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BMO,;-spaces and applications to extrapolation theory
hy

STEFAN GEISS (Jena)

Abstract. We investigate a scale of BMOy-spaces defined with the help of certain
Lorentz norms. The results are applied to extrapolation techniques concerning operators
defined on adapted sequences. Qur extrapolation works simultaneously with two operators,
starts with BMQy-Loc-estimates, and arrives at Lp-Lp-estimates, or more generally, at
estimates between K-functionals from interpolation theory.

Introduction. Extrapolation techniques are an important tool to com-
pare L,-norms of operators defined on martingales. Basic results were proved
by D. L. Burkholder, B. J. Davis, and R. F. Gundy ([11], {10}).

Let us consider a basic example. Assume f = {di)7oy C Li1(£2, F,P)
to be a sequence of martingale differences with respect to some filtration
(Fr)P., such that do = 0 and {di| is Fr_1-measurable for k =1,...,n. An
extension of the Azuma inequality proved by P. Hitczenko [16] (Lemma 4.3)
(see also [12], [25], the comments in [16], and the proof of Proposition 1 of
this paper) says that for A > 0,

(1) P(‘;dk‘ > )\HSZfHOO) < 9e—H"/2

where S2f = (., |d&|?)}/? is the usual square function operator. The
above inequality is of importance for several reasons. For example, in [16]
(Corollary 4.2) this inequality is used to prove the Burkholder-Davis—Gundy
type inequality

gdi , < c\/p?“(gldilg)l/zup for 1< p< o0

which extends the corresponding one for dyadic martingales ([12], [6].1 [25]).
In order to deduce (2) from (1) one has to modify (1) in two steps. First we
observe that for B € Fi we get a martingale difference sequence (d,,-)i.: w1 ©
L1(B,Pp), where Pg is the normalized restriction of Pto B. Applying (1) to

(2) H sup
1<k<n

1991 Mathematics Subject Classification: 46BT0, 46E30, 4TH99, 60G99.
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236 §. Geiss

this restricted sequence and taking into account ||S2({d) ey 4 1)l 202 ps) <
152 f|lce We arzive at the apparently stronger estimate

!
(3) sup  sup Pgp (’ PR
0<k<ign BEF i=k41
P(B}>0

> A[82flloo ) <267/

Secondly, analyzing [16] more carefully, we see that we additionally have
to replace EL,G 1 di by ZL,C d;, which is possible by a change of some
constants. This new inequality can be written in the language of BMO-
spaces, introduced in Section 1, as

T

@ () o, 5l
1=0 2

where 15 (¢) = t*. The step from (4} to (2) is usually called extrapolation.
There is another reason to consider inequality (1). Namely, we get a
sub-Gaussian tail behaviour of f, = ZZ=1 dr whenever we can control the
Loo-norm of Syf. It is obviously easier to check |S2f||oc than the sub-
Gaussian behaviour of £, itself. But there are situations in which (1) does not
yield the asymptotically exact result. For example, if we take independent
Rademacher variables 1,...,&, such that P(ex = 1) = Plex, = 1) = 1/2
and define
Ep—1 — 1 gy — 1
5T
then [|S2f|lec = v — 1 and for A > 0 inequality (1) yields

(] édk' > X) € 2e7¥/C-1)

dy = €x for k=2,...,m,

whereas

1 - 1
5 - —)\<]P)(l d ‘ )< - ”(lﬁgg)r\
(5) 6° = kZ K| > A) < 1€
follows by a direct computation for 2 < A < n — 4. For instance, if A = /7,
then 2e~*/(2(n=1)) 1 but Ze‘““"gz)’\ ~ 2V

In view of the above example one can agk for possible improvements
of (1). One possibility is to use (2) as described in Remark 6.4(1) below.
We will go another, and from our point of view more natural, way. To this
end let us recall that for a compatible couple {Xp, X1) of Banach spaces,
z € Xg+ X7, and t > 0 the K-functional is defined by

K(z,t; Xo, X1) == inf{|l@o|l x, + tllz1|lx, | = 2o + 31, 20 € Xo, z1 € X1}
In the case Xo = L,(2) and Xy = L,(2) we will shorten K, ,[f 1] :=

icm

BMOy,-spaces and applications to eztrapolation theory 237
K(f,t; Ly, Ly). Now looking at the proof of (1) presented in {16], or at [20]
(p. 31), we realize that one can deduce more.

PrOPOSITION 1. There is an absolute constant ¢ > 1 such that for all
martingale difference sequences f = (di)¥_o C L1(2, F,P) such that do =0

and |d| is Fr—1-measurable for k=1,...,n one has fort > 1,
(6) Kooplfnrt] < /14 logt Koo p[S2f, V2]

where fi, == ELl ds. In particular, for oll A >-1 one has
P(lfa| > AKooplSaf, e /%) £ 17,
Proof. First observe that for 1 < k < n and g > 0 one has for dg(w) # 0
(cf. [20] (p. 31))

dk(w) .
erdn(v) < a2 L TR ginh (pldy(w)))
e (w)]
so that
]Ek_ley'dk’ S e’uzdi/z.

[teration with respect to k gives Eer/ n=(?/2)(525)" < 1. Since this inequality
remains true for — f,, instead of fn, we can continue to get Eef < 3 where
g = {(u|fn] — (u2/2)(S2£)*) Vv 0, and by standard arguments we obtain
Koo 1[9,t] < c(1+logt) for t > 1. Hence

2
pE oo Lol ]~ G- Koo al(Saf)% 1) < Keolg 8 € 1+ Tog)

If Km,l[(SQf)g,t] > 0 and ,UJE = 2(.'.(1 + logt)/Km,l[(Szf)Qat]z then

Koonl|fal ] € vV2ey/1+10gty/ Keon[(S2/)%:1]
< VI /TF logt Koo 282 f, V2]

where one can use (18) in the last inequality. =

2
For the example considered in (5) one has Koo a[S2f, e ~H/%] < c1) for
A > 1 and some ¢; > 1. Hence the above proposition and the lower estimate
of (5) imply for 2V (ce))* €A sn—4,

1 n

Y

R (PICEL)
<r(|Saf> e G Rl
- P CC1,

In this paper we will show in Theorem 1.7 that, using some general
assumptions, one can deduce from (4) inequalities of the form (6). For
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example, it turns out that by a combination of Theorem 1.7, Proposition 7.3
with €' = 0, and (4) one gets

(7) Koo,p[sipwk\’tl/p] < ey 1+ logt Koo plSa f,tH7] (1< p < 00),

which is slightly stronger than (6) in the case p = 1. In this way we obtain
inequalities which simultaneously give (2} (by setting ¢ = 1) and improve
{1}. Our starting point will be an extrapolation result of P. Hitczenko re-
called in Theorem 1.1 of this paper. Reformulating the assumptions of this
statement we introduce a scale of BMOy-spaces. A separate investigation of
these spaces is one of the main subjects of this paper and leads to further
development of Hitczenko’s result.

1. Notation and main results. Throughout this paper {2, F, P] stands
for a probability space. If X is a real Banach space equipped with the
Borel o-algebra B(X), then L (12, F,P) is the linear space of all measurable
f:102,F, P — [X, B(X)] which are Radon (cf. [20]). Moreover, L3 (2, F, P)
= {fe LE(2,F,P) | f > 0as.} and

L;;c(ﬂ,f, P) .= {f € LSC(Q: -7:=]P)) | ”fHL;‘f = Hl‘f(w)HXHLp(.Q) < OO}

(1 £ p < o0) If (2, F,F] is equipped with a filtration (Fy)rer, where

I'={0,...,n}or I=N=1{0,1,2,...}, and Vier Fr = F, then we use the

linear spaces (under the coordinatewise operations) of adapted sequences
AM(Fidrer) = {{dr)rer | dr € LE (02, Fe,P) for all k € I}

and A((Fr)rer) = AR((Fy)rer). For stopping times o, 7 and f = (dp)wer €
AX((Fi)rer) one usually sets

7= (dexqocngrrens 7= (dixieen)iers  °F = (deXioar})ber-

We will consider operators
T : AX((Fi)ker) 2 E = LT (2, F,P),
where we make the following conventions valid in the whole paper:
(1)do=0,", f¢, ~fc Eforall f= (di)rer € E and k € 1.
(2) T((0,0,...)) = 0 as. and T(f) = T(~f) as. for all f € E.

The operator T'is called quasilinear if there is some v > 0 such that for all
fi9 € Ewith f+g € E one has T{f +g) < o [Tf+Tg] as. If yp = 1, then
T'is called sublinear. The operator T is monotone if Tf* < T f a.s., and
measurable if Tf* is Fy-measurable for all f € B and k € I. The operator
T is called local if for all f = (di)rer € F one has Tf =0 as. on the set

{0=E(lldu]l | Fo) = ... = E(|d | | 1) =...}.

icm
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The maximal operator T* of T" is given by T* f = supy.y Tf*. Finally, we
will dencte the set of all increasing bijections % : [1,00) — {1, 00) by D.

Now let us describe (in a slightly different form) the result of P. Hitczenko
we are starting from. Recall that a sequence (vg)$2, C Lo(£2, F,P) is pre-
dictable whenever vy is Jp_1-measurable.

THEOREM 1.1 (Hitczenko [16]). Lei o € D and E C A((Fi)ren) be the
subsel of the martingale difference sequences with dy == 0. Assume T : E —
LE(2,F, P} to be quasilinear, local, measurable, and monotone. Suppose
f={drile € B and (n)52, C Li(2,F,P) to be predictable with |di| vV
TR <op as. fork=1,2,... Ffor all0 < k <1, B € Fr, all stopping
times a,7, end all A > 1 one has

(8) [P’({' Z d;| > Al sup mVT(“fT)Hw}ﬂB) < el T*NP(B),

kVao<i<TAL geisT

then one geis for 1 < p < oo and some constant ¢ > 0, depending on T and
¥ only,

(9) H sup 1 i d;
i=0

As in (3)=>(4) of the introduction we translate (8) into the langnage of
BMOQ-spaces. To this end we introduce

BMOy ((Fu)rer) = {(fr)rer € A{(Fi)rer) | [{(fx)rerliBmo, < o0}
with

LS ™ (o) sup vV Tf] -

[|(fe)rer|BMO,,

=inf{c> 0| sup sup Pp(ifi— fe-1/> A) < e~ for ) > c},
0<k<l BeF,
EIET P(B)>0
where P = P/P(B) is the normalized restriction of P to B and f_; = 0. In
view of dy < vy, the relation (8) implies

k o .
{10) H(gdi"{”‘“?})k:o||mo¢ <2 sup 0V T(f )| co-

Conversely, (10) implies (8) if we replace sup, i, v V T(°f7) by
38UP e v V T(OFT) in (8). ‘

Using the properties of BMOy-spaces we will extend the extrapolation
principle (10)=(9) in Theorem 1.7, Corollary 6.3, and Corollary 7.12.

