
UC Irvine
UC Irvine Previously Published Works

Title
BMSYN: Bus matrix communication architecture synthesis for MPSoC

Permalink
https://escholarship.org/uc/item/0p39r410

Journal
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(8)

ISSN
0278-0070

Authors
Pasricha, Sudeep
Ben-Romdhane, Mohamed
Dutt, Nikil D.

Publication Date
2007-08-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0p39r410
https://escholarship.org
http://www.cdlib.org/


1454 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

BMSYN: Bus Matrix Communication
Architecture Synthesis for MPSoC

Sudeep Pasricha, Student Member, IEEE, Nikil D. Dutt, Senior Member, IEEE,
and Mohamed Ben-Romdhane, Member, IEEE

Abstract—Modern multiprocessor system-on-chip designs have
high bandwidth constraints which must be satisfied by the under-
lying communication architecture. Traditional hierarchical shared
bus communication architectures can only support limited band-
widths and are not scalable for very high-performance designs.
Bus matrix-based communication architectures consist of several
parallel busses which provide a suitable backbone to support
high-bandwidth systems but suffer from high-cost overhead due
to extensive bus wiring inside the matrix. Manual traversal of the
vast exploration space to synthesize a minimal cost bus matrix
that also satisfies performance constraints is practically infeasible.
In this paper, we address this problem by proposing an auto-
mated approach for synthesizing a bus matrix communication
architecture, which satisfies all performance constraints in the
design and minimizes wire congestion in the matrix. To validate
our approach, we consider several industrial strength applications
from the networking domain and show that our approach results
in up to 9× component savings when compared to a full bus
matrix, and up to 3.2× savings when compared to a maximally
connected reduced bus matrix, while satisfying all performance
constraints in the design.

Index Terms—Communication system performance, digital sys-
tems, high-level synthesis.

I. INTRODUCTION

M
ULTIPROCESSOR system-on-chip (MPSoC) designs

are increasingly being used in today’s high-performance

embedded systems. These systems are characterized by a high

level of parallelism, due to the presence of multiple processors,

and large bandwidth requirements, due to the massive scale of

component integration. The choice of communication architec-

ture in such systems is of vital importance because it supports

the entire intercomponent data traffic and has a significant

impact on the overall system performance.

Traditionally used hierarchical shared bus-based communi-

cation architectures such as those proposed by advanced micro-

processor bus architecture (AMBA) [1], CoreConnect [2], and

STbus [3] can cost effectively connect few tens of cores but are

not scalable to cope with the demands of very high-performance

Manuscript received February 2, 2006; revised June 21, 2006. This work
was supported in part by grants from Conexant Systems, Inc., SRC under
Contract 1330, CPCC fellowship, and UC Micro under Contract 03-029. This
paper was recommended by Associate Editor L. Benini.

S. Pasricha and N. D. Dutt are with the Center for Embedded Computer
Systems, University of California, Irvine, CA 92697 USA (e-mail: sudeep@
cecs.uci.edu; dutt@cecs.uci.edu).

M. Ben-Romdhane is with Newport Media, Inc., Lake Forest, CA 92630
USA (e-mail: mbenromdhane@newportmediainc.com).

Digital Object Identifier 10.1109/TCAD.2007.891376

Fig. 1. Full bus matrix communication architecture.

systems. As the number of components connected to a shared

bus increases, the capacitive load of the component output

pins leads to an increase in signal propagation delay, which

puts a limit on the practically achievable bus clock frequency

and consequently overall performance in the system [31].

