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1 Introduction

The Bondi-Metzner-Sachs (BMS) group is the asymptotic symmetry group of asymptot-

ically flat spacetime [1–11]. It is infinite dimensional and entails an infinite number of

conservation laws. These have been interpreted as “energy and momentum conservation

at every angle” [7, 12]. The BMS group is related to soft theorems and the gravitational

memory effect [12, 13]. It may be relevant for the black hole information problem [14–19].

It has the same relationship to asymptotically flat spacetimes as the conformal group has

to anti de Sitter spacetimes, so it can be expected to govern holographic descriptions of

asymptotically flat spacetimes.

This paper describes a relationship between the BMS group and the black hole mem-

brane paradigm. According to the membrane paradigm, black hole event horizons behave

like 2+1 dimensional fluids [20–24]. Future null infinity in asymptotically flat spacetimes

can also be described as a 2+1 dimensional fluid [25]. The fluid dynamics of the mem-

brane is governed (as we will show) by an infinite set of symmetries and conserved charges.

Our main result is to point out that these symmetries and charges are the same as the

BMS symmetries and charges. This gives a new perspective on the BMS group and the

membrane paradigm.
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This new perspective has a number of advantages. First, it clarifies the physical in-

terpretation of BMS conservation laws. Conservation of energy and momentum at every

angle are equivalent to the energy conservation equation and the Damour-Navier-Stokes

equation governing the membrane.

Second, the membrane paradigm gives a generalization of the usual BMS conservation

laws to arbitrary subregions of arbitrary null surfaces. The generalized BMS conservation

laws can be applied to the event horizons of one-sided black holes formed from stellar col-

lapse and de Sitter horizons. The infinite set of conserved charges can be computed directly

from the fluid stress-energy tensor, without first finding asymptotic fall-off conditions for

the metric or computing asymptotic Killing vectors.

Third, the membrane paradigm clarifies the nature of the superrotation subgroup of

the BMS group. The superrotation subgroup has been variously identified with the set of

Lorentz transformations [1, 2], the set of infinitesimal local conformal transformations [4, 6],

and the diffeomorphism group of the sphere, Diff(S2) [8, 10]. The membrane paradigm

suggests the superrotation subgroup is Diff(S2).

The connection between the BMS group and the membrane paradigm suggests the

membrane should be taken seriously, as physical degrees of freedom living on null surfaces.

Related suggestions have been made by [26]. Note however that the membrane’s degrees of

freedom are somewhat observer-dependent. Each observer assigns the membrane degrees

of freedom to the boundaries of their causal diamond. Observers in the exterior of an

asymptotically flat black hole see membranes on the event horizon and future null infinity.

Observers in the black hole interior each have different causal diamonds in general.

This paper is organized as follows. Section 2 reviews the membrane paradigm, section 3

discusses stationary spacetimes, section 4 discusses nonstationary spacetimes, and section 5

discusses the extension to electrodynamics.

2 The membrane paradigm

The membrane paradigm attaches a 2+1 dimensional fluid stress-energy tensor to null

surfaces. Observers in the exterior of an asymptotically flat black hole assign membranes

to the event horizon and future null infinity. In this section, we review the definition of

the membrane stress-energy tensor. For an explanation of why this definition is correct,

see [22–25]. The stress-energy tensor is an integral over the extrinsic curvature of the

membrane, so we first define extrinsic curvature.

The membrane is a timelike cutoff surface placed slightly outside the null surface. At

the event horizon, the cutoff surface is the stretched horizon. At future null infinity, the

cutoff surface is “stretched infinity,” a large but finite sphere. Let n be the unit normal of

the membrane. The projection tensor,

hab = gab − nanb, (2.1)

is the metric induced on the membrane by the 3+1 dimensional spacetime metric, gab. Let

Ua be the world lines of a family of fiducial observers. The metric on constant-time slices
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of the membrane is

γab = hab + UaUb. (2.2)

We use Greek indices µ, ν, . . . for tensors on 3+1 dimensional spacetime, lower case roman

indices a, b, . . . for tensors on the 2+1 dimensional membrane, and upper case roman indices

A,B, . . . for tensors on constant-time slices of the membrane. We denote the 4-covariant

derivative by ∇µ, the 3-covariant derivative by |a, and the 2-covariant derivative by ‖A.

