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Abstract

Background: Reconstructing phylogenies through Bayesian methods has many benefits, which include providing a

mathematically sound framework, providing realistic estimates of uncertainty and being able to incorporate different

sources of information based on formal principles. Bayesian phylogenetic analyses are popular for interpreting

nucleotide sequence data, however for such studies one needs to specify a site model and associated substitution

model. Often, the parameters of the site model is of no interest and an ad-hoc or additional likelihood based analysis

is used to select a single site model.

Results: bModelTest allows for a Bayesian approach to inferring and marginalizing site models in a phylogenetic

analysis. It is based on trans-dimensional Markov chain Monte Carlo (MCMC) proposals that allow switching between

substitution models as well as estimating the posterior probability for gamma-distributed rate heterogeneity, a

proportion of invariable sites and unequal base frequencies. The model can be used with the full set of time-reversible

models on nucleotides, but we also introduce and demonstrate the use of two subsets of time-reversible substitution

models.

Conclusion: With the new method the site model can be inferred (and marginalized) during the MCMC analysis and

does not need to be pre-determined, as is now often the case in practice, by likelihood-based methods. The method

is implemented in the bModelTest package of the popular BEAST 2 software, which is open source, licensed under the

GNU Lesser General Public License and allows joint site model and tree inference under a wide range of models.

Keywords: Model averaging, Model selection, Model comparison, Statistical phylogenetics, ModelTest, Phylogenetic

model averaging, Phylogenetic model comparison, Substitution model, Site model

Background
One of the choices that needs to be made when perform-

ing a Bayesian phylogenetic analysis is which site model

to use. A common approach is to use a likelihood-based

method like ModelTest [1], jModelTest [2], or jModel-

Test2 [3] to determine the site model. The site model is

comprised of (i) a substitution model defining the rel-

ative rates of different classes of substitutions and (ii)

a model of rate heterogeneity across sites which may

include a gamma distribution [4] and/or a proportion of

invariable sites [5, 6]. The site model recommended by

such likelihood-based method is then often used in a
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subsequent Bayesian phylogenetic analysis. This analysis

framework introduces a certain circularity, as the original

model selection step requires a phylogeny, which is usu-

ally estimated by a simplistic approach. Also, by forcing

the subsequent Bayesian phylogenetic analysis to condi-

tion on the selected site model, the uncertainty in the

site model can’t be incorporated into the uncertainty in

the phylogenetic posterior distribution. A more statisti-

cally rigorous and elegant method is to co-estimate the

site model and the phylogeny in a single Bayesian analysis,

thus alleviating these issues.

Co-estimation of the substitutionmodel for a nucleotide

alignment can be achieved by sampling all possible

reversible models [7], or just a nested set of models

[8], using either reversible jump MCMC or stochastic

Bayesian variable selection [9]. The CAT-GTR model

[10, 11] solves a related problem by providing a mixture

model over sites that often fits better than using any single
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model for all sites. Wu et al. [12] use reversible jump for

both substitution models and partitions and furthermore

sample the use of gamma rate heterogeneity for each site

category. However, since the method divides sites among

a set of substitution models, it does not address invariable

sites, and only considers a limited set of five (K80, F81,

HKY85, TN93, and GTR) substitution models.

Here we introduce a method which combines model

averaging over substitution models with model averag-

ing of the parameters governing rate heterogeneity across

sites using reversible jump. Whether one considers the

method to be selecting the site model, or averaging over

(marginalizing over) site models depends on which ran-

dom variables are viewed as parameters of interest and

which are viewed as nuisance parameters. If the phylogeny

is viewed as the parameter of interest, then bModelTest

provides estimates of the phylogeny averaged over site

models. Alternatively if the site model is of interest, then

bModelTest can be used to select the site model averaged

over phylogenies. These are matters of post-processing of

the MCMC output, and it is also possible to consider the

interaction of phylogeny and site models. For example one

could construct phylogeny estimates conditional on differ-

ent features of the site model from the results of a single

MCMC analysis.