Additionally, a shared bus can only support a single active

communication stream at any time, which limits the amount

of possible parallelism in hierarchical shared bus-based com-

munication architectures. Point-to-point connections between

communicating components can theoretically support several

parallel communication streams, but practical limitations on

the number of ports and excessive wiring congestion makes

such a scheme practical for even fewer components. Network-

on-chip (NoC)-based communication architectures [5], such as

CHAIN [32] and AEthereal [33], have recently emerged as a

promising alternative to handle communication needs for the

next generation of high-performance MPSoC designs. These

packet switched networks can allow improved physical pre-

dictability because of their regular geometries. This regularity

is predicted to ease timing closure even in the face of deep-

submicrometer effects and also enable support for higher wire

clock frequencies for better throughput performance. However,

although basic concepts have been proposed, research on NoCs

is still in its infancy, and few concrete implementations of

complex NoCs exist to date [6].

In this paper, we look at bus matrix (sometimes also

called crossbar switch)-based communication architectures [7]

which are currently being considered by designers to meet

the high bandwidth requirements of modern MPSoC systems.

Fig. 1 shows an example of a three-master seven-slave AMBA

bus matrix architecture for a dual ARM processor-based

0278-0070/$25.00 © 2007 IEEE



PASRICHA et al.: BMSYN: BUS MATRIX COMMUNICATION ARCHITECTURE SYNTHESIS FOR MPSoC 1455

Fig. 2. Partial bus matrix communication architecture.

networking subsystem application. A bus matrix consists of

several busses in parallel, which can support concurrent high-

bandwidth data streams. The input stage is used to handle

interrupted bursts, and to register and hold incoming transfers if

receiving slaves cannot accept them immediately. The decode

stage generates select signal for appropriate slaves. Unlike in

traditional shared bus architectures, arbitration in a bus matrix

is not centralized, but rather distributed so that every slave has

its own arbitration.

One drawback of the full bus matrix structure shown in

Fig. 1 is that it connects every master to every slave in the

system, resulting in a prohibitively large number of busses

in the matrix. The excessive wire congestion can make it

practically impossible to route and achieve timing closure

for the design [14]. To overcome this shortcoming, designers

tailor a full matrix structure to the particular application at

hand, creating a partial bus matrix, as shown in Fig. 2. This

structure has fewer busses, which reduces wire congestion and

leads to better utilization of bus wires. Additionally, reducing

crossbar size also reduces components in the matrix (such as

arbiters) and simplifies the design of logic components (such

as decoders) which in turn reduces power consumption of the

design. This reduction also translates into a reduced bus matrix

area footprint on the chip, because of the reduced wiring and

bus logic components in the matrix.

The problem of synthesizing a minimal cost (i.e., having the

least number of busses) bus matrix for a particular application

is complicated by the large number of combinations of pos-

sible matrix topologies and bus architecture parameters such

as bus widths, clock speeds, out-of-order (OO) buffer sizes,

and shared slave arbitration schemes. Previous research in the

area of bus matrix/crossbar synthesis (discussed in the next

section) has been inadequate in addressing the entire problem,

and instead has been limited to exploring a small subset of

the synthesis problem (such as topology synthesis [8]). Very

often, designers end up evaluating the bus matrix design space

by creating simulation models annotated with detail based on

experience and manually iterating through different combina-

tions of topology and communication architecture parameters.

Such an effort remains time consuming and produces bus

matrix architectures which are generally overdesigned for the

application at hand.

Our goal in this paper is to address this problem by presenting

an automated approach for synthesizing a bus matrix commu-

nication architecture [bus matrix synthesis (BMSYN)], which

generates not only the matrix topology, but also communication

parameter values for bus clock speeds, OO buffer sizes and

arbitration strategies. Most importantly, BMSYN minimizes the

number of busses in the matrix and satisfies all performance

constraints in the design. To demonstrate the effectiveness of

our approach, we synthesize a bus matrix architecture for four

industrial strength MPSoC case studies from the networking

domain and show that BMSYN significantly reduces wire con-

gestion in a matrix, resulting in up to 9× component savings

when compared to a full bus matrix and up to 3.2× savings

when compared to a maximally connected reduced bus matrix.