The extrinsic curvature of the membrane is

Ka
b = hcb∇cna, (2.3)

where we follow the sign convention of [24] rather than [22, 23, 25], which differs by an

overall minus sign.

The membrane’s stress-energy tensor is

tab = ± 1

8π
(Khab −Kab) , (2.4)

where the upper sign applies at event horizons and the lower sign applies at null infinity.

The sign difference comes from the fact that the membrane terminates the gravitational

field and the horizon is an inner boundary of spacetime while infinity is an outer boundary.

See [25] for details. The energy density is

Σ = tabU
aU b = − θ

8π
, (2.5)

where θ is the expansion scalar (defined below). The momentum density is

πA = taAU
a, (2.6)

and the stress tensor is

tAB = pγAB − 2ησAB − ζθγAB. (2.7)

η and ζ are the shear and bulk viscosity coefficients, respectively, and σAB is the shear

tensor. The pressure is

p =
g

8π
, (2.8)

where g is the surface gravity of the membrane.

The expansion and shear are

θ = ±KA
A , (2.9)

σAB = ±KAB −
1

2
θγAB, (2.10)

where upper signs apply at future event horizons and past null infinity, while lower signs ap-

ply at past event horizons and future null infinity. The choice of sign depends on whether

the membrane satisfies ingoing (upper signs) or outgoing (lower signs) boundary condi-

tions [25]. The membrane has vanishing rotation,

ωAB = ±K[AB] = 0, (2.11)

because na is hypersurface orthogonal.
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The viscosity coefficients are

η+ = 1/(16π), ζ+ = −1/(16π) (2.12)

on future event horizons and future null infinity, and

η− = −1/(16π), ζ− = 1/(16π) (2.13)

on past event horizons and past null infinity [25].

3 Stationary spacetimes

The Einstein equations imply that the membrane obeys the Damour-Navier-Stokes equa-

tion [20–25],

LUπA +∇Ap− ζ∇Aθ − 2ησBA‖B + TMnA = 0, (3.1)

where TMnA represents non-gravitational sources of momentum. In stationary spacetimes,

it is possible to choose a slicing for which θ = σAB = 0 and p is constant [22]. We will

further assume TMnA = 0 for the remainder of this section. In this case, eq. (3.1) is simply

LUπA = 0, (3.2)

and the momentum density, πA, is conserved. This implies an infinite set of conserved

charges,

Qf,Y A =

∫
d2x
√
γ(fp− Y AπA), (3.3)

where f and Y A are arbitrary functions and the integral is over constant-time slices of the

membrane. Setting f = δ2(xP − x̂P ) and Y A = 0 gives a set of charges corresponding to

“energy at every angle.” Setting f = 0 and Y A = δ2(xP − x̂P )δAB gives a set of charges

corresponding to “momentum at every angle.”

There is some arbitrariness in the normalization of the charges (3.3). For example, it

would be equally natural to choose

Q′f,Y A =

∫
d2x
√
γ(ftaa − Y AπA) =

∫
d2x
√
γ(2fp− Y AπA), (3.4)

where taa = 2p is the trace of the membrane’s stress-energy tensor.

These charges can be computed for any null surface. In particular, they can be com-

puted at event horizons and at future null infinity (in asymptotically flat spacetimes).

In the next two subsections, we check that the charges so defined are the same as the

BMS charges.

3.1 Event horizons

The near horizon geometry of a stationary 3+1 dimensional black hole can be expressed

as [27]

ds2 = fdv2 + 2kdvdp+ 2gvAdvdx
A + gABdx

AdxB, (3.5)
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where ρ→ 0 at the horizon and xA are the angular directions on the horizon. In the near

horizon limit,

f = −2κp+O(ρ2), (3.6)

k = 1 +O(ρ2), (3.7)

gvA = ρθA +O(ρ2), (3.8)

gAB = ΩmAB + ρλAB +O(ρ2), (3.9)

where θA and Ω are functions of xA only, λAB = λAB(v, xA), and mAB is the metric of

the unit two-sphere. The components gρA and gρρ are O(ρ2). The surface gravity of the

horizon is κ and the pressure (2.8) is

p =
κ

8π
. (3.10)

The membrane’s unit normal is

n = α−1dr, (3.11)

where α =
√

2κρ is the lapse. Plugging into (2.3) gives the extrinsic curvature of the

membrane and using (2.4) gives the stress-energy tensor. The momentum density (2.6) is

πA = αtvA =
1

16π
θA +O(ρ). (3.12)

The conserved charges (3.3) are

Qf,Y A =
1

16π

∫
d2x
√
mΩ(2fκ− Y AθA), (3.13)

This infinite set of charges precisely coincides with the BMS charges at the horizon [27],

except that [27] assume Y A is a conformal Killing vector. This restriction appears artificial

from the perspective of the membrane paradigm. We return to this point in section 3.3.