The method is implemented in the bModelTest package

of BEAST 2 [13] with GUI support for BEAUti making it

easy to use. It is open source and available under LGPL

licence. Source code, installation instructions and docu-

mentation can be found at https://github.com/BEAST2-

Dev/bModelTest.

Implementation
All time-reversible nucleotide models can be represented

by a 4 × 4 instantaneous rate matrix:

Q =

⎛

⎜

⎜

⎝

− πCrac πGrag πT rat
πArac − πGrcg πT rct
πArag πCrcg − πT rgt
πArat πCrct πGrgt −

⎞

⎟

⎟

⎠

,

with six rate parameters rac, rag , rat , rcg , rct and rgt and

four parameters describing the equilibrium base frequen-

cies � = (πA,πC ,πG,πT ). A particular restriction on the

rate parameters can conveniently be represented by a six

figure model number where each of the six numbers cor-

responds to one of the six rates in the alphabetic order

listed above. Rates that are constrained to be the same,

have the same integer at their positions in the model num-

ber. For example, model 123,456 corresponds to a model

where all rates are independent, named the general time

reversible (GTR) model [14]. Model 121121 corresponds

to the HKY model [15] in which rates form two groups

labelled transversions (1 : rac = rat = rcg = rgt) and

transitions (2 : rag = rct). By convention, the lowest possi-

ble number representing a model is used, so even though

646,646 and 212,212 represent HKY, we only use 121,121.

There are 203 reversible models in total [7]. However,

it is well known that transitions (A↔C, and G↔T sub-

stitutions) are more likely than transversions (the other

substitutions) [16, 17]. Hence grouping transition rates

with transversion rates is often not appropriate and these

rates should be treated differently. We can restrict the set

of substitution models that allow grouping only within

transitions and within transversions, with the exception of

model 111,111, where all rates are grouped. This reduces

the 203 models to 31 models (see Fig. 1 and details in

Additional file 1: Appendix). Alternatively, if one is inter-

ested in using named models, we can restrict further

to include only Jukes Cantor [18, 19] (111,111), HKY

[15] (121,121), TN93 [20] (121,131), K81 [21] (123,321),

TIM [22] (123,341), TVM [22] (123,425),and GTR [14]

(123,456). However, to facilitate stepping between TIM

and GTR during the MCMC (see proposals below)

we like to use nested models, and models 123,345

and 123,324 provide intermediates between TIM and

GTR, as well as K81 and TVM, leaving us with a set

of 9 models (Fig. 1).

The state space consists of the following parameters:

• The model numberM,
• A variable size rate parameter (depending on model

number) R,
• A binary variable to indicate whether 1 or k > 1

non-zero rate categories should be used,
• A shape parameter α, used for gamma rate

heterogeneity when there are k > 1 rate categories,
• A binary variable to indicate whether or not a

category for invariable sites should be used,
• The proportion of invariable sites pinv,

Rates rac, rag , rat , rcg , rct and rgt are determined from

the model number M and rate parameter R. Further, we

restrict R such that the sum of the six rates
∑

r.. equals

6 in order to ensure identifiability. This is implemented

by starting each rate with value 1, and ensuring proposals

keep the sum of rates in (see details on proposals below).

Prior

By default, bModelTest uses the flat Dirichlet prior on

rates from [7]. From empirical studies [16, 17], we know

that transition rates tend to be higher than transversion

rates. It makes sense to encode this information in our

prior and bModelTest allows for rates to get a different

prior on transition rates (default log normal with mean

1 and standard deviation of 1.25 for the log rates) and

https://github.com/BEAST2-Dev/bModelTest
https://github.com/BEAST2-Dev/bModelTest
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a b c

Fig. 1Model spaces. The model spaces supported by bModelTest. a All reversible models, b transition/transversion split models, and c named

models. Arrows indicate which models can be reached by splitting a model. Note all models with the same number of groupings are at the same

height

transversion rates (default exponential with mean 1 for

the rates).