II. RELATED WORK

The need for bus matrix (or crossbar switch) architectures

has been emphasized in previous work in the area of commu-

nication architecture design. Lahtinen et al. [9] compared the

shared bus and crossbar topologies to conclude that the crossbar

is superior to a bus for high throughput systems. Ryu et al. [10]

compared a full crossbar switch with other bus-based topolo-

gies and found that the crossbar switch outperformed the other

choices due to its superior parallel response. Loghi et al. [11]

presented exploration studies with the shared bus, full crossbar,

and partial crossbar topologies of the AMBA and STBus com-

munication architectures, concluding that crossbar topologies

are much better suited for high throughput systems requiring

frequent parallel accesses. An interesting conclusion from their

work is that partial crossbar schemes can perform just as well

as the full crossbar scheme, if designed carefully. However, the

emphasis of their work was not on the generation of such partial

crossbar topologies.

Although a lot of work has been done in the area of hier-

archical shared bus architecture synthesis [12]–[14], [27]–[30]

and NoC architecture synthesis [15], [16], [24]–[26], few ef-

forts have focused on BMSYN. Ogawa et al. [17] proposed a

transaction-based simulation environment which allows design-

ers to explore and design a bus matrix. But the designer needs

to manually specify the communication topology, arbitration

scheme, and memory mapping, which is too time consuming

for the complex systems of today. The automated synthe-

sis approach for STBus crossbars proposed by Murali and

De Micheli in [8] is the only work that comes closest to our goal

of automated BMSYN. However, their work primarily deals

with automated crossbar topology synthesis—the communi-

cation parameters (arbitration schemes, OO buffer sizes, bus

widths, and speeds) which have considerable influence on sys-

tem performance [19], [23] are not explored or synthesized. Our

synthesis effort overcomes this shortcoming and synthesizes

both the topology and communication architecture parameters

for the bus matrix. Additionally, [8] assumes that critical data

streams cannot overlap on the same bus, which places a static

limit on the maximum number of components that can be

attached to a bus and also requires the designer to specify hard-

to-determine threshold values of traffic overlap as an input,

based on which components are allocated to separate busses.



1456 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

These are conservative approaches which lead to an overde-

signed, suboptimal system. Our approach carefully selects ap-

propriate arbitration schemes (e.g., TDMA based) that can

allow multiple constraint streams to exist on the same bus and

also does not require the designer to specify data traffic thresh-

old values or statically limit the number of components on a

bus. Experimental comparison studies (described in Section IV)

show that our scheme is more aggressive and obtains greater

reduction in bus matrix connections, when compared to [8].

III. BUS MATRIX SYNTHESIS

This section describes our approach for automated BMSYN.

First, we formulate the problem and present our assumptions.

Next, we describe our simulation engine and elaborate on com-

munication parameter constraints, which guide the BMSYN

process. Finally, we present our automated BMSYN approach

in detail.

A. Problem Formulation

We start with an MPSoC application having several com-

ponents (IPs) that need to communicate with each other. We

assume that hardware/software partitioning has taken place

and that the appropriate functionality has been mapped onto

hardware and software IPs. These IPs are standard “black box”

library components which cannot be modified during the syn-

thesis process, except for the memory components. The target

standard bus matrix communication architecture (e.g., AMBA

bus matrix [1]) that determines the pins at the IP interface and

for which the matrix must be synthesized, is also specified.

Typically, all busses within a bus matrix have the same data bus

width, which usually depends on the number of data interface

pins of the IPs in the design. We assume that this matrix data

bus width is specified by the designer, based on the knowledge

of the IPs selected for the design.