The BMOy-spaces are introduced and investigated in Sections 4 and
5 whereas the required material about the Lorentz spaces M, which are
the basic modules of BMOy-spaces, is summarized in Section 2. Since we
carry out the extrapolation in Theorem 1.7 with two operators A and B
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we define BMOy-norms for adapted sequences, instead of for martingale
sequences only. Here we follow A. M. Garsia [14] (p. 66), who extended the
classical BMO-norm for functions to the case of adapted sequences. First one
should ask which weight functions ¢ generate the same BMO,-spaces. We
completely solve this problem by a regularization v of ¥ defined as follows.

DErFINITION 1.2. For ¢ € D the function ¥ : [1,00) — [1,00) is given by

N N
Bw) = sup { D)~ 1) +1 | p= D pz 1, N=1,2,..}.
i=1 f=1
It is clear that 1 < 7. In Lemma 4.4 we see 1 € D (we show the stronger
P € Ca, see (20) and Definition 2.1) and that, for some ¢y > 1, one has

pp(N) <eyP(ur)  for p, A > L.

In particular, ¥{ayu) > p for z > 1 if we choose A to be ay = 9" ey),
which yields the John~Nirenberg Theorem in a version of A. M. Garsia (sec
Example 4.3 and Corollary 4.8). In Theorem 4.6 we will show

(1) {l{fedeerlemo, < [[(Fr)rezllBmo; < 607 (3)(frdreripmo, -
Moreover, in Section 4 we prove

THEOREM 1.3. For 9,4’ € D the following assertions are equivalent.

(1) There exists c1 > 1 such that ¥(u) < ¥'(e1p) for all 1 < p < oo,
(2) There ewists ¢y > 0 such that for all [£2, F,PB; (Fi)ker] ond all adapied
seguences (fk)kef S BMO¢r((Fk)kej),

I(fudeerllsmo, < eall(fe)rerllomo,,

We have seen that the regularization % of 4 is the right tool to investi-
gate the BMO,-spaces themselves. The consequences for the extrapolation
{10)=-(9} are as follows: Starting with (10) we can switch via (11) from %
to 1p. Extrapolation gives (9) with ¥~!(p) instead of %~ 1(p). In the case
P(u) = p? (1 € ¢ < co) this does not yield an improvement (see Ex-
ample 4.3). But, for instance, if lim inf, . %{1)/1 = 0 then %™1(p) with
%7 (p) < ayp (which follows from {a,u) > p) is better than ¢~ (p).

In Section 5 we consider convexity properties of BMOy-spaces. We mod-
ify the upper p-estimates, known for Banach lattices, to the following weak
upper estimates.

DEFINITION 1.4. If 4 € D, then the BMOy-spaces satisfy a weak upper
estimate with respect to the sequence a=(a;)i>1 with 1>a1>a2>...20
provided that there is a constant ¢ > 0 such that for all [12, F, P, (Fi)res]
and (F{)4er € BMOy ((Fa)rer)s

28 (D)
sup a; MO, = ‘ .
H(QIl) |75 Drerllamo, ‘C?él;”(f’“ JwerlBMo,
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We set Uy (BMOy ) := inf ¢ where U, (BMOy ) = oc if such a ¢ > 0 does not
exist.

‘We will prove

THEOREM 1.5. For a; := 1/0 Y1 + logi), a = (0;)R,, and BN =
(an,..-,0n,0,0,...), where ay is repeated N times, one has

0 < inf Uy (BMOy) < U(BMOy) < oo.

In this way we have shown that (1/%~(1+log4))?2, is (up to multiplica-
tive constants) the optimal sequence such that the BMO,;-spaces satisfy a
weak upper estimate. Our interest in Theorem 1.5 is motivated by Theo-
rem 1.7. In order to formulate this extrapolation principle we first replace
the assumptions made in Theorem 1.1 by more abstract ones.

DerFINITION 1.6 Let X be a Banach space and let
A, B AX((F)ig) 2 E— LT (02, F,P).
We say that (E, A, B) has property (EP) (*) with constant ¢ > 1 provided
that A is measurable, and that for all A > 0 and all f € E thereisa g€ F
with
1x{;t-,‘f<)\}A"‘f <A*g<cA™fas. and Bg<chas
- <

Moreover, for every ¥ € D and 1 < ¢ < co we define the weight function
w! & L,[0,1], where [0,1] is equipped with the Lebesgue measure, by

(1w (14 log(st)), Lit<s<1,
uf (o) '_{1/ 0<s<1/t,

so that
1 Y

—_— e < <L

oL+ logh) ' -
Furthermore, for a weight w & L[)"[O, 1,1 <pg<Loo,t>0,and fe
Ly (2) + Lp(£2) we use the following weighted K-functional:
Ky 1f,t] o= inf{|lgllg + tlhllp | Flw)w(s) = g(w, 8) + h{w, 5)

in Ly (12 % [0,1]), ¢ € Le(2 x [0,1]), h € Lp(2 x [0, 1]} }.

In Section 6 we will prove

TrEOREM 1.7 Let ¥ € D and 4, B : AX (Fi)fo) 2 B = Ly (2, F.P)
where X 18 a Banach space. Assume that (E, A, B) satisfies (EP) with con-
stant ¢ > 1 and that

(A hollBroy, < [I1Bflles

(*) (EP) stands for “extrapolation property”.
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for all f € E. Then there is some d > 0, depending on pweDandc>1
only, such that for 1 <p< oo, t 21, wy = wf’, and f € E,
(12) K2 [A*£,417] < d (p) Koo o[BS, £1/7).
In particular, fort = 1 one has ||A* fllo < dd*(p)||Bf]p-
Since Koo plh1, 8] < Koo plha, 8] for 0 < hy < hy, from (12) we get
(13) Koo lA*f, /7] < dfHp)ih ™" (14 log t) Koo [ B, /7).

In Remark 6.4(2) we give an example such that (12) is strictly better
than (13). To prove (12) we show, with the help of the weak upper estimates,
for a; = 1/¥~*(1 +log ),

(14) | sup a:A*f(w)llp, ey < d¥ (D) sup Bf(wi)llz,am)-
1<i<N 1<i<N

The step from (14) to (12) is carried out with the following result which will
be deduced from a more general one in Section 3.

THEOREM 18. Let 1 < p< oo and f € L,(12, F,P). Assume N > 1 and
w e La‘[D, 1] with w = Efil QX [(i—1) /N, /N)- Then

LEE AN < sup o] Flwi)ll g, vy < Ko plf NP
1SN »
In particular, ifay = ... = ay =1, then
Kooplh NP || sup |f(wi)lllz,cam)-
1<iSN

In the last two sections we will consider the assumptions of Theorem 1.7,
property (EP) and the || - [imo,,-| - [|co-estimate more precisely.

In Section 7 we give two examples satisfying condition (EP). In the
second one we demonstrate that one can reduce Theorem 1.1 to Theorem 1.7
with the help of a construction which starts with a quasilinear operator and
produces an “equivalemt” operator with properties similar to those of the
p-norm with some 0 < p £ 1.

In Section 8 we consider self-similar operators which allow us to write
the | - [|[BmMoy-|| * [|oc-estimate of Theorem 1.7 in a much more applicable
form. As a consequence, we sharpen in Corollary 8.6 an inequality of G.
Pisier concerning “martingale-type constants” of Banach spaces.

2. The Lorentz spaces M, and Mg. The spaces M, and MJ we
define below are the “basic modules” of BMOy-spaces.

DermNITION 2.1. For f € Ly(2, F,P), 1 <p<oo,and 0 < ¢ < 1let

t 1/p
o= (1fras)  wd o=,

0
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where f(s) := inf{e > 0 | P(|f| > ¢) < s} is the non-increasing re-
arrangement of f. The set of all increasing bijections ¢ : {0,1] — [0,1]
is dencted by C, and Ca is the subset of all ¢ € C such that A(p) =
SUPgi<1/2 P(2t)/p(t) < oo. Finally, for ¢ € C let

My (02, F,1P) = {f € Li(2, F,P) | | fllma, := Osgglf**(t)w(t) < oo},
M:g(”: F, ]P)) = {f € LD(Q)FJP) t 'flMg == Di&gl ]T(t)tp(t) < OO}

In Section 1 we have already introduced the class P of increasing bijec-
tions 1 : [1, 00) ~+ {1, 00). If there is no risk of confusion we will freely switch
between C and D (i and 1) with

1 LY L ey
it o) ¢ (A)"e '

Basic information about the spaces M,, can be found in [4] (p. 69ff). More-
over, it can be easily seen that M2(£2, 7, P} is a linear space for all [£2, 7, P
if and only if A{p) < co. In particular,

(16)  |f +glmg < A)Iflnag +lalmg]  forall £,g € M(Q,F,P).
Furthermore, if one uses the relation (15) then one can write

(A7) |flag = mf{e> 0| Pf] > X < ¥/ for all A > e}

(15) p(t) =

In order to formulate some basic properties of the M, -spaces we recall
some further standard notation.

DEFINITION 2.2. A Banach space [X,!| - [[] € Li(£2,F,P) is called a
rearrangement invariant (r.i.) Banach function space if

(1) x4 € X forall A€ F,

(2) f € X, g€ Lo(2,F,P), § < fimply g € X and [lg]l < |If1]

(3) (Fatou’s property) for (fn)p2s € X with f, 2 0 a.s., sup, | fnll < oc,
and f, 7 f € Lo(2,F,P) as. one has f € X and |[f|| = limy, || /|-

Identifying f and g if f = g a.s. the following theorem is well known (cf.
[4] (Proposition 2.5.8)). ~

TurorREM 2.3. If ¢ € C, then [M(2, F,P),!| - lln,] s a i Banach
Junction space.

From the viewpoint of Banach space theory the spaces M, are more
convenient than the spaces Mg‘ On the other hand, in view of (17) we use
the spaces Mg to construct our BMO,-spaces. Hence we recall a character-
ization, which is folklore (see for example [3] (Lemma 2)), of those p € €
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such that M, (12,7, P) = Mg(Q,F, P) for all [2, F,PP|. Using this charac-
terization we deduce in particular that the BMO,-spaces always have an
equivalent norm.

THEOREM 2.4. For p € C and ¢ > 0 the following are equivalent.
(D) || £llae, < c|f\Mo for all [2,F,F and f ¢ Mg(Q,F, .

&

(2) lS ‘i)<7—) forall 0 < ¢ < 1.

3. The K-functional and the supremum of independent random
variables. The following lemma can be found in [19] (Lemma 3) and goes
back to [15] (proof of Lemma 3.2).