An obvious choice for the prior on models is to use a

uniform prior over all valid models. As Fig. 1 shows, there

are many more models with 3 parameters than with 1. An

alternative allowed in bModelTest is to use a uniform prior

on the number of parameters in the model. In that case,

Jukes Cantor and GTR get a prior probability of 1/6, since

these are the only models with 0 and 5 degrees of freedom

respectively. Depending on the model set, a much lower

probability is assigned to each of the individual models

such that the total prior probability summed over models

with K parameters, p(K) = 1/6 for K ∈ {0, 1, 2, 3, 4, 5}.

For frequencies a Dirichlet(4,4,4,4) prior is used, reflect-

ing our believe that frequencies over nucleotides tend to

be fairly evenly distributed, but allowing a 2.2% chance for

a frequency to be under 0.05. For pinv a Beta(4,1) prior on

the interval (0, 1) is used giving a mean of 0.2 and for α

an exponential with a mean 1. These priors only affect the

posterior when the respective binary indicator is 1.

MCMC proposals

The probability of acceptance of a (possibly trans-

dimensional) proposal [23] is

min{1, posterior ratio × proposal ratio × Jacobian}

where the posterior ratio is the posterior of the proposed

state S′ divided by that of the current state S, the proposal

ratio the probability of moving from S to S′ divided by the

probability of moving back from S′ to S, and the Jacobian

is the determinant of the matrix of partial derivatives of

the parameters in the proposed state with respect to that

of the current state [23].

Modelmerge/split proposal

For splitting (ormerging) substitutionmodels, suppose we

start with a model M. To determine the proposed model

M′, we randomly select one of the child (or parent) nodes

in the graph (as shown in Fig. 1). This is in contrast to the
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approach of Huelsenbeck et al. [7], in which first a group

is randomly selected, then a subgrouping is randomly cre-

ated. For any set of substitution models organised in an

adjacency graph our merge/split operator applies, mak-

ing our graph-based method easier to generalise to other

model sets (e.g. the one used in [24]). If there are no can-

didates to split (that is, model M = 123, 456 is GTR) the

proposal returns the current state (this proposal is impor-

tant to guarantee uniform sampling of models). Likewise,

when attempting to merge model M = 111, 111, the cur-

rent state is proposed (M′ = 111, 111). Let r be the rate

of the group to be split. We have to generate two rates ri
and rj for the split into groups of size ni and nj. To ensure

rates sum to 6, we select u uniformly from the interval

(−nir, njr) and set ri = r + u/ni and rj = r − u/nj.

For a merge proposal, the rate of the merged group r

from two split groups i and j with sizes ni and nj, as well as

rates ri and rj is calculated as r =
niri+njrj
ni+nj

.

When we select merge and split moves with equal prob-

ability, the proposal ratio for splitting becomes

1
|M′

merge|

1
|Msplit |

1

r
(

ni + nj
)

where |Msplit| (and |M′
merge|) is the number of possible

candidates to split (and merge) into from model M (and

M′ respectively). The proposal ratio for merging is

1
|M′

split
|

1
|Mmerge|

r
(

ni + nj
)

.

The Jacobian for splitting is
ni+nj
ninj

and for merging it is
ninj
ni+nj

.

Rate exchange proposal

The rate exchange proposal randomly selects two groups,

and exchanges a random amount such that the condi-

tion that all six rates sum to 6 is met. A random number

is selected from the interval [0, δ] where δ is a tuning

parameter of the proposal (δ is automatically optimized

to achieve the desired acceptance probability for the data

during the MCMC chain). Let ni, ri, nj and rj as before,

then the new rates are r′i = ri − u and r′j = rj + uni
nj
. The

proposal fails when r′i < 0.