3.2 Null infinity

Consider a stationary, 3+1 dimensional asymptotically flat spacetime. The metric near

null infinity may be put into the form [28]

ds2 = −Udu2 − 2dudr + 2guAdudx
A + r2mABdx

AdxB, (3.14)

where

U(r) = 1− 2M

r
+O(r−2), (3.15)

guA =
2

3

NA

r
+O(r−2). (3.16)

M is a constant and NA is a function of xA only.

The membrane’s unit normal is

n = α−1dr, (3.17)
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and α =
√

1− 2M/r is the lapse. The surface gravity is

κ =
M

r2
. (3.18)

This vanishes as r → ∞, but
√
γκ is finite, so the first term in the charge (3.3) is finite.

The momentum density (2.6) is

πA = αtuA = − NA

8πr2
+O(r−3). (3.19)

Again, this vanishes as r → ∞, but
√
γπA gives a finite contribution to the charge (3.3).

The conserved charges (3.4) are

Q′f,Y A =
1

16π

∫
d2x
√
m(4fM + 2Y ANA), (3.20)

This set of charges is the same as the infinite set of BMS charges at null infinity (for station-

ary, asymptotically flat spacetimes) [28, 29], except that again there is some disagreement

about the allowable Y A.

3.3 Superrotations

The charges generated by Y A correspond to the superrotation charges of the BMS group.

From the perspective of the membrane paradigm, Y A can be any smooth vector field on the

sphere. The set of all smooth vector fields on the sphere is the Lie algebra of Diff(S2), the

diffeomorphism group of the sphere. So we identify the superrotation group with Diff(S2).

The identification of the superrotation group has generated confusion. The superro-

tation group was originally identified with the Lorentz group [1, 2]. It has recently been

suggested that the superrotation group should be extended to include infinitesimal local

conformal transformations [4, 6]. It has also been suggested that the superrotations should

be identified with Diff(S2) [10]. The argument of [10] is based on the relationship of the

BMS group to soft theorems. We have used the relationship of the BMS group to the mem-

brane paradigm to give a new reason for identifying the superrotation group with Diff(S2).

3.4 General null surfaces

One of the advantages of the membrane paradigm is that it immediately extends the defi-

nition of BMS charges to any null surface. The charges (3.3) can be computed at de Sitter

horizons, the event horizons of one-sided black holes formed from stellar collapse and, more

generally, the boundaries of any observer’s causal diamond. Charge conservation follows

from the Damour-Navier-Stokes equation (3.1) governing the membrane. The charges (3.3)

can be computed directly, without first finding the asymptotic metric or computing asymp-

totic Killing vectors.

4 Nonstationary spacetimes

The Damour-Navier-Stokes equation governing the membrane is (3.1),

NA ≡ LUπA +∇Ap− ζ∇Aθ − 2ησBA‖B + TMnA = 0. (4.1)

– 6 –



J
H
E
P
0
3
(
2
0
1
6
)
0
2
3

In nonstationary spacetimes, each term can be nonzero. Contracting (4.1) with an arbitrary

vector field, Y A, and integrating over the entire 2+1 dimensional membrane gives an infinite

set of conservation laws: ∫
R
dx3
√
hY ANA = −

∫
Rc

dx3
√
hY ANA, (4.2)

where R is any region of the membrane and Rc is its complement. If the membrane is

null infinity, we may take R = I+ and Rc = I− to be future and past null infinity. If

the membrane is the event horizon of an eternal black hole, we may take R = H+ and

Rc = H− to be the future and past event horizons. If the membrane is the event horizon

of a one-sided black hole formed from stellar collapse, we may take R = H+ and set the

r.h.s. of (4.2) equal to zero.