Lemma 3.1 For fi,..., fv € Lo{02, F,P) and A > 0 one has
N
i1 DU > A
PV ()t | sup [flw] > A 2 st U2 D
1SN 143 o PS> A)

If fi,..., fw have the same distribution, then the above lemma together
with a converse inequality is also contained in [1] (Lemmas 2.1, 2.2) (see
also [13] (Lemma 3.1)). An immediate consequence is

LEMMA 3.2. For fi,...,fx € Lo(2,F,P) let h € Lo([0,1] x 2} and
g € Lo(2V) be given by

N

his,w) = Z Xli-1)/m5,yN) () filw)  and  glwi,.. . ,wy) = Sup | filwi)],
=1 <ig

where [0,1] is equipped with the Lebesgue measure |- |. Then for 0 <1 <1

one has
~ {1 t t
hl— )1 <g| —— 1 <31l =}.
(N)'Q(H“l)_g(?)
Proof. For 0 < s < 1 it follows from Lemma 3.1 that

g(s) >inflc AR
g(s) = f{ >011+Zfi P(f£|>c)53}

, (-1 x P)([h] >c) = §
=inf 0 <8 =
” {‘” }1+N1 ERICECRN N(lﬁs))'
Setting s = t/(1 + ) yields the desired result. =

Remark 3.3. In Lemma 3.2 one can improve A(t/N) < §(t/2) for some
values of ¢ and one gets also a converse inequality. More precisely, it can be
shown for 0 <t <1~ 1/e=: 1/ that

E(%qt) <G < R(%t)
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For later use let us recall {see [5] (Theorem 5.2.1)) that for 0 < ¢ < 1
and 1 <p < o0,
(18) Fp*(8) < Koo plf, t71/7] < 2173/2 2 (1),

THEOREM 3.4. Let 1 < p < oc, fi,...,fv € Ip(2,F,P), and let h €
Lp([0,1] x 2) be defined by h(s,w) = Zfil X[ti-1)/N,i/ny (8) fi(w). Then for
M > 1 one has

§Eooplhs (MN)P < | up filwig)lllz,qamemy < Keoplhs (MNP
1<J<M

Proof. Let {vi,...,vmn} = {fi,-- - fi, favee i foaeoos s fNh

where each f; is repeated M times, and define H € L,([0,1] x £2) and
G € Lo(2MN) by

MN
H(s,w) = E Xi(i—1)/(M N, (a8 (8)vi(w)
i=1
and
Glwy, .-, wmw) = Sup [v3{ws |-

<i<MN

From Lemma 3.2 we know that H(t/(MN)) < G(4/2) for 0 < t < 1 so that
Hy*(L/{MN)) < £2|1G| - Since H = h we arrive at the left-hand side of
our assertion with the help of (18). To show the right-hand side let A = a+b
where a € Loo([0,1] x £2) and b € L, ([0, 1] x 2). Then

| sup | fiwig)l 2,y
1<iEN

1Z2m
i/N 1
- N \R(t, i) dt |
H fg?ipff( (im§)/w P &) L”(ﬂw)
i/N ;
S||(l“0°+“ sup (N S |b(taw’ij)|pdt)l pHLP(ﬂMN)
S5 o
i/N . 1/p
/ DIP d
_<_Ha!;ww”Hlé?é’N(Nuj)/N'b(t’wN I M
N i/N 1/
< fafleo +M1/PN1/PH(Z [ [bltwilP dt) p“meN)
i=1 (i—1)/N
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i/ N .
= llal|es + (MN)l/p(i S [S th(t, wi }F dﬂl’(wi)] dt):L/

i=1 (i-1)/N R
= a/loo + (MN)}/7|[bilp.
Since this holds for all decompositions h = o + b as above we are done. w

Proof of Theorem 1.8. We have to use the above theorem with
M=1and f; =ca;f . m

4. BMOy-spaces. We investigate a scale of BMO-norms for adapted
sequences of random variables. To define these BMO-norms also for random
variables f € L1($2, 7, P} we denote the conditional expectation of f with
respect to the sub-c-algebra Jp, € F by E{f | Fr) = Ei f. Moreover, {2 :=
[0,1] is always equipped with the Lebesgue measure | - | defined on the
Borel o-algebra and is equipped with the filtration (F;)$2, generated by
Fo = {[0,1],0} and, for k > 1, by

1 2k _2 2k _1 2% _ 1
Fomol o) [0 5 [

In that situation we simply write BMOy[0,1] instead of BMOy ((F)iq)-
The intervals [(s — 1)/2%,4/2%) for i = 1,...,2% — 1 and [(2* — 1)/2%,1] are
called the atoms of 7. Moreover, if B € F, is an atom, where k > 1, then
the atom B € Fj._; containing B is called the dyadic predecessor of B.

The BMO-norm for an adapted sequence (fi)rer € A({(Fi)res) was
defined in {14] (p. 66) hy

I{f)rerilBmo = sup ||E({|fi — fi—1| | Fi)lloo
0<k<!
ket
= sup  sup |fi — fe-1llimpa)s

0<k<l BeFy
klel P(B)>0

where f_; = 0 and I’z = P/P(B) is the normalized restriction of P to B,
For f & L1(f2, F,IP) we obtain the classical BMO-norm by setting

(19) 1 fllmo = (ECS | Fi)rerllmmo =sup sup |[f = fima|lr:mpa)
kel Be&F
B{E)>0
Let us recall a well-known BMO-function defined on [0, 1] used later.
ExaMPLE 4.1. For f(t) :=log(1/t) € L;[0,1] one has || flsmo < oc.

In Section I we have already defined the BMOy-norm which can be writ-
ten for an adapted sequence (fx)rer € A({(Fr)rer) with the help of (17) as
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I(fr)rerllamo, = S - sup i~ footlag(ees)
<k<l BeF,
k JEL B(B)>0

where
1

p(t) =

O = i gty

Tt is useful to define some similar variants of the above quantity.
DEFINITION 4.2. Let ¢ € D, 0 < s < 1, and (fx)ner € A{(Fr)er)- Then

I(Fx)nerllmmoy =sup sup | sup |fi = fi-rlag(aps),
kel BeF, k<iel
P(E)>0

i(fe)kerl|BMO,, = sup  sup inf{ec> 0| Pg(|fi — fe—1| > ¢) < s},
0<k<i BeFe
EIET P(B)S0

(fx)serllemoy , :=sup sup inf{c>0] ]P’B( S |fi — fr—1| > ¢) < s},
Rl e

where Pp = P/P(B)} is the normalized restriction of P to B and f—1 = 0.

In the literature several BMO-norms have been considered, The approach
which is relevant here, although it looks quite different at first glance, can
be found in [2]. In Remark 4.14(1) we will outline the relations between the
approach of [2] and ours. Recalling that for ¥ € D the function 9% [1,00) —
[1, 00) was introduced as

N N
By = sup { D o(blp) 0+ 1 [m=3 s w21, N =12, )
=1 =1

we set, by analogy with (15),
1

- PO = T 1os(178)
Let us summmarize some properties of this construction.

ExampLe 4.3. (1) For ¥{p) := 1+ log u one has P(p) > ple.

(2) For 1 < p < oo and p(p) = p¥ one has P, (1) =

Proof. (1) For some “general” ¢ € D, k=1,2,... and Ep~i2) < p<
(k -+ 1)g~1(2) we get

B — 12 ey (2) — 1 2 k@7 () -V 2 g5 1(2)

8o that

inf B/ p 2 1/ 7H(2)

(2) Here we exploit E%,l( —1+1< (21“_1 ui)F for p; >0. m
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LEMMA 4.4. For v € D the following holds.
(1) IFo,@ : [1,00) — {0,00) are given by c(p) :={p) — 1 and Tp) =
%) — 1, then @ is the least majorant B of o satisfying for oll p,v 21,
Blp) + B(v) < Blu+w).

(2) 7 € Ca and there is some cy 2 1, depending on 1 only, such that
Jorall p, A= 1,

(A} < cyth(p).
(3) I - ary < 45~ (1+ log4)| - age -

For the proof and for later use we need the following Jemma due to D. L.
Burkholder.

LemMa 4.5 [8] (Lemma 7.1). Let f,g € L (2, F,P) and 0 < p < 00 be
such that for some 8 > 1 and §,& > 0 with fPc < 1 one has

P(f > A, g < 8\) SP(f > )
for all X\ > 0. Then

I£1, < &+ <=l

Proof of Lemma 4.4. (1) From the definition. it follows that

N
&) =sup { Y )

i==]
Now @(u) > alp) and @&(p +v) > @(u) + @(v) are clear from the definition.
For a majorant 3 satisfying () + () < 8{u -+ v/} we get

N N
ﬁ(M)ESUP{Zﬁ(M) pe=y w2, N=1,2,‘.‘}
i=1 d==l

N
> sup{ > o) | 4=

i=1

(2) Clearly ®#(1) = 0 and lim, o @(y) = oco. For N > 1 we define
ay : [1,00) — [0,00) by

0 N lfli,UaS-N:
N
an(p) = sup{Zoz(,w) M=Z#i, MiZl} if u> N,
i=1

gl
so that @(u) = supy<, an(p). If 4 > N, then the continuity of o and the
compactness of the set {(p1,...,un) | Son, i = py s = 1} C [1,00)Y

N
lu'mZtu'ia iz 1, N=1!27"'}'
i=1

N
Z,ui, Wy = 1, Nzl,Z,...}:?ﬁ(u).
i=1
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imply that there are some u; > 1 such that an (@) = Yoo, au;). Conse-
quently, for all x > 1 there is an N > 1 and there are py,..., uy = 1 with
a(u) = iy o).

The function & is strictly increasing. Indeed, assummg 1< p<v<oo
we write v = ZNl v, with 14 > pg, va = ,uz, ..,y = py such that

N
(M) Z nu"l- <Z V1 Sa

The function @ is continuous. Smce a(u) = supy<,an(p) for 72 pit
suffices to show that ay is contirmous, and this follows from

sup  Jan(v)—an(W| <N sup  la(v) —alu)
v p<s p- L E
N vl 1<pv <l

forauo>Nand5>o(forN<ﬂ<y_zj"1y,<cwithaN(y):

Zi\il a(v;) choose 1 < py < vy < py +6 with p= 21_1 i)
To show wh()\) < cy¥(pX) we use ¥(k) > k/¥~*(2) from the proof of
Example 4.3 and obtainfor L< k< p <k +1,

(%74 (2) + 1)) = 97 @0(E) + 9(kA) 2 k+p(RA)

> b+ k(O — 1) = kB(3) 2 EB).