The proposal ratio as well as the Jacobian are 1.

Birth/death proposal

Birth and death proposals set or unset the category count

flag and sample a new value for α from the prior when the

flag is set. The proposal ratio is d(α′) for birth and 1/d(α)

for death where d(.) is the density used to sample from (by

default an exponential density with a mean of 1).

Likewise for setting the indicator flag to include a pro-

portion of invariable sites and sampling pinv from the

prior. The Jacobian is 1 for all these proposals.

Scale proposal

For the α, we use the standard scale operator in BEAST 2

[13], adapted so it only samples if the category count flag

is set for α. Likewise, for pInv this scale operator is used,

but only if the indicator flag to include a proportion of

invariable sites is set.

Results and discussion
Since implementation of the split/merge and rate

exchange proposals is not straightforward, nor is deriva-

tion of the proposal ratio and Jacobian, unit tests were

written to guarantee their correctness and lack of bias in

proposals (available on https://github.com/BEAST2-Dev/

bModelTest).

To validate themethodwe performed a simulation study

by drawing site models from the prior, then used these

models to generate sequence data of 10K sites length on

a tree (in Newick (A:0.2,(B:0.15,C:0.15):0.05)) with three

taxa under a strict clock. The data was analysed using a

Yule tree prior, a strict clock and bModelTest as site model

with uniform prior over models and exponential with

mean one for transversions and log-normal with mean

one and variance 1.25 for transition rates. A hundred

alignments were generated with gamma rate heterogene-

ity and a hundred without rate heterogeneity using a

(Bouckaert, RR: BEASTShell – scripting for bayesian hier-

archical clustering, submitted) script. Invariant sites can

be generated in the process and are left in the alignment.

Comparing the model used to generate the alignments

with inferred models is best done by comparing the

individual rates of these models. Figure 2 shows the

rate estimates for the six rates against the rates used

to generate the data. Clearly, there is a high correlation

between the estimated rates and the ones used to generate

(R2 > 0.99 for all rates). Results were similar with and

without rate heterogeneity. Note values for rates AG and

CT (middle panels) tend to be higher than the transver-

sion rates due to the prior they are drawn from.

Table 1 summarises coverage of the various parameters

in the model, which is defined as the number of exper-

iments where the 95% HPD of the parameter estimate

contains the value of the parameter used to generate the

data. The rows in the table show the four different models

of rate heterogeneity among sites; plainmeans a single cat-

egory without gamma or invariable sites, +G for discrete

gamma rate categories, +I for two categories, one being

invariable, and +G+I for discrete gamma rate categories

and one invariable category. Furthermore, the experiment

was run estimating whether base frequencies were equal

or not. The first four rows are for data simulated with

https://github.com/BEAST2-Dev/bModelTest
https://github.com/BEAST2-Dev/bModelTest
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Fig. 2 Accuracy of estimated substitution rates. True rates (horizontal) against estimated rates (vertical) in simulated data for 3 taxa. In reading order,

rate AC, AG, AT, CG, CT and GT. Diamonds are for estimates when no rate heterogeneity was used to simulate the data, circles are for estimates with

rate heterogeneity. Error bars represent 95% HPD intervals for each estimate

equal frequencies, the latter four with unequal frequen-

cies. The last row shows results averaged over all 800

experiments. On average, one would expect the coverage

to be 95% if simulations are drawn from the prior [25], so

each entry in Table 1 has an expected value of 95, but can

deviate due to small sample size. According to the bino-

mial probability distribution there is a ∼ 1.1% chance of

seeing 89 or less successes when sampling 100 times with

a success rate of 0.95. The sample size for the mean rows

is 800, so is expected to be much closer to 95%.

Coverage of rate estimates and frequencies are as

expected, as shown in the table. Substitution model cov-

erage is measured by first creating the 95% credible set

of models for each simulation and then counting how

often the model used to generate the data was part of

the 95% credible set. The 95% credible set is the small-

est set of models having total posterior probability ≥ 0.95.