The membrane is further governed by the fluid energy equation [20–25],

M≡ LUΣ + θΣ + pθ − ζθ2 − 2ησABσ
AB − TMnU = 0, (4.3)

where TMnU represents nongravitational fluxes of energy into the membrane. Multiplying

this equation by an arbitrary function, f , and integrating over the membrane gives another

infinite set of conservation laws:∫
R
dx3
√
hfM = −

∫
Rc

dx3
√
h fM. (4.4)

The conservation laws (4.2) and (4.4) are more general than the standard BMS con-

servation laws: they apply to arbitrary subregions of arbitrary null surfaces. They may be

applied to the event horizons of one-sided black holes formed from stellar collapse and to

de Sitter horizons. In the next subsection, we check that (4.4) coincides with the standard

BMS conservation laws at null infinity.

4.1 Null infinity

Assume R = I+ and Rc = I−. The metric near I+ in retarded Bondi coordinates is [2, 5, 7]

ds2 = − du2 − 2dudr + 2r2γzz̄dzdz̄

+
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2 − 2Uzdudz − 2Uz̄dudz̄ + . . . , (4.5)

where

γzz̄ =
2

(1 + zz̄)2
(4.6)

Uz = −1

2
DzCzz, (4.7)

and Dz is the γ-covariant derivative. The Bondi news tensor is

Nzz = ∂uCzz. (4.8)

The functions mB, Czz, . . . appearing in (4.5) are functions of u, z, z̄ only. Indices of

Czz, Uz, Dz and Nzz are raised and lowered with γzz̄.

– 7 –
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The metric near I− in advanced Bondi coordinates is [2, 5, 7]

ds2 = − dv2 + 2dvdr + 2r2γzz̄dzdz̄

+
2m−B
r

dv2 + rDzzdz
2 + rDz̄z̄dz̄

2 − 2Vzdvdz − 2Vz̄dvdz̄ + . . . , (4.9)

where

Vz =
1

2
DzDzz, (4.10)

and the news tensor is

Mzz = ∂vDzz. (4.11)

Near infinity, the usual time coordinate is related to u and v by

u = t− r, v = t+ r. (4.12)

Expanding the membrane energy equation (4.3) near I+ using retarded Bondi coor-

dinates (4.5), gives

∂umB + 1
2∂u [DzUz +Dz̄Uz̄] + 1

4NzzN
zz + 4π limr→∞

[
r2TMuu

]
r2

+ · · · = 0, (4.13)

where (. . . ) indicates subleading terms in the 1/r expansion. We have used the fact that

TMnU = TMuu to leading order in 1/r and LUΣ = −nµΣ,µ. Let

Tuu ≡
1

4
NzzN

zz + 4π lim
r→∞

[
r2TMuu

]
(4.14)

represent the injection of energy into the membrane from the outside world. To leading

order, the constraint (4.13) becomes

M = ∂umB +
1

2
∂u
[
DzUz +Dz̄Uz̄

]
+ Tuu = 0. (4.15)

Similarly, we can expand the membrane energy equation (4.3) near I− using advanced

Bondi coordinates (4.9) and obtain the constraint

M = ∂vm
−
B −

1

2
∂v
[
DzVz +Dz̄Vz̄

]
− Tvv = 0, (4.16)

where Tvv represents the loss of energy from the membrane into the outside world.

Plugging (4.15)–(4.16) into (4.4) and integrating by parts gives∫
I+
dx3
√
h f

[
1

2
∂u
(
DzUz +Dz̄Uz̄

)
+ Tuu

]
+

∫
I++
dx2√γ fmB

=

∫
I−
dx3
√
h f

[
1

2
∂v
(
DzVz +Dz̄Vz̄

)
+ Tvv

]
+

∫
I−−
dx2√γ fm−B, (4.17)

where I+
+ denotes the future boundary of I+ and I−− denotes the past boundary of I−.

We have eliminated terms using the identity

mB|I+− = m−B|I−+ , (4.18)
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which follows from the physically reasonable assumption that the membrane’s pressure (2.8)

is continuous. Now consider the special case f = δ2(z − w) and assume that the surface

terms in (4.17) vanish. Then we obtain∫
I+
du

[
1

2
∂u (∂z̄Uz + ∂zUz̄) + γzz̄Tuu

]
=

∫
I−
dv

[
1

2
∂v (∂z̄Vz + ∂zVz̄) + γzz̄Tvv

]
. (4.19)

This is precisely the same as the infinite set of BMS conservation laws at null infinity

(compare with (3.12) of [7]).