Now, let pg := 2cy be such that 2eyB(N) = poPp(d) < cp¥(po)) and
P (2t) < ppyt(2) for all £ > 1. Then
gty P11+ log 2 +log(1/%))
sup = su
o<t<l w(t/2 Copctct (L +log(1/t))
21 +log(1/t
< o T IoBQ)
oct<1 1 +log(1/t))
(3) For Mg > 1 and f(s) := p(t)/P(st) (0 < 5,¢ £ 1) we have

W2 {52 1/p(st) > 23 _ /> 2

e sup e < sup T A\
«\>AU Hfe > AN oo/ {87 1/8(st) > A 7 azao/at) H{1/% > A}

1
71 (1/(20))
< gup e

- )‘?_)I\)n 90"1(1/)‘)
Setting Mg := %~ {1+log4) we continue with the help of (20) and @(u+v) >
@) + @(v) to get

sup > 2N o GOI-0-(EN-D < gyp T = L

AZ Ao {Fe > AH 7 azxo A> Ao 4
Hence we have proved for g =1 and A > 0 that

{fe > 2X 9 S A Ao} < 3l{fe > A
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Applying Lemma 4.5 gives ||f;ll1 < 4¢~(1 + log4), which is exactly the
assertion of Theorem 2.4(2) with ¢ = 4¢~'(1 +log4).

The next theorem relates the different BMO-norms introduced above to
each other. The point of this theorem is that we start with some weight
function v € D and arrive at ¢} € D which describes the same BMO-space
as ¥ does. The weight function 1% has certain regularity properties as shown
in Lemma 4.4, which will be used several times. For example, these regu-
larity properties allow us to classify the BMOy-spaces (see Theorem 1.3).
Moreover, the passage ¥ — % is a natural generalization of an iteration
procedure used sometimes to prove the John-Nirenberg Theorem (see for
example [23] (p. 154)). In fact, 9(p) = 1+ logu implies ¥(u) > u/e (see
Example 4.3), which is the John-Nirenberg Theorem as demonstrated in
Corollary 4.8.

THEOREM 4.6. (a) For¢ € D, 0 < s <1, and ¥1{t) =t one has

(21) I Tsmo, < I~ flamoy, = |- llzmoz < 697 (3)]] - [IBmo,»

1 1
22 T——— . * < . ® < —_—— . "
(22) 1+10g(1/s)ll lemo;, < Il - llBMoy, < max (L log(l/s))H lismog , -

1
23 . « <3 [ —— . R
23) I+ owog, < 3 (1, s - oo
(b) In particular, |(fx)rerllBmos < 1 implies for A > 0 and p > 1,
(24) P(sup | fi| > A+ ) < ¥ EIP(sup /] > A).
er el

Proof Firstfix 0 <k <n el and B e F, with P(B) > 0. For g > 0
we define
Toi=1nf{i > k| xB|fi = fr-1| > 2} A(n+1).
The following steps (i) and (ii) are standard and are cbtained in several
papers.
(i) For A, > 0 we get

Pe( sup |fi— foc1| > A+ )
r<i<n

= ZIPB( sup |fi — fac1l > A+ p, 1A =1)
i<i<n _

i=k t

<

]PB(.E?E o = factl > |fimt = foa| + 1, 72 =)

<

n
=k

Coon
Z]P’B(‘Sllp | fi = fi1l > u, T2 =13).
i—k i<i<n :
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(ii) Following an idea contained in [14] (p. 758} we get for A >0, p = 1,
and SUDjer Hfi - f!n—l”oo < l)

Pg( sup |fi — fe—1l > A+ p)
k<i<n

=Y Pe(sup [fi— fi-il > A4p, 1 =1)
i<i<n

i=h
= 3 Pa(lfi— fial > A+ p m=d magu =)
kSiglSn
< Y Pe(lfi~ feerl > lfici = feeal + o ma =4y g =1)
k<igi<n
< Z Py (|fn — fiot] + | fn = fial > p = fr = fimily =1 Tagu =1)
k<i<l<n
< Y Pefa—finl > (R=1)/2, =i g =1)

k<i<i<n
+Pa(fn — fic1| > (b —=1)/2, o =%, Tagp = 0.
(iii) We show || - HBMO;’; < |- lemoy, - I {l(fk)rerllBmoy < 1, then step
(i) gives .
Pg{ sup |fi — fr-1|> A+ p)
k<i<n

n

< S B({m =i}NBN {iiillgnifz — fieal > p}) [E(B)

PR

< Zel_¢(“)ﬂm({7>\ =14} N B)/B(B)
i=k

= e WPg( sup |fi — fa-1| > A)

k<I<n

Replacing 1 by ¢ by induction over N from Definition 1.2 (and letting
n — oo if I == N) implies for p 2 1,
(25)  Pglsup|fi— fea|>A+n) S Blww“)PB(ilg |fi = fr—1] > A)
k<t . <

and (24). Now A | 0 gives Py (supy< |fi — fr-al > op) < =P and
li(fe)rerilmos = 1.

(iv) To show | - [mvoy, < 647 (3)] - lImmoy let l(felrerliomo, < 1.
which implies
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Ifi~fieallo € sup |fi = ficilmo(mpey < 1
BeF:
B(B)>0

forl € 1. Since BOUL_{ma = IV Tappn =1} = BN{supsqicp, |fi— fim1l > A}
gtep (1i) gives for 4 > 3, as in step (iii),

(26)  Pgy(sup [fi— fe—1| > A+p)
k<i<n
< Zelww((#wl)/z)pB( sup |fi — fe-1] > A).
k<lEn

For pg := 39 (1-+log4) < 3¢~1(3) and /2 > po, using (12/2 — 1)/2 > /6
we conclude :

Pe(sup |fi— fe—1|>A+p)=P (su — > A Lo
(wgnl i1 p)=Pg kggnlﬁ feal > A+ 5+ 5

< (elog TP W/N2PL ( sup [ — fe—] > A)
k<i<n
< e YUWEPL(sup |f; — feor| > A)
k<l<n

< el—w(u/(%o))ﬂmB( sup |fi — frues] > N,
k<i<n

which as in (iii) implies the mequality ||(fx)re IHBMO::,, < 2up.

(v) The relations || - |zmo, <1l [lzmos, < |- IIBMQ:T are obvious.

(vi) Assume that [|(fi)rerllamo,,,/, < 1. Since for all [ € I,

1fe = fietlleo < [[(fidhmollBmoy,, o <1,
from (i) applied to x = 3 we get the inequality

Ps( su RS <0 N
B(kgzgnlﬁ So1] )\+3)”22P‘B(kitilgpnm Fo-1] > )

in the same way as (26) in (iv). For p=1,2,... and 3p < u < 3(p + 1) we
deduce

Pp( sup |fi— feet|l > A+ p)
k<i<n
<Pp( sup |fi — fe-1] > A+ 3p)
k<I<n
< s"Pp{ sup |fi — fr—1| > )
k<i<n
< SHPTIPE( sup [fi— fia| > N)
k<i<n

< A/ Py (sup (fy = | > )
k<i<n :

icm
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and get (23) as A | 0 (and n — oo if [ = N). To verify the right-hand side
of (22) assume H(fk)kEIHBMOQ, < 1. From (i) we get for p =1, as in (iii),

Pa( sup |fi — fus1l > A+ 1) < sPp( sup |fi — feoa| > A)-
k<l<n kLI<n

The rest is similar to the proof of (23). The left-hand side of (22) follows
from h(s) £ (1-I—Ic)g(l/.s))|.h,iﬂ,fg1 if p1(f) == 1/(1+log(1/t)) and h € M7 . m

Remark 4.7. (1) In [24] there is defined a quantity |f|zmo,;, for
functions f € Lo(R") in a slightly different form. Lemma 3.1 of that paper,
referred to in [17], is a counterpart to (23).

{2) The proof of (23) gives, on the right-hand side, | - [|Bmo, ,,, instead
of the smaller quantity || ||smo,,, which is sufficient for the purpose of this
paper. Nevertheless it could be of interest to investigate {|- |Bmo, , whenever
1/2 £ s < 1, which is not done here.

Theorem 4.6 includes A. M. Garsia’s [14] (Theorems II1.1.2, T11.2.1} ver-
sion of the original John-Nirenberg Theorem [18].
CoroLLARY 48. ||[(fe)rer[mmoy, < 6€%|[{frlkerllBmo for (Frlrer €
A((Fie)rer)-
Proof. For ¢(u) = 1+ logp and ¢(t) = ¢, from Example 4.3 and
Theorem 4.6 we get ‘
(frerllmmoy, < el (Fikerlimmos < e6u™" (8)l|(filrerlimuo,

< 691 (3)]|(fi)verlimno = 6€°||(fu)rerlinmo. =

Note that (23) is stronger than the above corollary. Moreover, it can be
used to get a better constant in this corollary. In fact, for s = 1/e inequality
(23) and the property h(s) < (1/s)||h]z, yield

(/) xezllBros, < Bll(fe)xezllBnio,, s < Bell (fi)kerllBmo-

As expected, BMOy-spaces are Banach spaces if we identify two adapted
sequences {fi)rer and (ge)rer whenever f = ge a.5. forall k € I.

THEOoREM 4.9. If ¢ € D, then BMOy((Fu)rer), || - 5] i o Banach
spuce where

|(fe)retill = sup sup

1f1 = fr-1llaez(B.85)
0<kgle] BeF,,P(B)>0

and f.y = 0. Moreover,

1(F ket llmnto, < I(Fokerlly < 2467 (307 B)[(Fe)nerllemoy -

Proof. The inequality || - |emo, < lIl- [l is trivial. The other one is a
consequence of Theorem 4.6(21) and Lemma 4.4(3). To show the complete-
ness let (2:)32; = ((filper)iZy C BMOy((Fi)ker) be a Cauchy sequence
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with respect to || - [liy such that fj := lim; fi € Mz(12, F, ) exists for all
kel Assumel < k <l el and B € F, with lP(B) > 0. Taking into

account

B(t) -
lgllats(ps) < P WHQHM@(D,P) <oo forge Mg(f2, F,P)

(note that A(F) < oo), we get ||| (f)aer — 4]l < Lmsup; [l|@; — 2 ||| from.
I(f = £ = (Fem1 — H_DlisgpiB.0)
= hm ||(fr - ) (fiza f;":_l)HM;,(BJ["B)
Now let us introduce the BMOy-norm of f € L, (12, F, ).
DEFINITION 4.10. For f € L1(£2, F,P) let f € BMOy({Fi)rer) provided

that
I Fllsmoy = Bk flrerllBmoy, < oo

Remark 4.11. If f & I,[0,1] then

| fllsmo, ~ sup sup |f—Eriflaemeyy ~sup sup [[f~Be1f|mzm,rs)
k>0 BEF, @ k>0 BeFy

atom atom
where the multiplicative constants involved in these inequalities depend on ¢
only. In fact, let B € F, with |B| > 0 be the disjoint union of Fi-atoms B*. A
standard computation shows the estimate |h| MY(B,Pp) < sup; |A MY(BP

Hence

i)

fllemog = sup  sup [Eif — Beoy flasizpa)-
0<k<l BEF, #
atom
Since sup;sy |Evf — Exe1 fllarz(mps) = I1f = Ex—1flla (B sy 85 a conse-
quence of [4] (Theorems 1.1.7, 2.4.8) and Exf — f as. we are done by
Lemma 4.4 and Theorem 4.6.