As Table 1 shows, model coverage is as expected (Subst.

Model coverage column). The situation with gamma

shape parameter estimates and proportion of invariable

sites is not as straightforward as for the relative rates of

the substitution process. The site model coverage can be

measured in a similar fashion: the site model coverage col-

umn shows how often the 95% credible sets for the four

different site models (plain, +G. +I and +G+I) contains the

true model used to generate the data. The coverage is as

expected. When looking at how well the shape parame-

ter (α column in Table 1) and the proportion invariable

sites (pinv column in the table) is estimated, we calculated

the 95% HPD intervals for that part of the trace where

the true site model was sampled. Coverage is as expected

when only gamma rate heterogeneity is used, or when only

a proportion of invariable sites is used, but when both are

used an interaction between the two site model categories

appears to slightly reduce the coverage of both parame-

ters. In these experiments the coverage for the frequency

estimates for the individual nucleotides was as expected.

In summary, the statistical performance of the model is

as expected for almost all parameters except for the case

where gamma and a proportion of invariable sites are used

due to their interaction as discussed further below.

To investigate robustness of the approach, we repeated

the study with a log normal uncorrelated relaxed clock

[26] with a gamma(α = 30,β = 0.005) prior over the
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Table 1 Coverage summary for simulation study

Site Rate coverage Mean Subst. Model

Freqs model AC AG AT CG CT GT rate coverage

Equal plain 93 97 94 96 95 95 95 98

Equal +G 91 95 93 93 95 93 93.3 97

Equal +I 92 94 94 95 93 94 93.6 96

Equal +G+I 89 96 95 94 95 95 94 98

Unequal plain 96 95 96 97 93 96 95.5 96

Unequal +G 95 94 94 94 96 96 94.8 98

Unequal +I 89 94 95 95 93 95 93.5 93

Unequal +G+I 97 94 94 93 93 96 94.5 97

Mean 94.25 94.25 94.75 94.75 93.75 95.75 94.6 96

Site Site model Frequency Frequency coverage

Freqs model coverage α pinv coverage A C G T

Equal plain 100 100 100 100 100 100

Equal +G 96 94 100 100 100 100 100

Equal +I 98 95 100 100 100 100 100

Equal +G+I 99 89 88 100 100 100 100 100

Unequal plain 100 100 92 95 97 96

Unequal +G 97 94 100 97 92 92 98

Unequal +I 98 92 100 95 94 94 89

Unequal +G+I 100 93 91 100 99 96 96 98

Mean 98.75 93.50 91.50 100.00 97.38 97.88 97.13 97.38

The first column lists the frequency and site models used to generate the data, and the last row is the mean coverage over all 800 runs. Coverage for rate parameters and

frequencies is defined as the number of replicate simulations in which the true parameter value was contained in the estimated 95% HPD interval. The mean rate column

contains the coverage averaged over all six rate coverage columns (i.e. the proportion of the 600 parameter estimates whose values were contained in their respective 95%

HPD intervals. For details of substitution model coverage see text. The site model coverage is the number of replicate simulations that contained the correct model

specification for rate heterogeneity across sites in the 95% credible set of models. Columns α and pinv are coverages of the shape and proportion invariable parameter

conditioned on sampling from the true site model

standard deviation for the log normal distribution. Trees

with 5 taxa were randomly sampled from a Yule prior with

log normal distribution (the birth rate was drawn from a

distribution with a mean of the rate of 5.5, and a standard-

deviation of the log-rate of 0.048) giving trees with mean

height ≈ 0.25 and 95% HPD interval of 0.015 to 0.7. The

study as outlined above was repeated, and results are sum-

marised in Additional file 1: Table S1, which looks very

similar to that of Table 1. So, we conclude that the model

is not sensitive to small variation in molecular clock rates

among branches.