Generally, MPSoC designs have performance constraints

which are dependent on the nature of the application. The

throughput of communication between components is a good

measure of the performance of a system [12]. To represent

performance constraints in our approach, we define a com-

munication throughput graph (CTG) = G(V,A) which is a

directed graph, where each vertex ν represents a component

in the system, and an edge a connects components that need

to communicate with each other. A throughput constraint path

(TCP) is a subgraph of a CTG, consisting of a single master for

which data throughput must be maintained and other masters,

slaves and memories which are in the critical path that impacts

the maintenance of the throughput. The concept of a TCP is a

useful abstraction to capture critical communication streams,

which govern application performance in our approach. All

dependencies which affect a critical communication stream are

encapsulated as part of a TCP. These TCPs are dependent on

the application being considered and are typically derived from

the knowledge of standards and protocols supported or from

marketing specification documents which specify performance

constraints for subsystems that must be satisfied by the ap-

plication implementation. Fig. 3 shows a CTG for a network

Fig. 3. CTG.

subsystem, with a TCP involving the ARM2, MEM2, DMA,

and “Network I/F” components, where the rate of data packets

streaming out of the “Network I/F” component must not fall

below 1 Gb/s. Note that any edge in a CTG can be part of

multiple critical communication streams, in which case the

edge is shared between multiple TCPs. It is also possible for an

edge which is part of a TCP to have other noncritical commu-

nication streams on it. For the purposes of creating a CTG with

TCPs for an application, we ignore such noncritical communi-

cation streams, since they do not impact critical communication

performance.

Problem Definition A bus B can be considered to be a

partition of the set of components V in a CTG, where B ⊂ V .

Then, the problem is to determine an optimal component to bus

assignment for a bus matrix architecture, such that V is parti-

tioned onto a minimal number of busses N while satisfying all

performance constraints in the design, represented by the TCPs

in a CTG.

B. Simulation Environment

Since communication behavior in a system is character-

ized by unpredictability due to dynamic bus requests from

cores, contention for shared resources, buffer overflows, etc.,

a simulation-based approach is necessary for accurate perfor-

mance estimation. However, relying solely on simulation-based

exploration can limit the amount of space that can be explored

in a reasonable amount of time. As we describe later, BMSYN

makes use of a combination of static and simulation-based

dynamic analysis to speed up the synthesis process.

For the simulation part of our flow, we capture behav-

ioral models of components and bus architectures in SystemC

[18], [22] and keep them in an IP library database. Since we

were concerned about the speed of simulation, we chose a

fast transaction-based, bus cycle accurate modeling abstrac-

tion, which averaged simulation speeds of 150–200 kHz [13],

while running embedded software applications on processor

instruction-set-simulator models. The communication model in

this abstraction is extremely detailed, capturing delays arising

due to frequency and data width adapters, bridge overheads,

interface buffering, and all the static and dynamic delays asso-

ciated with the standard bus architecture protocol being used.

C. Communication Parameter Constraint Set

The exploration space for a typical MPSoC bus matrix

communication architecture consists of combinations of bus



PASRICHA et al.: BMSYN: BUS MATRIX COMMUNICATION ARCHITECTURE SYNTHESIS FOR MPSoC 1457

topology configurations with communication parameter values

for bus clock speeds, OO buffer sizes, and arbitration schemes.

If we allow these parameters to have any arbitrary values, an

incredibly vast design space is created. The time required to

traverse this space as we search for the most cost-effective

configuration (which also satisfies all performance constraints)

would become unreasonably large. More importantly, once we

manage to find such a system configuration, there would be no

guarantee that the values generated for the communication pa-

rameters would be practically feasible. To ensure that BMSYN

generates a realistic bus matrix communication architecture

configuration, we allow the designer to specify a communica-

tion parameter constraint set (Ψ). The constraints are in the

form of a discrete set of valid values for the communication

parameters to be synthesized. We allow the specification of two

types of constraint sets for components: a global constraint set

(ΨG) and a local constraint set (ΨL). The designer can specify

local constraints for a resource if these constraint values are

different from the global constraints. Otherwise, the designer

can leave the local constraints unspecified, thus allowing the

resource to inherit the more generic global constraints. For

instance, a designer might set the allowable bus clock speeds

for a set of busses in a subsystem to multiples of 33 MHz,

with a maximum speed of 166 MHz, based on the operation

frequency of the cores in the subsystem, while globally, the

allowed bus clock speeds are multiples of 50 MHz, up to

maximum of 400 MHz. The presence of a local constraint

overrides the global constraint, while the absence of it results

in the resource inheriting global constraints. This provides a

convenient mechanism for the designer to bias the synthesis

process based on knowledge of the design and the technology

being targeted. Such knowledge about the design is not a

prerequisite for using our synthesis framework. As long as Ψ
is populated with any discrete set of values for the parameters,

our framework will attempt to synthesize a feasible low-cost

optimal matrix architecture. However, informed decisions can

greatly reduce the time taken for synthesis and help the designer

generate a more practical system.