The basic example of a BMO,;-function defined on the unit interval [0, 1]
is given by

THROREM 4.12. For ¢ € D one has
7)== (1 +log(1/8)) & BMO,0, .
The theorem follows immediately from Example 4.1 and
LEMMA 4.13. Let o) € D and f € BMO|0, 1] be non-negative. Then
%71+ Hllsmoy o, < |t + flleMofp.y,
where ¢ > 0 depends on 1 only.

Proof. (1) Let ¢1(p) == p, corresponding to ¢1(t) = 1/(1 + log(1/%)),
and let ¥ € D-so that one has py(\) < ep(pA) for A, u > 1. Assume
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h e M3, (2, F,P) to be non-negative. Then
(27) WML+ B g < el + Rl -
Indeed, if a:= |1 4 h]M?q > 0, then for 1z > ac we derive
Pyt (14 k) > p) = B(1 -+ h > o{p)) < et/ (ae) < gl=vln/(ac))
(2) Let g(t) =¥~ *(1+ £(t)). Lemma 4.4(2) and our first step give
91aan0,0y < €o [+ Fimg, 0] < eyl + Fllamoy, pay-

(3) Now let & > 1, B € Fj be an atom and B € Fr—1 be the dyadic
predecessor. If g == B(g | 1) and fi :=E(f | 7) ({=0,1,2,...), then for
t € B one hag -

9(t) = g1 ()] £ ——E— S lg(2) — g(s)| ds.

B
For r,s > 0 we use ¥~ (H—s—l—l) %~ 1{r+1)+ 9%~ (s+ 1), which follows
from Lemma 4.4(1), and ¢~ ('r-l—l) < (r+1y91(2) (consnder k< < k+1
for k € {0,1,2,...} and ¥} (r + 1) < % 1(k+2) (k+ 1y 1(2) <
(r +1)~*(2)) and continue for ¢t € B to get

lg(t) — gr-1(t)]
1

i/’\

— \ (| f(t) = Fs)| + L) ds
ik

PH|F@) — Fra D+ 1) +

tm‘

; Y| e (8) — F()| + 1) ds
.§

< TR ~ for DI+ D +97 I(Z)WS(W (&) = fl&)|+ 1) ds

B
< TS ~ fomr (01 + 1 +97 () flemo + 1]
< NS = femr ()] + 1) + 207 (2)[ 1+ FllBvio-
From (27) and |- |ag (BPs) S | |, (Bps) 1t follows that
[ = fa-a! + Dlagses) < epllf = fo-1llag,, (BEs) + Cu-

Applying [4] (Theorems 1.1.7, 2.4.8), Theorem 4.9, and Corollary 4.8 we
obtain ‘ .
1f ~ Feetllagy, Bpsy = B lfi — Fe-1llat,, (Br)

< H2ollles < eylif limmo-
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Summarizing all the estimates (and using A(%) < co and (16)) we arrive at
g — G- 1|M0 Bps) < dyll + fllBmo for some dy > 0 depending on ¢ only.
Now steps ( ) and (3) combined with Remark 4.11 give the assertion of the
lemma. w

Proof of Theorem 1.3. Inview of Theorem 4.6(21) we get (1)=-(2).
We show (2)=(1). For this purpose let f(t} = %'~ (1 +log(1/t)) € L([0, 1]
and fi = Epf. Then it follows from Theorem 4.6, our assumption, and
Thecrem 4.12 that

[f\Mg < | Flemoy < 671 (3)]|f |emo, S Beap ™ (3)|fllpmo,, <P
so that B(#) < by (t) for 0 < ¢ < 1. Via (20) we arrive at the desired result. w

The above proof shows in particular that even martingale sequences
(fr)ken can be used to distinguish BMOy and BMOy,.

Remark 4.14. (1) BMO-norms for random variables are defined in
[2] with the help of Orlicz norms. To compare this approach with the ap-
proach of this paper let ¢ € D and let ¢ [0,00) — [0,00) be its exten-
sion with ¥(t) = ¢ for 0 < ¢t < 1. We assume e¥® to be convex and get
a Young function #(t) = ¥t — 1 with the corresponding Orlicz norm
lflles = inf{ec > 0| ES(|f|/c) < 1} for f € Lo(62,F,P). Using the condi-
tion sup,.,; infa>1 9(aA)/Y(A) > 1 one can verify |||z, ~ || l|a, ~ 1+ |am.
Now consider for simplicity 2 = [0,1] and f € L1[0,1}. For f := E(f | F&)
we obtain, as in Remark 4.11,

[ (F)xzollemo, ~ sup sup |If — frzillm,(8,ps)
E>0 BtEJ’:k
atom

~ sup SUP i f— fe—1llecmps) =
k>0 Be
cl.tom

sup |fessinf Moo
k20

where M consists of all positive Fy-measurable ¥ € Ly [0, 1] such that

E(®(f — foal/¥) | Fr) <1 as.

Hence we are in the situation of [2]. Theorem 6 of [2] contains a sufficient
condition for the inclusion of two BMO-spaces generated by different Youung
functions. But a criterion like Theorem 1.3 of the present paper is not avail-
able. Tt seems that one can use (at least in many relevant cases) the results
of this paper, especially the regularization ¢ of %, which is the key of our
approach, to extend [2] in some directions.

(2) Let (fr)ker € BMO.,'b((fk);,,EI) If[ F, ]

) 02, F,F] % [, F P,
Fr = Fp x Fy, and gi(w,w') =

fu(w), then |[(fr)rer|Bmoy,
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i(gr)rerllBMo,, because

sup Pgllor - go—1] > A) = sup Pp{lfi — fie-1| > A)
BeFy, BeFy
for A\>0and k<iel.

5. Weak upper estimates of BMO,-spaces. Now we will prove The-

orem 1.5 and deduce in Corollary 5.3 that the BMO,-spaces can also be
classificd by their weak upper estimates.

Lunnia 5.1, Forl > a1 2
equivalent.

(1) Ez Lo Hai/A) S@THL/A) forall A2 L
(2) |"=11I31<1<N aa|f1HM“ < SUP1<1<N\f1iMo Jor oll [02,F, 1] and (fi)t_
- MO(.Q F\P).

Proof. (1)=(2). Assume that supy ;< [filarg = 1. Then for A > 1,

Plsup ai| fi| > A) <> P(Ifs} > Mos) < Y etV
1] i P

= Zﬁf’“l(ai/f\) < @ H1/A) = e TP,

.2 ay > 0 and p € C the following are

(2)=(1). We can assume A > 1 and set &; := ¢~ '(a;/A). Choose A; C
[0,1] such that |A;| = ?; and define f; = (1/ ;)X 4, Then :

1
| sup x4, ’Mg[o,l] = | SUp G X4,
i i 424
M2[0,1]
x4, mof0,1) ety 1
< gqup ——— 2 = gup ——= = — < L.
- 'Ep i «;p a; A

Stice |xjo,ul mo = 1 one can find disjoint A; with P(4;) = t; and get for
A > 1, by applying ™! to the inequality above,

N N
Sti=p! (w(zta)) = go”l(lsgpru\Mg[o,u) <@ (1/A).
< . ,

] =

LEMMA 5.2. For € D with %up@l infas1 9 a)\)/ump( > 1 there is some
¢ > 0 such that for all [2,F,P] and all (FOX, C MY, F,P),

| sup @(1/8)|fillap S S‘}P | filnag.
1<i<N 1<i<N

Proof. Assuming w(aX) > (14 &)w(}) for some a > 1 and ¢ > 0
we get Y(a™\) = (1 +e)™(N). Consequently, we find some b > 1 with
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infys1 G(bX)/9(N) 2 3. This gives 2(p) +$(X) < 3np(pA) < P(buA) and
2logi-+P () = 29[y (1+logd)| +9(A) -2 = Pl (1+log D)A] = (A ai)

where

e L _1 E)
% T T log) b Ni)

Hence el~%(3/ad) < el ¥(A) and

N i oo
S (Y “Z 1-p(A/ai) Zi L (A _ og(E% /i1 -9(A)
ga (A) ; i:le ’ S ( ?;2 ¢ = ; ] .

g=1 i=1
If we choose ¢ > 1 such that

(=]

log (Z %2) < 9le),

qe=x

then for A > be we get

log (i:;;lg) +¢(5’\E) < w(C)ﬂb(%) < 2*41(%) < (M)

N
T (%) < JOBEE YLD ¢ l-BO/09) = (b_;)

i=1
E;cp'l ot 1 oferazt
bc)\ A ==

Now we can apply Lemma 51 m

and

or

Proof of Theorem L1.5. Since for a; = 1/~ (1 + log 1) = B(1/4),

I sup ai| F Drerllamo,

sup |supa ft(
ogk<lel BEF, izl
P(B)>0

< sup

i) (i)
l - 3;11‘:, a'ilkal\lM?%(B,ﬂ”[;)

< sup sup |supayfi) -
0<k<lel BeF, izl
P(B)>0

£ macmpe)

we can deduce from Lemmas 5.2 and 4.4(2) that

l(sup sl £ Nierllamo, < csup (A )rer Moy -
izl izl ¥
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Applying Theorem 4.6(21) gives Ug(BMOy) < c6y~1(3). On the other
hand, we take the function

(29 5= (14102} ) = =5 € T

exploited in Theorem 4.12. Letting fi = E(f | Fx) we define, for fixed
N2z1

I, i) = felts) € a(0,1]Y) (LLiEN).
On [0 1] we will use the canonical product fltration (F Nyod | with FY =

>< 1 Fr, where (Fi)P is the dyadic filtration on [0, 1] taken in Section 4.
Theorun 1.8 and (18) imply

1 1
= = <l su ti)lir, .
= 3T (F) S 2, e
By Fatou’s lemma and Theorem 4.9 we can continue with
| sup F(Edlizacon>)
1<i<N

< liminf o < sup FNR Ll
< limin I 12}£Nfz lre0,17) _Hl(lgsl?ka Vreolll

< 247 (3)y ™ (3)}I( sup 72 Moy (FF 120
1<i<N

Summarizing all estimates ylelds for 1 /6 = 4891 (3)w~(3),

_ o)
< (P(l/N)IKJ-é?ngk )e2ollEMOL(F )
< UbN(BMOV,)‘ SI}P ”(.fFE-L))z?:GHBMO,P((F{C")ﬁO)'

As by Remark 4.14(2) and Theorem 412, {|( £ o llemoy, =1 fllsmo, <0,
we are done.

The next corollary adds a further criterion to Theorem 1.3
COROLLARY 5.3. For ¢, €D the following assertions are equivalent.