Figure 3 shows histograms of estimated posterior proba-

bility of gamma-distributed rate heterogeneity across sites

for the data sets simulated over 5 taxa. When data was

generated without gamma-distributed rate heterogeneity

across sites, the posterior probability was often estimated

to be close to zero (left of Fig. 3), while the posterior prob-

ability was estimated to be close to one for most of the

analyses on data in which gamma rate heterogeneity was

present (middle of Fig. 3).1 When rate heterogeneity was

present, shape estimates were fairly close to the ones used

to generate the data (right of Fig. 3). However, there were

quite a few outliers, especially when the shape parameter

was high (although this is harder to see on a log-log plot

which was used here because of the uneven distribution

of true values). This can happen due to the fact that when

the gamma shape is small, a large proportion of sites gets a

very low rate, and may be invariant, so that the invariable

category can model those instances. The mean number of

invariant sites was 6083 when no rate heterogeneity was

used, while it was 6907 when rate heterogeneity was used,

a difference of about 8% of the sites.

Figure 4 shows similar plots as Fig. 3 but for the pro-

portion of invariable sites for 5 taxa. 2 Empirically for the

parameters that we used for our simulations, it appears

that if there are less than 60% invariant sites, adding a

category to model them does not give a much better fit.

When a proportion of invariable sites was included in the
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simulation, there was a high correlation between the true

proportion and the estimated proportion of invariable

sites.

The same study with 5 taxa was repeated with the sub-

stitution model fixed to HKY and GTR, but estimating

the other parts of the model. Results are summarised in

Additional file 1: Tables S2 and S3 respectively. Fixing the

model to HKY results in severe degradation of accuracy

in all parameter and model estimates. The lack of cov-

erage of frequency estimates when the true model has

equal frequencies suggests that lack of degrees of freedom

in substitution model parameters is compensated by esti-

mating frequencies instead of keeping them equal. So sub-

stitutionmodelmisspecification can result in considerable

misspecification of the remainder of the model. Results

when fixing the substitution model to GTR shows a table

with results very similar to that of bModelTest, however

the substitution model parameters have on average a 95%

HPD interval of size 0.17 while that of bModelTest is

only 0.13. The extra parameters that need to be esti-

mated for GTR compared to bModelTest result in more

uncertain estimates, and thus more uncertainty in the

analysis.

To see the impact of the model set, the experiment

was repeated with sampling from all 203 reversible mod-

els instead of using only the 30 transition/transversion

split models. Results are shown in Additional file 1: Table

S4, which do not differ substantially from Table 1. Fur-

ther, to investigate the effect of the number of taxa and

sequence length, the study was repeated with 16 taxa

and sequence lengths 1K and 0.5K base pairs long under

a relaxed clock as before. Results are summarised in

Additional file 1: Tables S5 and S6 respectively. The

tables do not show significant differences to Table 1 or
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degradation with decreasing sequence length, so the abil-

ity of our Bayesian method to correctly estimate the

posterior distribution of substitution models and their

parameters does not appear to depend substantially on

sequence length or number of taxa.