4.2 Physical interpretation

The membrane paradigm sheds light on the physical interpretation of BMS conservation

laws. BMS invariance entails “energy and momentum conservation at every angle.” Or-

dinary energy and momentum are not conserved at every angle; outgoing waves need not

reach infinity at the same angles as ingoing waves. Energy and momentum are conserved

at every angle only when ordinary energy-momentum is counted together with boundary

degrees of freedom. Boundary degrees of freedom are encoded in the membrane’s stress-

energy tensor.

The analogy with ordinary fluids is helpful. Suppose a shear is generated in an ordinary

fluid. The shear is dissipated by viscosity and the fluid’s energy density increases. The

combined energy in shearing motions and the fluid’s energy density remains constant.

Similarly, the passage of gravitational waves through a null surface generates a shear,

σABσ
AB =

NzzN
zz

2r2
+ . . . . (4.20)

The shear is dissipated by the membrane’s shear viscosity, ησ2, and its energy density, Σ,

increases. The total energy is conserved. The difference between the membrane fluid and

ordinary fluids is that, in ordinary fluids, heat conduction tends to redistribute a fluid’s

energy-density until it becomes uniform. However, the membrane’s energy equation (4.3)

has no heat conduction term, so changes to Σ remain locked in the location where they

first appear (barring further interactions with fields outside the membrane). As a result,

energy is conserved at every angle.

In the language of [7], DzUz + Dz̄Uz̄ is the energy stored in soft gravitons. Suppose

mB, Nzz, and N zz revert to zero as u→∞. In this case, the membrane energy density is

Σ =
1

r
+
DzUz +Dz̄Uz̄

r2
+ . . . , (4.21)

as u→∞. We see that Σ encodes the energy in soft gravitons.

4.3 Black hole information problem

Consider an evaporating, one-sided black hole formed from stellar collapse. The generalized

BMS conservation laws, (4.2) and (4.4), imply an infinite set of constraints on H+ (take

R = H+ and set the rhs’s to zero). However, they do not give any relationship between

H and I. So it is not immediately clear that they are useful for the information problem.
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Material falling into the black hole imprints its BMS charges on the horizon. The BMS

charges become stored in the membrane’s stress-energy tensor (equivalently, soft gravitons

on the horizon; see (4.21)). The problem is that this information can stay on the horizon

indefinitely, even as the black hole evaporates and disappears. A new principle is needed

to force the Hawking radiation to carry away the horizon’s BMS charges. The teleological

nature of the membrane may be useful in this regard. The teleological nature of the

membrane implies that one must impose future boundary conditions at H+
+, the future

boundary of H+, to determine the evolution of the membrane [23]. It is possible that

the correct boundary condition at H+
+ will force the Hawking radiation to carry away the

horizon’s BMS charges. This is reminiscent of the black hole final state proposal [30].

4.4 Antipodal matching

The distinction between the membrane and the null surface it represents can usually be

ignored because the membrane is understood to be arbitrarily close to the null surface. One

case where this distinction is important is for understanding the antipodal identifications

of I+ and I− and of H+ and H− [7, 12, 31, 32]. This point does not seem to have appeared

in the membrane paradigm literature, so we discuss it here.

The membrane is a continuous, timelike surface. The unit normal always points along

∂r and there is no antipodal identification between different points on the membrane. The

null surfaces are more subtle. The normal vector, k, of a null surface is defined such that

kα is future pointing [33]. So k = 2∂u = −dv on I+ and H− and k = 2∂v = −du on I−
and H+.

In the limit as the membrane becomes null, the normals of the membrane and the null

surface coincide at H+ and I− (see figure 1). However, at I+ and H− they differ by a

minus sign. So the membrane and the null surface are antipodally identified at I+ and

H−. It follows that I+ and I− are antipodally identified, and H+ and H− are antipodally

identified. It is important to keep this in mind when interpreting (4.18): this equation

requires an antipodal identification at I, but not at the membrane.

5 Charge conservation at every angle

Scattering in electrodynamics is governed by an infinite dimensional symmetry entailing

charge conservation at every angle [32, 34–37]. Charge conservation at every angle appears

in the membrane paradigm as the charge continuity equation on the membrane [23–25],

∂σ

∂λ
+ ~∇(2) ·~j = −Jn. (5.1)

where

σ = ±lanbF ab, (5.2)

(~j × n̂)a = ±εabhbinjF ij , (5.3)

Jn = Jana, (5.4)
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H+

H� I�

I+

uv

Figure 1. Penrose diagram for the exterior of an asymptotically flat, eternal black hole. This is

the causal diamond for observers who remain forever in the black hole exterior. Future and past

black hole horizons (H+ and H−) and future and past infinity (I+ and I−) are indicated. The

stretched horizon (dotted red) and stretched infinity (dotted blue) are timelike. Heavy colored

arrows indicate the unit normals of the membranes. Heavy black arrows indicate kα, the normals

of the null surfaces.