(1) There ezists ¢y 2 1 such that %) < P'(ep) for all1 < p < 00.
(2) There exists ¢z > 0 such that for all o = (w)iz1 satisfying

12 a2 ay> ... 20 onehas
U, (BMOy) < czUa(BMOM.
Proof. First for p € C and N =1, 2,
- (Ui, wd €= (w(llN) L o(1/N),0,0,.)
where tp(l/N) is repeated N times (p(1/1) = 1/¢ 1(1 + log4))-



icm

260 §. Geiss

(1)=(2). If U,(BMO,,) < oo, then it follows from Theorem 1.5 and (20)
that

o(1/N
0 < § := inf U,y (BMOy) < inf —MUG(BMQ,,)
N = N aN

ot
< crint )y BMoy)
N ay

or ay < d(1/N) with d:= (¢;/8)U,(BMOy). Hence
€1

U (BMOy) < dU,... (BMO,,) = [?Uw (BMOy )]UG(BM0¢)

=y Ua (BMO¢)

where ¢y < o0 according to Theorem 1.5.
(2)=-(1). Since for " := infy U, (BMOy/) > 0,
‘P’

 B(L/N) B/N)
9 SN Uy (BMOMW = U,y (BMOy)

] < cU,n (BMO#,) < CzUuE(BMO¢),

for cj = (c2/#)U, (BMOy) and N = 1,2,... one has the estimate
B(1/N) < che'(1/N). Since A(p’) < oo according to Lemma 4.4(2), a stan-
dard computation gives F(t) < chA(@")i/ ()} for 0 < ¢t £ 1. Using (20) we
can conclude the proof.

6. A general extrapolation principle. We want to prove Theo-
rem 1.7. For simplicity we assume that [ = {0,...,n} to avoid difficul-
ties with the existence of the maximal operator A*. Let us start with some
lemmata.

LemMa 6.1. Let ¢ € D, and 5,T : AX((Lx)0_y) 2 F — LT (M, E,m),
where X is a Bonach space. If (F,S,T) satisfies (EP) with constant ¢ > 1,
then

1(SF*)icolmmoy < ITflee  (f € F)
implies, for 0 < 6 <1 and A >0,
m(S*f > (c+ A, Tf <6X) <PV 0mes* > 2)  (f e F).
Proof Fix f € F,§, and A. We find some g € F satisfying |Tgllec SebA,

1
‘C"X{nga,\}S*f < S*g<eS*f  as.

(%),
A ) o

and
Ty

< || ==
ch X

BMO;,

=
o0
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Theorem 4.6(b) gives, fox A’ := 1/(cf) and p' = 1/86,
m(58*f > (c+ )\, Tf <EX)

<Sm(S*g> (1+c))) = m(%/—\g- > /\’-{-,u’)

< el“ﬁ(l/‘”m(% > A’) = PO (S g > )
C

<P Omes* f > A). u

Tn the following we will sometimes use the fact that (B, @A, SB) has
(EP) with constant ¢ > 0 whenever &, 8 € R are positive and (E, 4, B) has
(EP) with constant ¢ > 0. Furthermore, given Banach spaces Xa, ..., Xy we
male use of the Banach space £ (X;) consisting of all N-tuples {z1,...,ZxN)
of z; € X; equipped with the norm ||(2:)iL, lex (x,) = max; [z x.-

LumMMma 6.2. Assume that A;, By AXi((‘?‘-—,i)}::?\g o E; - Li(0, 7L, )
satisfy (EP) with constant ¢ > 1, [M, Z,m] = )(izl[Qi,F',]P’i], and Ty =
xj\il Fi. Let F C Absol XD (D)2 be given by

(O, f) = (@ d Mo € F i 1O = (d))hn0 € B
Define 8,7 : F — LT (M,Z,m) by
SUD, ., fO) = sup A and T(F,.., fO0) = sup BifD.

Then (F,8,T) has (EP) with constant ¢ > 1.
Proof. It is clear that the operator § is measurable. Now let A>0and
fe ¥ with fo= (FO, .., f) and §@ € B;. We find g\ € E; such that

%X{B-;j’u)g:\}flff(i) < Atgl) < cAlf as. and Big” < chas.

For g = (g1,...,¢™) & F one gets as. 5°g = sup; A?gt® < csup; AF FO
= e8* f, T = sup; Big') < ¢, and

1 1 . A* (1) < S* -
“ypmy *F <~ sup L FO ;fY < 8%
{:A.{Ifg)\}g I Hgi% [X{Bf <A}

Proof of Theorem 1.7. (1) Let a := (1/97 (1 +logi))2y
(B(1/4))e2, and ¢ = 6y~ (3)Ua(BMOy). Using Lemina 6.2 for

[[2,,;,]—“",[[3{5] M= [Q,}',IP’], Ei = E, Az' = a(l/Z)A, a.nd B-i = B
implies that (F,S,T) defined as in Lemma 6.2 has (EP) J:vith e > 1. For
fe (FO,.. fOD) € F and b (wy,... w8) 1= A((FDY) wi) € Lo(M),
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from Theorems 4.6 and 1.5 we get

1
=== (5 )hollmmoy < [1(SF*)k=ollzmo,

)
< Ua(BMOy) sup [i(hi))iollEnmo, -
1<iEN
Applying Remark 4.14(2) gives
LA o lmreo, = ICAGF)Ez0limao,
s0 that our assumption yields
Sy « < su A(ftnkyr_
II( )k'_o”BMOw Sup | (ACF) ") e=ollBMO,
<c sup [|BfDloo = |T oo
1<i<N
Lemma 6.1 implies
m(cS*f > cle+ )N, TF < 62) < ¥ OmeS* £ > A)

for 0 < § < 1and A > 0. We choose 0 < § < 1 with e!=¥(1/8) = [2¢(c+c2)| P
and deduce for 8 = e(c+ c2) and € = e!=¥(1/8) that

2
? X \’/liw < 26(6;_ ) 2¢(e + D91 + plog[2e(c + c2))).

Lemma 4.4(2) applied to 4 = acy, where a > 1, yields ¥~ (ap) < acy b~ (p)
for p > 1. Hence Lemma 4.5 gives for some d > 0, depending on ¢ and %
only,

Jo] 1

i T—MP—E”TJCHP
< AU TS|,

= dy™ (p)d'| sup Bf{willi, vy

le sup S(/DA"f(wi)lzyamy = 1577l <

(2)Let 1<it<oowith N<t<N+1 and

N
W= Z-@(l/i)x[(iwl)/N,i/N) € LF[0,1] so that wf’ < Al@)w as.

g=1

“Then

w‘_" * ' w *
KE A £, < A@)KE, [AMF, 11/7] < 2VP A(R) K [AF, N/
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Exploiting Theorem 1.8 we can finish. with

g — =01 /) A
K;uot,p[A f. tl/P} < 21/P+1A((p)n lil_lgNgD(l/i)A f(w,;)“LP(QN)

_.dd —_
< PP AG) =% p)|| sup Bf(widllr, o)
e 1<i<N

. de —_
< 21“’“A(<p)-g~¢ Y (p)Koop | BF, N7

!
< 2P A(R) G () Hon B, 777)
From Theorems 1.7 and 4.6(23) we can immediately deduce

COROLLARY 6.3. Let A, B : AX((Fr)i_o) 2 E — L (2, F,P) where X
is @ Banach space, and let %1 (t) = €. Assume that (E, A, B) satisfies (EP)
with constant ¢ 2> 1 end that

sup sup sup Pg(|Af— AfF Y > IBflloo) = s < 1/2.
fEE 0<k<I<n BEF:
P(B)>0
Then there is some d > 0, depending on s and ¢ only, such that for all
1<p<oo,t>1,and fEE,
(29) KUD A7 £,1/7) < dpK oo o[BS, £7).
In particular, for t = 1 one has ||A* fllp < dpl| Bf |lp-

Remark 6.4. (1) The inequality || A f[l, < dap—(p)|| B f|p of Theorern
1.7 implies estimates which are weaker than (12). For example, starting with
inequality (2) we get for A > 0 the estimate

k
>
i=1

Given A > ce =: a > 1 we choose p such that 1/e = ¢,/p/A and obtain

k
(30) P sup |3 d:
1

1<kLn i—

> AlIS: f||p))1”’ < ep.

A(P( sup

1<ksn

2
> M8 fllrme) <X

Since
2 %
IS2fllasay2 2 Slipt(am (S21)™* (1)

> e(l—)?)cﬁ/)\2 (ng)**(el—«\a) > e—a2 (Szf)**(el—Az)
and (18) holds, the estimate (30) is weaker than (7) which implies

P(sw;pbiﬁ

> cAKo1[52f, 6}\2_1]) <N
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(2) There are examples showing that (13) is weaker than (12). To see
this we first remark that according to (18) and wy = 1 on [0,1/¢] (w: is
defined in Theorem 1.7),

K [A® f,8Y7) = (A" f - we)y (L/8) = 1A Flp-

Now, consider 1 < p < g < o0, %(t) = %(t) = 1* (see Example 4.3),
and 2 = [0,1], where we use the dyadic filtration (Fi)3Z, from Section 4.
Let A : E, — L§{0,1], where E,, is the set of all mean-zero martingale
differences with respect to (Fi)l_y and A((de)?_o) = | Dkeg dil- If fn =
(dfg)F.o € Ex is the sequence of martingale differences generated by

F(8) = YT+ 1og(1/) = | /1 +log(1/)]1 & La0, 1],
then Theorems 4.12 and 4.6 imply, for & = sup,(A4* fr),
B{) < ct/1+1log(lft) for0<t<1l

Now one can show Ko plsup, A*fn,tl/f"] < YT +logt for 1 <1 < o080
that

lim Kw,p[S“PA*fmtl/p]/anl(l +logt) =0
t;golo n
but
inf K% A" £, 817] > || A* fi]]; > 0.
>

7. Examples for condition (EP). Several extrapolation procedures
use assumptions as in Proposition 7.3 (C = 0) or the weaker assumptions
considered in Theorem 1.1. Via condition (EP) we have chosen a more ab-
stract way; that is done for several reasons. For instance, property (EP) is
stable with respect to procedures like that in Lemma 6.2. Moreover, in the
first example we see that (EP) includes a known classical situation (Proposi-
tion 7.3 with C = 0). A slight modification leads to (EP) for (E, A, B) where
B is a special non-local operator, used in Corollary 7.4. In the second exam-
ple we demonstrate that (EP) also includes the situation of Theorem 1.1.

Finally, in Proposition 7.6 we show that the assumptions of Propo-
sition 7.3 (where ¢ = 0) imply the equivalence of the K-functional
Keop!Bf,t] and K(f,t; Hy, H,'), the K-functional with respect to the
Hardy spaces generated by B. This observation can be found with more
restrictive assumptions in {26] and is prepared in Lemma 7.2 for our purpose.

The first ezample. We will say that a subset E C A% ((Fi)ker) is closed
under starting and stopping provided that f € E implies "f, f7 € F for
all stopping times 7. Furthermore, an operator A : AX ((Filres) 2 B —
LE (2, F,P) is called predictable if Af* is Fj._;-measurable for f € E and
1<kel
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First let us recall a basic property of local and quasilinear operators (see
11] (Lemma 2.1)).