Comparison with jModelTest

We ran jModelTest version 2.1.10 [3] on the sequence data

used for the last simulation study with 5 taxa (using all

reversible models, since only that set is the same for both

jModelTest and bModelTest) and the two simulation stud-

ies using 16 taxa and compared the substitution model

coverage (with settings -BIC -AIC -f -g 4 -i -s 203). For

each dataset, we collected the top models according to

the AIC and BIC criteria such that the cumulative weight

exceeded 95% of the models as shown in the jModel-

Test output and registered whether the true model was

contained in the resulting set. Results are summarised in

Additional file 1: Table S7, which shows that both AIC

and BIC do not cover the true model 95% of the time

as would be desirable. For some combinations the cover-

age is close to the desirable value (89.4% for AIC with 5

taxa) and for some it is much lower (61.1% for BIC with

0.5K length sequences and 16 taxa). Coverage of both AIC

and BIC appears to decrease with increasing number of

taxa and decreasing sequence length, although we have

not attempted a systematic study. In contrast bModelTest

has a coverage of ∼ 95% for all scenarios. jModelTest

uses a single maximum likelihood tree and it seems that

increasing uncertainty in the true tree (by increasing the

number of taxa or decreasing sequence length) results

in an increasing chance of incorrect model weights from

jModelTest. For BIC, we find substantially less coverage of

jModelTest than the around 90%model coverage reported

in a previous study [3]. This is probably because our data

contains a larger amount of uncertainty due to shorter

sequences and tree lengths. Another factor is that we use

different priors. For example, we use a Beta(1,4) for the

proportion of invariable sites, while the previous study

[3] used a Beta(1,3) that was then truncated to the inter-

val [0.2,0.8], thereby avoiding extreme values which might

cause difficulties. To confirm this we produced simulated

data more closely matched to previously published experi-

ments (with 40 taxa, sequences of 2500 base pairs, models

selected uniformly from the 11 named models, tree length

with mean of 6.5, truncated prior for invariable sites, BIC

criterion) and obtained a coverage of 93.8% for the 95%

credible set and 89.5% coverage by the best fitting model,

similar to the results in [3].

In practice, users of Bayesian phylogenetic packages

only use the most highly weighted model returned by

jModelTest. Additional file 1: Table S7 shows how often

the best fitting model according to AIC and BIC matches

the true model, which ranges from 73.9% for BIC on 5

taxa to 30.8% for AIC on 0.5K length sequences and 16

taxa, suggesting that the probability of model misspeci-

fication using this approach increases with phylogenetic

uncertainty.

To compare the application of bModelTest to jModel-

Test (with settings -f -i -g 4 -s 11 -AIC -a) we

applied both to two real datasets. The first data set used

was an alignment from 12 primate species [27] (available

from BEAST 2 as file examples/nexus/Primates.nex) con-

taining 898 sites. In this case the model recommended by

jModelTest was TPM2uf+G and the substitution model

TPM2 (=121,323) has the highest posterior probability

using bModelTest (21.12% see Additional file 1: Appendix

for full list of supported models) when empirical frequen-

cies are used. However, when frequencies are allowed

to be estimated, HKY has highest posterior probability

(16.19%), while TPM2 (10.25%) has less posterior proba-

bility then model 121,123 (14.09%). So, using a heuristic

maximum likelihood approach (jModelTest and/or empir-

ical frequencies) makes a difference in the substitution

model being preferred. Figure 5 left shows the posterior

probabilities for all models, and it shows that the 95%

credible set is quite large for the primate data. Figure 5

middle and 5 right show correlation between substitu-

tion model rates. The former shows correlation between

transversion rate AC (horizontally) and transition rate

AG (vertically). One would not expect much correla-

tion between these rates since the model coverage image

shows there is little support for these rates to be shared.

However, since HKY is supported to a large extent and the

rates are constrained to sum to 6, any proposed change in

a transition rate requires an opposite change in transver-

sion rates in order for the sum to remain 6. So, when

sampling HKY, there is a linear relation between transition

and transversion rates, which faintly shows up in the Fig. 5

(middle). Figure 5 (right) shows the correlation between

transversion rates AC and AT. Since they are close to each

other, a large proportion of the time rate AC and AT are

linked, which shows up as a dense set of points on the

AC=AT line.