D. BMSYN Synthesis Flow

We now describe our automated BMSYN approach

(BMSYN). Fig. 4 gives a high-level overview of the flow.

The inputs to the flow include a CTG, a library of behavioral

IP models, a target bus matrix template (e.g., AMBA bus

matrix [1]), and a communication parameter constraint set (Ψ)
which includes (ΨG) and (ΨL). The general idea is to first

perform a fast transaction-level model (TLM) simulation of the

system to get application-specific data traffic statistics. This

information is then used in a global optimization phase to

reduce the full bus matrix architecture, by removing unused

busses and local slave components from the matrix. We call the

resulting matrix a maximally connected reduced matrix.

The next step is to perform a static branch and bound-based

clustering of slave components in the matrix which further

reduces the number of busses in the matrix. We rank the results

of the static clustering analysis, from the best case solution

(least number of busses) to the worst (most number of busses)

Fig. 4. Automated BMSYN flow.

and save them in the database. We then use a fast bus cycle

accurate simulation engine [13], [19] to validate and select

the best solution which meets all the performance constraints,

determine slave arbitration schemes, optimize the design to

minimize bus speeds and OO buffer sizes and then finally

output the optimal synthesized bus matrix architecture.

We now describe the synthesis flow in detail. In the first

phase, the IP library is mapped onto a full bus matrix and simu-

lated at the TLM level, with no arbitration contention overhead

since there are no shared channels and also because we assume

infinite ports at IP interfaces. We also set the OO buffer sizes to

the maximum allowed in Ψ. The TLM simulation phase allows

us to obtain application-specific data traffic statistics such as

number of transactions on a bus, average transaction burst size

on a bus and memory usage profiles. Knowing the bandwidth

to be maintained on a channel from the TCPs in the CTG,

we can also estimate the minimum clock speed at which any

bus in the matrix must operate, in order to meet its throughput

constraint, as follows. The data throughput (ΓTLM/B) from the

TLM simulation, for any bus B in the matrix is given by

ΓTLM/B = (numTB × sizeTB × widthB × ΩB)/σ

where numT is the number of data transactions on the bus,

sizeT is the average size of these data transactions, width is the

data bus width, Ω is the clock speed, and σ is the total number

of cycles of TLM simulation for the application. The values

of numT, sizeT, and σ are obtained from the TLM simulation

in phase 1. To meet the throughput constraint ΓTCP/B for

the bus B

ΓTLM/B ≥ΓTCP/B

∴ ΩB ≥ (σ × ΓTCP/B)/(widthB × numTB × sizeTB).

The minimum bus clock speed thus found is used to create (or

update) the local bus speed constraint set ΨL(speed) for bus B.



1458 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

In the next phase (phase 2 in Fig. 4), we perform global opti-

mization (global_optimize) on the matrix by using information

gathered from the TLM simulation in phase 1. In this phase,

we first remove all the busses that have no data traffic on them,

from the full bus matrix. Next, we analyze the memory usage

profile from the simulation run and attempt to split those mem-

ory nodes for which different masters access nonoverlapping

regions [20]. Finally, we cluster dedicated slave and memory

components with their corresponding masters by migrating

them from the matrix to the local busses of the masters, to

reduce congestion in the bus matrix. Note that we perform

memory splitting before local node clustering because it allows

us to generate local memories which can then be clustered

with their corresponding masters. After the global_optimize

phase, the matrix structure obtained is termed as a maximally

connected reduced bus matrix.