LeMMA 7.1. Let T« AX{((F)iy) 2 B — L{(2,F,P), where E is
closed under starting ond stopping. Assume T to be quasilinear with constant

vr = 1 and local. Then for every stopping time 7, f € E, and k € {0,...,n}
one has a.s.

T(f7) 3 T(f*) on{r =k} and T(F) < 299 (T X irany-
Proof On {r =k} we get as. '
T(f7) < [T = FT) + T = arT(FF)
ST = 5) + T(F*) = %)
For the second inequality we remark that T("f) = 0 a.s. on {r = n}. For

0 < k < n from the first step we obtain T("f) < yp[Tf+T(f7)] < vo[Tf +
YET(fF) < 298T*f as.on{Tr =k} =

The next lemuma is proved for 0 < p < 1 and for g-sublinear operators
using an atomic decomposition in {26] (Theorem 5). Our approach is more
direct. As in [26] we will deduce in Proposition 7.6 a relation between dif-
ferent K-functionals, now available for all 0 < p < o0 and for quasilinear
operators.

LEMMA 7.2, Let T @ AX((Fr)i,) 2 E — L{(2,F,P), where E is
closed under storting and stopping. Assume T to be quasilinear with con-
stant vy > 1, local, and predictable. Let A > 0, f € K, and let us define
7 == inf{k | T{fF*) > A} An. Then for all 0 < p < co one has

‘ l/p

{ @ srar)
{T*f>A}

Proof Use Lemma 7.1, T(f*) € A as. on {7 =k}, and {7 < n} =
(T*F > ). = |

PROPOSITION 7.3. Let A, B,C : AX((Fu)po) 2 E — LI(02,F,F),
where B s closed under starting and stopping. Assume that A is quasilinear
with constant v4 > 1, local, and measurable, that B is quasilinear with
constant yg = 1, local, predictable, and monotene, and that Cf = e{Hxan
where ¢(f) € R with ¢(0) = 0 and e(f7) < e(f) for all stopping times 7.
Then (E, A, B+ C) has (EP) with constant ¢ = max(v%,73 + 1)-

Proof Let A > 0 and f € E. If ¢(f) > A, then we choose g = 0 such
that

T(f) <BA s and [Ty < 208

xiproap A f=ATg=0< A*fas. and (B+C)g=0as.
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If ¢(f) < A, then we choose g == f™ € F where 7 := inf{k | B(f*!) > A}
An. Lemma 7.2 gives Bg = B(f7) < v5A so that (B+C)g < Bg+Cf <
(¥4 + 1)) as. on £2. Since {Bf < A} = {7 = n} we have

1 1 1 .
= A< — A*f = —xtrem AT (f— fT+ F7
RSty < FEAtIESY f y Xtr=n) ( )

< Xir=nj[AN(F = M)+ AT S A(f7).
Finally, the left-hand side of the assertion of Lemma 7.1 implies A*(f7) <
VAA(F)-
Nate that B+ C in the above proposition is not necessarily local. Propo-
sition 7.3 and Theorem 1.7 imply

COROLLARY 7.4. Let A, B : AX((F1)2_,) 2 E — LI (2, F, P}, where E
i$ closed under starting and stopping. Assume that A is quasilinear with con-
stant ya 2 1, local, and measurable, and that B is quasilinear with constant
~8 = 1, local, predictable, and monotone. Let vy € D and suppose that

o(f) = sup{ (45" )isollBao, — 1B Mw} VO,

with the supremum taken over all stopping times T, s finite for all f € E.
Then there is some d > 0, depending on v € D and v4,vp > 1 only, such

that for 1 <p <oo,t> 1, w :=w;’b, and f € E,
Kol A f,147) < d ™ () (Koo o[BS, /7] + ().
In particular, for t =1 one has | A* fll, < d~2(p)(|Bfllp + ¢(F)).

DEFINITION 7.5. Let T : AX((Fp)7,) 2 E — L2, F,P), t > 0,
fe€ E and 1 <p,q < co. Then

K(f’tHg’:HE} = inf{ﬂTg”q +ﬁ|lTh’”P lg,h€E, f=g+ h},
K(f,6BMO, HY) := int{||(Tg*)3_ollmmo, + t| T, |
ghekl f=g+n}

PROPOSITION 7.6. Let T : AX((Fp)i,) 2 B — L (R, F,P), where
E is closed under starting and stopping. Assume T to be guasilinear with
constant yr 2 1, local, predictable, and monotone. Then for all f € E and
1<{,p < oo one hos

1
ﬁK(‘f’ t>H§;=Hg) < Km,p{Tfat] < ’YTK(JE: L, HEO;HE)

Proof. On the one hand, Tf < vp[Tg + Th] a.s. gives Koo p[TF, 1] <
K (f,¢, HL, HT). On the other hand, for A :== Tf(1/#) Lemma 7.2 says

T e <37 Gp) <A f);*( 1)

t_p
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and
T *% 1
Aol < mier sy ()
where we use a Hardy-Littlewood inequality for the latter relation (see [4]
(Theorem 2.2.2)). The rest follows from (18). u

The above propositicn remains true (with an appropriate change of
the multiplicative constants and the same proof) in the quasinormed case
O<p<l.

COROLLARY 7.7. Let A, B : AX((F)?_y) D E — LT (2, F,P), where E
is closed under starting and stopping. Assume that A is quasilinear with con-

stant v4 = 1, local, and measurable, and that B is quasikinear with constant
78 2 1, local, predictable, and monotone. Let 1 € D and suppose

I(AF " zollsmo, < |Bflles  forall f € E.
Then there is some d > 0, depending on v, v4, and 7B only, such that for
l<p<oo,t>1, and f € F,

K(f,6;BMOy, H;') < &~ (p) Koo o[BS, 1.

Proof Let fe B, 1<p< oo, andt> 1. According to Proposition 7.6
wefind g, h € E satisfying f = g-+-hand || Bg|lco+t[ Bh|p < 473 Koo p(BF, 1].
Applying Theorem 1.7 to h € E yields

(4" ienllamo, + t] Al < || Bglle + tdf~(p) | BRY,
< (d+ )P (0)475 Koo p[ B 1] w

The second ezample. We show in Proposition 7.11 that the situation of
Theorem 1.1 can be reduced to the classical one used in Proposition 7.3
(with C = 0). For this purpose we replace a measurable operator, which is
majorized by a predictable sequence and defined on random variables with
values in a Banach space X, by a predictable operator defined on random
variables with values in the Banach space X @ R. This is done with the
help of

DrrFINITION 7.8. Let B : AX((F)to) 2 E — L2, F,P) and 0 < p
< 1. Then B, : B — LI (2, F,P) is defined for f = (di)7_, by

L 1/p
Byf(w) =t { (18O w))
=1

To summarize the relevant properties of By in Lemma 7.10 we need

LeMMA 7.9. Let M be a non-empty finite set and let f: 2 — [0, 00) be
a function satisfying f(0) =0 and

j(C’l N Cg) < ")’[f(cl} + f(oz)] for all disjoint C1,Ch € ZM,

O=ng<n1<...<nL=n
L=1,2,... ‘
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where vy > 1. Defining 0 < p < 1 via 2P~} = v one has
L L .
(f( U Gl))p < ZZ(f(C;))p for all pairwise disjoint C1,...,CL € oM.
=1 =1

Proof We will use the arguments given for quasinormed linear spaces
in {21] (6.2).

(1) First we show that (f(Ci))* < a3 kigfori=1,...,L, &k €{0,1,...},
and SO, 275 < 1 imply (f (Ui, O1))F < s whenever the C) are pairwise
disjoint. For s = 0 there is nothing to prove, hence we can consider 5 > 0.
Furthermore, by adding the empty set we can assume that Ef;l 2=k =1,
We proceed by induction. If max{ki,...,kr} =0, then L = 1 and we are
done. Now let max{k;,..., kz} =h+1with > 0. X [ :={l |kt = h+1}
we obtain a set of even cardinality since Z{;l 2-F = 1, 1,5 € I then one
gets

(F(C:UCH)P <APLF(CH) + F(CHIP <277
s0 that we can write Uf;l ¢, as disjoint union of Dy, {n = 1,..., N) with
(f(D,))? < 27™ns where max{my,...,my} < h and Ele 27 = ],
Hence we have reduced the situation for A+ 1 to the case h and we are done
by induction over h.

(2) To prove the statement of our lemma we can assume that f(C) >0
for all C # O {otherwise we consider f.(C) := f(C) + e if C # 0 and
f(@) =0 withe | 0). Let C = U{“:l C; be a disjoint union of non-empty
sets. If we set 5 = 25", (F(C1))? and choose k; € {1,2,...} with 27% 15 <
(f(C))P < 27 ks, then we get Z{;l 2=% < 1 and (f(Uf;l C))P < s from
step (1}, which proves our assertion. m

LEMMA 7.10. Let B : AX((Fo)p_,) 2 E — LT (2, F,P) be a quasilinear
operator with constant vz > 1. Then for 0 < p < 1 with 24771 = vp one
has:

(1) Bpf < Bf <2YPB,f and By(*"1f*) = B(*¥~1f*) for oll f € E and
1<k<n.

(2) [Bp( )P < [Bo(f*)P + [Bo(f — FX)P forall f € B and 0 < k< m.

(3) If B is local (mensurable, predictable, monotone) then so is By.

Proof Most of the things are evident (for example, B,f < Bf follows
simply from dp = 0 for {dx)}_q € E). The point is Bf < 2'/7B,f, which we
get from Lemma 7.9. w

PROPOSITION 7.11. Let f = (di)2_, € A*({(Fr)t_y) with dp = 0. As-
sume that

A, B {£%f" | 0,7 stopping times} =: E — LT (02, F,P)
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are quasilinear with constants va,vg > 1, local, and measurable, and assume
that B is monotone. Suppose that B*71f* < wy a.s. fork =1,...,n, where

(ﬂ;cc)}::l € A{(Fi)7_y) is a fized predictable sequence and vo = 0. If F C
AXS=R(FNY Y and S, T F — LE(2,F,P) are defined by
F = {((gr, we))e=o | {{grwr))ico = (e <rery (dr, vi D izg,
o, T stopping times},

S(((ge, we)gwo) = A((9k)0)5
T({{gr, wr))imo) = (Ogggﬂ wi|} V B{{gk)k=0)>

then (F,S8,T) has (EP)} with some constant ¢ > 0 depending on va and vz
only.

Proof. (1) Since B is local, for k = 1,...,n one gets on {o < k < 7}
a.s.