The second data set used was an alignment of 31

sequences of 9030 sites of coding hepatitis C virus (HCV)

from [28]. It was split into two partitions, the first contain-

ing codon 1 and 2 positions (6020 sites) and the second

all codon 3 positions (3010 sites). Figure 6 left show the

model distributions for the first partition at the top and

second at the bottom. The 95% credible sets contain just

7 and 6 models respectively, much smaller than those for

the primate data as one would expect from using longer,

more informative sequences. Note that the models pre-

ferred for the first partition have transition parameters

split while for the second partition models where parti-

tions are shared have higher posterior probability, result-

ing in quite distinct model coverage images. For the first
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partition, jModelTest recommends TIM2+I+G. TIM2 is

model 121,343, the model with highest posterior proba-

bility according to bModelTest, as shown in Fig. 6. For

the second partition, jModelTest recommends TVM+G,

and though TVM is in the 95% credible set, it has a lower

posterior probability than model 123421, which gets the

highest posterior probability according to bModelTest.

Running jModelTest on all 203 models, model 123,451

is preferred by both AIC and BIC, even though 123421

was considered by jModelTest. Again, we see a difference

in heuristic likelihood and full Bayesian approaches. The

correlation between transition rates A ↔ G and C ↔ T

as well as between two transversion rates A ↔ C and

A ↔ T are shown in Fig. 6 top middle and right for

the first partition and Fig. 6 bottom middle and right for

the second. The transition rates A ↔ G and C ↔ T

have a posterior probability of being the same of 0.024

in the first partition, whereas the posterior probability is

0.66 in the second partition containing only 3rd positions

of the codons. This leads to most models for the first

partition distinguishing between A ↔ G and C ↔ T ,

while for the second partition most models share these

rates. For the two transversion rates A ↔ C and A ↔

T the partitions display the opposite relationship, with

the second partition preferring to distinguish them. As

a result, overall the two partitions only have one model

in common in their respective 95% credible sets, but

that model (GTR) has quite low posterior probability for

both partitions.

Implementation details

The calculation of the tree likelihood typically consumes

the bulk (≫ 90%) of computational time. Note that for

a category with invariable sites, the rate is zero, hence

only sites that are invariant (allowing for missing data)

contribute to the tree likelihood. The contribution is 1

for those sites for any tree and for any parameter set-

ting, so by counting the number of invariant sites, the

tree likelihood can be calculated in constant time. Switch-

ing between with and without gamma rate heterogene-

ity means switching between one and k rate categories,

which requires k time as much calculation. Having two

tree likelihood objects, one for each of these two sce-

narios, and a switch object that selects the one required

allows use of the BEAST 2 updating mechanism [9] so

that only the tree likelihood that needs updating is per-

forming calculations. So, jModelTest and bModelTest can,

but do not necessarily agree on the most appropriate

model to use.

Conclusions
bModelTest is a BEAST 2 package which can be used in

any analysis where trees are estimated based on nucleotide

sequences, such as multi-species coalescent analysis

[29, 30], various forms of phylogeographical analyses,

sampled ancestor analysis [31], demographic reconstruc-

tion using coalescent [32], birth death skyline analysis

[33], et cetera. The GUI support provided through BEAUti

makes it easy to set up an analysis with the bModelTest

site model: just select bModelTest instead of the default

gamma site model from the combo box in the site model

panel.

A promising direction for further research would be

to incorporate efficient averaging over partitioning of the

alignment [10–12] to the site model averaging approach

described here.

bModelTest allows estimation of the site model using a

full Bayesian approach, without the need to rely on non-

Bayesian tools for selecting the site model.

Availability and requirements
Project name: bModelTest

Project home page: https://github.com/BEAST2-Dev/

bModelTest/

Operating systems:Windos, OSX, Linux and any other OS

Programming language: Java

Other requirements: requires BEAST 2 (from http://

beast2) Licence: LGPL.

Endnotes
1Estimated shape parameters only take values of the

shape parameter in account in the portion of the posterior

sample where gamma rate heterogeneity indicator is 1.
2The estimated proportion of invariable sites only take

values of the parameter in account in the posterior sample

where the invariant category was present.

Additional file

Additional file 1: Appendix. (PDF 459 kb)
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