﬁéF/\ @  VpeC(B)

provided that dp = 0 in some Nhd of B.

But by Lemma 2.5.1 and our hypothesis on F' it follows that
the form p = oF satisfies the Carleson condition, and being trivially
o-closed we see that y satisfies all the conditions of Theorem 3.1.1
(ii). This completes the proof.

Let us now consider the Hopf mapping
T (2, 25) — 2,7,
which is defined for all (z, z,)€0B, 2z, = 0, and takes its values in
the complex plane C = R:. (We can in fact define z from the whole
of B into the compactified complex plane C U oo, i.e., the Riemann
sphere, but we shall not need to do that here.)
~ Using that mapping we can give the following coordinates on
{8B; z, # 0}.
oo 6
V1+ul
PR
V1+|ul
6¢lo0, 27), ueC.
We have then:

LemMA 3.5.1. Let f(u)e BMO (R?), f ¢ L°(R?) and of compact
support, and let us define:

Fzy 2) = F(z,)22) V(2 2,) €08 2, #= 0
Flz, 0) =0  V(z,0)caB.

Then f<BMO (3B) and it cannot be decomposed in the form:
(3.5.2) Ff=@++4; @ecL (B), +<cHYB).

Proof. To test the BMO condition on f observe that the
vector field #, runs along the fibers of the Hopf mapping, and that
therefore B,((,), a ball in 0B centered at {,coB, is essentially the
cartesian product of a ball B,z(H({)) in C = R* centered at H({)
and of radius V¢ and of a segment of length ¢ centered at &, along
the fiber. Using the above the verification of the BMO condition
is immediate.

To see that the decomposition 3.5.2 is-impossible, let us suppose
by contradiction that we could write

f@w) = p(u, 6) + v(u, 6) ; peL(@B), < HY5B)
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where we use the coordinates of the Hopf mapping introduced above.
It would then follow that:

(3.5.3) 2 fu) = S o, 6)do + S lu, 0)d0

but + being analytic it follows that S% J(u, 6)dd is at consant (in-
. 0 . .
dependent of wu). The expression (3.5.3) implies therefore that

FeL=(GB) which is in contradiction with the hypothesis. We can
now give the:

Proof of Theorem 38.5.2. Let us suppose, by contradiction, that
Theorem 3.5.2 fails.

Let v € BMO (6B) be an arbitrary BMO function. Then we know
by Theorem 3.1.1 (ii) that there exists. some pe(C,, and some
we L*(0=) that satisfy

o =20; S v/\fp=s,,#/\¢+s wANAP
B B B .

for all ¢ Cy,(B) that is d-closed in some Nhd of B. By our con-
tradictory hypothesis it follows that there also exists some u € L~(3B)
such that:

|une=\rne
4B B

for the same class of ¢’s as above. We conclude therefore that

SaB(v——u——w)/\cp:O

for the same ¢’s as above.
But from Proposition 2.5.1 it follows then that w + % — v is of
analytic type and that therefore we can write

v=u, +a; u,ecL(@B), acHB)

and v being arbitrary, this contradicts Lemma 38.5.1 and proves our
theorem.

ReMARK. If we choose v as in Lemma 3.5.1 we see that the
measure ¢ can be constructed without the use of Theorem 2.1.1.

Indeed to construct the function FeC~(B) whose boundary
values are v and for which |DF|d(Vol) is a Carleson measure, it
suffices to construct the corresponding F in the interior of the
Riemann sphere (or in Ri) and lift it up by the Hopf mapping
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(which readily extends to the interior of the ball). All one needs
then to do the above construction is the much easier Theorem 1.1.1

@).

The above considerations are not conclusive as far as the Corona
problem is concerned, they do show however that the classical ap-
proach breaks down at a very essential point!

In the positive direction we can use Theorem 3.1.1 (i) to prove
the following.

THEOREM. Let f,, f,€ H*(B) be two bounded analytic functions
in B such that

@) + [ fz)] 28>0 vzeB.
Then there exist two holomorphic functions @,, @, in B that satisty:
fip +fp =1

S‘ip {ll@.(rO lismowems 1| PL1E) )erotem} < + o0 .

The same holds for general strictly pseudoconvex domains.

The proof which is a straightforward but lengthy adaptation of
L. Carleson’s one-dimensional proof (with the modifications of
L. Hormander) will be omitted.

REFERENCES

1. L. Carleson, Interpolation by bounded analytic functions and the Corona problem,
Ann. of Math., (76) 3 (1962), 547-559.

2, , The Corona Theorem, Proceedings of the 15t® Scandinavian Congress, Oslo,
1968, Lecture Notes in Math., Vol. 118, Springer-Verlag.

3. , An interpolation problem for bounded analytic functions, Amer. J. Math.,
80 (1958), 921-930,

4, , Two remarks on H* and B.M.O. (preprint), Université Paris XI, U.E.R.
Math. 91405 Orsay, No. 164.

5. R.R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces
in several complex variables, Ann. of Math., 103 (1976), 611-635.

6, C. Fefferman and E. M. Stein, H? spaces of several wvariables, Acta Math., 129
(1972), 187-193.

7. G. M. Henkin. A solution with estimate of the equation of H. Lewy and Poincaré-
Lelong. The construction of function of functions of Nevanlinna class with given
zeros in a strictly pseudo-conver domain, Doklady Ak. Nauk U.S.S.R. t. 224 (1975), (4).,
1310-1314.

8. , Integral representation of functions holomorphic in strictly pseudo-convex
domains and some applications, Math. Sb., 78 (120), (1969), 611-632, English translation
in Math. U.S.S.R., Sh., 7 (1969), 597-618.

9. L. Hoérmander, Generators for some rings of analytic functions, Bull, Amer. Math.
Soe., 73 (1967), 943-949.

10. , An Introduction to Complex Analysts in Several Variables, Van Nostrand




BMO FUNCTIONS AND THE 3-EQUATION 213

(1966).
11.
65-78.

12. 8. Kobayashi and K. Nomizu, Fundations of Differential Geometry, Interscience
(15), (1963), Vol. II.

13. J. d. Kohn, H. Rossi, On the extension of holomorphic functions from the boundary
of a complex manifold, Ann. of Math., 81, (1965), 451-472,

14. H. Skoda, Valeurs au bord pour les solutions de loperateur d’’et caracterisation
des zeros des fomctions de la class de Nevanlinna, (preprint), Bull. de La Soc. Math.
de France t. 104 (1976), (3), 225-299"

15. E. M. Stein, Singular Integrals and Differentiability Properties of Functions,
Princeton Univ. Press (1970).

16. , Boundary Behavior of Holomorphic Functions of Several Complex Varia-
bles, Mathematical Notes, Princeton University Press (1972).

17. , Singular integrals and estimates for the Cauchy-Riemann equations,
Bull. Amer. Math. Soc., 79 (1973), 440-445.

18. B. M. Weinstock, Continuous boundary values of analytic functions of several
complex variables, Proc. Amer. Math. Soc., 21 (2), (1969), 463-466.

, LP-estimates for (pluri-)subharmonic functions, Math. Scand., 20 (1967),

Received June 10, 1976,

UNIVERSITE DE PARIS-SUD, FRANCE
AND

UNIVERSITY OF CALIFORNIA

Los ANGELES, CA 90024