B((k—l)Va'f'rAk) < ,YB[B(TV(k~1)Vcrfk) + B((k_l)vgfkﬂ - ,YBB((k~1)Vcrfk:)
< B [BE47) 1 B15)] = 43 B(-)
so that B((k-LVofriky < VBV X{o<k<r} B5. on 2.
(2) We define U : F — LJ (2, F,P) by

U((gkws)ia) = 52 {{Byllancusmioll +18 e P,

where wnpt1 = 0, 0 < p < 1 is chosen so that 21/P~! = ~p, and B, is
explained in Definition 7.8. It is clear that § and U are quasilinear and
local, and that

(31) 27HPT(((gn, wr))imo) < U({(gr, wi))imo) < 7E2PT({(gn wr))femo)-
S is measurable and U is monotone. The point is that U is predictable since
for 1 <k <m,

Bg(GfTAk) < Bg(ﬂf‘:‘f\(k»l)) +B£(0'V(k—l)f7/\k)

S BE(UfTA(k_l)) + ’Y?Bpluﬁ)({a'(kgﬂr} .

by step (1). Proposition 7.3 (C' = 0) implies that {F, S,U) has (EP). By
(31) the triple (F, S, T") has (EP). w

Combining Proposition 7.11 with Theorem 1.7 yields an extension of
Theorem 1.1.

COROLLARY 7.12. Let ¢ € D, f = (dp)f_y € AX((Fr)Fog) with dg = 0,
and

A, B {£f7 | 0,7 stopping times} = E — Li(2,F,F)

be quasilinear operators with constants v4,7vs = 1, locol, and measurable,
and let B be monotone. Suppose that B*~f* < vy as. for k = 1,2,...,
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where (vi)p_1 € A((Fr)p_p) is o fixed predictable sequence. Assume that

IACF))kzollBmo, <] _sup vk B o

for all stopping times o and 7. Then there is some d > 0, depending on

€D, va, and vu only, such that for 1 <p < oo, t > 1, and wy := w;/',

(32) Ku [A £,64/7] < 4§ (9) Kooplsup vk V BS, /7],
’ k
In particular, for t =1 one has | A* fll, < d=(p)|| supg vk V BFflip.

8. Extrapolation and self-similar operators. In this last section we
will discuss in Proposition 8.2 a possibility fo start in Theorem 1.7 and
Corollary 6.3 with much weaker assumptions. For simplicity we will restrict
ourselves to the case where {2 := D, = {(e1,...,8) | €1,...,6n = £1}
is the Cantor group equipped with the normalized Haar measure p,. As
filtration (F)7_ we use Fp = {8, Dy}, and for 1 < k < n,

Fr=0({(e1,- . &n) | 1 = £1,.. . ,6n = £1} | 63 = £1,..., 8, = £1).
As subset E of adapted sequences we take the set M of all martingale

difference sequences (di)7_, C L7 (Dy,) such that dy = 0. Let us start with
the main definition of this section.

DEFINITION 8.1. An operator A : MX — LF(D,) is called self-similar
provided that for all{) < k < n, all atoms D € Fy,and all f = {d)]-, € ME
with supp(d;) C D foralll=0,...,nand dy =... = dy = 0 one has

A(fOB)y = (A Of) gy Gy € {-1,1)),

with fOfe) = (dl(gl""’g’“))?mﬂ, where

h(gl""’g’“)(&“l, Ces ,En) = ;1(9151, - ,BkEk,Ek+1, e ,En)

for some h € LE(D,).
Basic examples of self-similar operators are operators generated by

UMD-transforms or generalized square functions, that is, (Af)(w) :=

12 ks ot (w)llx or {(Af)(w) = (Chey ldn(w)l|%)? where f = (di)}_,
MY, (ap)f, CR and 0 < p < oo.

PrOPOSITION 8.2. Let A, B : ME — LI(D,) be self-similar, sublinear,
and local, where A is assumed to be measurable and B is assumed to be
monolone.

(1) If p € Ca, then ’Af|Mg(D") < IBflleo for all f € M implies
I(AF* Y rzollBvo, < 2A(9)[Bfllw  for £ € MX,
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(2) If 0 < s < 1/4, then pn(Af > [|Bf|loo) < 5 for all f € MX implies
1
A fe Tl‘ " < 6 1 - X
A5 Emollneoy, < Omae (1t V1Bl for € M.

Proof (1) Let 0 < k < n and assume g = (dgxo)f, € MX and
h = (dhixp)fy € MX where C, D € Fy are disjoint and dgo = ... =dg; =
dhg = ... = dhy = 0. If the operator T : Mff — La”(an) is sublinear and
local, then one easily shows that T(g + h) = Tg + Th. If we additionally
assume that T' is self-similar, then for 0 < k& < n, an atom D € Fi, and

F=(dixp)ig € M with dy = ... = dj, = 0 we get by induction
T( v f(el,...,sk)) D R ()
O 1, Bp==1
— Z (Tf)(el,...,ak)_
Bry Br=t1

N (2) Let f ={di)ry EME, 1 <k <I<n,and D € Fi be an atom. Let
D D D be the dyadic predecessor, D € Fr_1. It follows for A > 0 and

gi= 3 ((f'= ) tefeen)
01, 0p—1==%1
() D(JAF = AF*Y > A) € () p(A(F = F571 > )
< 2un) 5 (AF = 571 > A)
= 2pn) p(A((FF = FF 1xp) > A)
= 2un(Ag > A).

(3) To prove the first assertion of our proposition we derive, under the
assumptions of step (2),

|Afl — Afk_lng(D,(#n)D) < A(@)|A9|M3(Dn) < A(p)liBgllo
= A@) B = £ x)l ro iy
< 24(0)| Bl o(m,)-

The case k = 0,1 leads trivially to the same estimate. Finally, letting D =
|J; Di be a disjoint union of atoms .D; € Fy, (k > 1) one gets

JAF = AP ) o) S 500 [AF = AP 010 (04 im) )
%

< 24(2)| Bflos-
(4) To prove the second assertion we consider the estimate
21Bflleo 2 1B{F* = £ Nxp)lL. By = 1Bg]cos 50 that step (2) and our
assumption yield

(tn)p(JAF — Af* 1 > 2 Bflloo) < 2n(Ag > | Bglle) < 25

that
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Similarly to step (3) we get (zn)n(|Aff — AF¥7| > 2(|Bf||s) < 2s for .all
D € Fj. The case k = 0,1 leads to the same estimate and we can finish
with Theorem 4.6(23). »

If we now combine the second assertion of the proposition above with
Proposition 7.3 (C = 0) and Theorem 1.7, then we get

COROLLARY 8.3. Let 4, B : M%X — LI (D,) be self-similar, sublinear,
and local, where A is assumed to be measurable and B is assumed to be
predictable and monotone. Then for all 0 < s < 1/4 there is some ds > 0,
not depending on n, A, and B, such that

|A™fllp > dsp||Bfllp

for some p € [1,00) and some f € MZX implies the emistence of some g €
MZE such that
pn(Ag > [|Bglles) > s-

Remark 8.4. (1) D. L. Burkholder has shown in [9] (Lemma 3.1) that
for the UMD-transforms Ag, Bg : ME — LT (D) with Ao((dp)fng) =
| 2o hes Brddil| x and Bo((dk)feg) = Il gy dillx , where 6 € {—1,1} are
fixed, the inequality A% f > 6¢||Byflly a.s. for some f € M;F and some ¢ > 0
gives some g € MZX with

pn(A39 > cliBoglee) 2 1/2.
To apply our result in this situation we have to replace By by the monotone
operator

"Byf = sup [Hid’
i=1

lldiallx]  where £ = (di)o.

0<i<n X
*By is predictable since for 1 < k < n one has *Byf* = supy<;i[|| Ei:l dillx
+ ||diy1]lx] and that |di|l is Fi—i-measurable. Moreover, the estimate
((p — 1)/(39) [Bofl < |Boflly < I"Bafll, bolds by Doobs maximal in-
equality. Now Ap and "By satisfy the assumptions of the corollary above
and we obtain [9] (Lemma 3.1) if we replace {|Bpf|l1 by |Bof|l, for some
¢ > 1. To get Burkholder’s lemma in the case p = 1 in our general situa-
tion it would be necessary to weaken the conditions for the operator B in
Corollary 8.3 to self-similar, sublinear, local, and measurable.

(2) A further result concerning UMD-transforms related to our corollary
can be found in a slightly different setting in {7] (Theorem 1.1},

The next application of the concept of self-similar operators concerns the
following martingale-type quantities.

DerINITION 8.5. Let L <p <2, 0<s< 1,1 <, <00, n=12,...,
and let I' : X — Y be a continuous linear operator between the Banach
spaces X and Y. Then Mty (T | Lo, Lg) == infc and Mty (T | Lo,s, Lg) :=
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inf d, respectively, where the infima are taken over all ¢,d > 0 such that for
all (dy)}_ € M,

|37, =l i)™,
(| o], > o (S i) ) <

G. Pisier proved in [22] (Sublemma 3.3) that
sup Mty o (T | Lp,ce, Lip) < cosup Mty (T | Lo, L)
T n

and

The following extends this inequality in two directions.

CorROLLARY 8.8. Let 1 <p <2, 0<s<1l/d, 1<a<o0,n=12,...,
and letT : X —Y be a continuous linear operator. Then one has, for some
¢ > 0 depending on s and @ only,

c
Mtp,n(T ! LaaLoc) = CMtp,n(T ] LD,s,LcO) < ‘S‘Mtp,n(T E Ll, Loo)-

Proof. To apply Proposition 8.2(2) we use A, B : MX —» LT (D,) with

A((dr)j=0) (w) = HT( i d’“(w)) ||Y
k=1
and

B((d)io)(w) = o DIk )

where o 1= Mt, (T | Lg,s, Loo)- Then we finish with Theorem 1.7.
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Cohomology groups, multipliers and factors in ergodic theory

by

M. LEMANCZYK (Torud)

Abstract. The problem of compact factors in ergodic theory and its relationship
with the problem of extending a cocycle $0 a cocycle of a larger action are studied.

Introduction. Given an ergodic automorphism 7 : (¥, C,v) — (¥, C,v)
of a Lebesgue space (Y,C,v) call any of its invariant o-algebras a factor.
Denote by

Clry={8: (¥,C,v) = (V,C,v): ST =78, S invertible}
the centralizer of 7. Endowed with the weak topology in which
Sp— 8 iff p(SF*AA SELA) — 0 for each A €C,

it becomes a Polish group. If H C €{7) is a subgroup then it defermines a
factor A(H) given by

AH)={AeC:5A= Aforeach S € H}.
On the other hand, a factor A determines a subgroup H(A)} ¢ C(7) by
H(A)={SeC(r): 5A= A foreach A € A}.

From this point of view compact subgroups are of special interest as for
them

(1) HAH)) =H

{see [5], [17]). Moreover, in this case T can be represented as a compact
group extension T, defined on the space (X x H, Ji), where X stands for the
quotient space corresponding to the factor A('H), i for the product measure
of the corresponding image of » with Haar measure my and T denotes the
quotient action of 7; T, is defined by

Tp(w,8) = (T2, p(2)5),
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