The upper sign is taken on the membrane at infinity and the lower sign is taken on the

membrane at the horizon. σ is the membrane charge density. It terminates the normal

component of the external electric field at the membranes. ~j is the membrane current

density. It terminates the transverse component of the external magnetic field at the

membranes. Jn represents charges falling into the membranes from the external universe.

Eq. (5.1) expresses the fact that charges falling into the membranes are captured by the

membrane charge density and currents. The total charge is conserved at each point on

the membrane.

To see the equivalence of (5.1) with the infinite number of charge conservation laws

discussed by [32], consider the expansion of (5.1) near I+. In this case,

∂λσ = ∂uFru, (5.5)

~∇(2) ·~j = ∂u(DzAz +Dz̄Az̄). (5.6)

Now multiplying (5.1) by an arbitrary function ε(z, z̄) and integrating over all of I+ gives

a charge, Q+
ε . Similarly, we may expand (5.1) near I−, multiply by ε(z, z̄), and obtain

a charge, Q−ε . On stretched infinity, Q+
ε = Q−ε because stretched infinity is a single,

continuous fluid. On true infinity we enforce the same conservation laws by assuming the

matching conditions discussed in section 4.4.

5.1 Lienard-Wiechert fields

To illustrate the difference between stretched infinity and true infinity, consider the field

of a point charge moving with constant velocity β. We assume the charge passes through
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the origin at t = 0. In this case,

Er =
q

4π

γ(r − βt cos θ)

(γ2(t− βr cos θ)2 − t2 + r2)3/2
, (5.7)

Bφ =
q

4π

γβr sin θ

(γ2(t− βr cos θ)2 − t2 + r2)3/2
, (5.8)

where γ2 = 1/(1− β2). The field satisfies Ampere’s law

∂Er
∂t
− 1

r sin θ

∂

∂θ
(sin θBφ) = 0. (5.9)

This is equivalent to the membrane charge conservation law (5.1) on stretched infinity upon

making the identifications σ = −Er and jθ = Bφ.

Setting t = u+ r and expanding near r =∞ gives

σ+ = − q

4πr2

1

γ2(1− β cos θ)2
+ . . . . (5.10)

Setting t = v − r and expanding near r =∞ gives

σ− = − q

4πr2

1

γ2(1 + β cos θ)2
+ . . . . (5.11)

σ+ and σ− differ by a minus sign in the denominator. The interpretation of this sign flip is

different on stretched infinity and true infinity. On true infinity, I− and I+ are antipodally

identified: θ → π− θ (see section 4.4). So σ− = σ+ and charge is conserved at every angle

because the charge density is constant (there is no current flow on the membrane).

On stretched infinity, the S2’s in the far past and the far future are not antipodally

identified. So on stretched infinity σ− must evolve into σ+. According to eq. (5.9), mem-

brane currents flow on stretched infinity in just the right way so as to convert σ− in the

far past into σ+ in the far future.

As stretched infinity approaches true infinity, the membrane current flow becomes con-

centrated near spatial infinity, i0. In the true infinity limit, the membrane current flow

disappears but charge conservation at every angle is preserved by the antipodal identifica-

tion between I− and I+.

5.2 Symmetries

Ordinary charge conservation follows from global U(1) invariance. That is, we have a

theory with a phase, ψ, which is invariant under constant shifts,

ψ → ψ + c. (5.12)

In a fluid with negligible diffusion, the charge in each fluid element is separately conserved.

In this case, global U(1) symmetry is enhanced to an infinite dimensional symmetry [38]

ψ → ψ + c(φI), (5.13)

where c(φI) is now an arbitrary function of φI , a coordinate labeling the fluid elements.

This enhanced symmetry implies the local charge conservation law (5.1) [38]. This is

the same infinite dimensional symmetry that appears in the description of scattering in

electrodynamics in asymptotically flat spacetimes as “large gauge transformations.” So

again there is a connection between the fluid and gravity pictures at the level of symmetries.
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