The next phase (phase 3 in Fig. 4) involves static analysis

to determine the optimal reduced bus matrix for the given

application. We make use of a branch and bound-based clus-

tering algorithm to cluster slave components to reduce the

number of busses in the matrix even further. Note that we do

not consider clustering masters in the matrix, in our approach.

While clustering masters can result in some savings for simple

SoC systems, for the highly parallel, high-performance MPSoC

applications that we target, clustering masters can drastically

degrade system performance. This is because master clustering

adds two levels of contention, one at the master end and

another at the slave end, in a data path, which lengthens the

completion time for transactions issued by any of the clustered

masters. Additionally, clustering masters also severely limits

the parallelism in the system, since if one master in a “master

cluster” is active with a transaction, for instance a burst of

several data transfers, none of the other masters in that cluster

can issue transactions. In our experience, even increasing the

bus clock frequency to compensate for the reduced parallelism

and longer transaction latency in the system does not prevent

throughput constraint violations when masters are clustered.

However, in-depth analysis of master clustering solutions is

outside the scope of this paper.

Before describing the algorithm, we present a few defini-

tions. A slave cluster SC = {s1 . . . sn} refers to an aggregation

of slaves that share a common arbiter. Let MSC refer to the set

of masters connected to a slave cluster SC. Next, let ΠSC1/SC2

be a superset of sets of busses which are merged when slave

clusters SC1 and SC2 are merged. Finally, for a merged bus

set β = {b1 . . . bn}, where β ⊂ ΠSC1/SC2, let Kβ refer to the

set of allowed bus speeds for the newly created bus when the

busses in set β are merged, and is given by

Kβ = ΨL(speed)(b1) ∩ ΨL(speed)(b2) . . . ∩ ΨL(speed)(bn).

The branching algorithm starts out by clustering two slave

clusters at a time and evaluating the gain from this operation.

Initially, each slave cluster has just one slave. The total number

of clustering configurations possible for a bus matrix with

n slaves is given by (n! × (n − 1)!)/2(n−1). This creates an

extremely large exploration space, which cannot be traversed

Fig. 5. Bound function.

in a reasonable amount of time. In order to consider only

valid clustering configurations and arrive at an optimal solution

quickly, we make us of a bounding function.

Fig. 5 shows the pseudocode for our bounding function

which is called after every clustering operation of any two

slave clusters SC1 and SC2. In step 1, we use a look up table

to see if the clustering operation has already been considered

previously; if so, we discard the duplicate clustering. Other-

wise, we update the lookup table with the entry for the new

clustering. In step 2, we check to see if the clustering of SC1 and

SC2 results in the merging of busses in the matrix, otherwise the

clustering is not beneficial and the solution can be bounded. If

the clustering results in bus mergers, we calculate the number

of merged busses for the clustering and store the cumulative

weight of the clustering operation in the branch solution node.

In step 3, we check to see if the allowed set of bus speeds for

every merged bus is compatible or not. If the allowed speeds for

any of the busses being merged are incompatible (i.e., Kβ ==
φ for any β), the clustering is not possible and we bound

the solution. Additionally, we also calculate if the throughput

requirement of each of the merged busses can be theoretically

supported by the new merged channel. If this is not the case,

we bound the solution. The bounding function thus enables a

conservative pruning process which quickly eliminates invalid

solutions and allows us to rapidly converge on the optimal

solution.

Fig. 6 shows the branch and bound clustering flow for the

example shown earlier in Figs. 1–3. Every valid branch in

the solution space corresponds to a valid clustering of slave

components and is represented by a node in the figure. The

nodes annotated with an X correspond to clustering solutions

that are eliminated by the bounding function in Fig. 5 for being

duplicate solutions; nodes annotated with a B correspond to

solutions that do not meet the other criteria in the bounding

function. The figures above the nodes correspond to the cumu-

lative weights of the clustering solution. This allows us to deter-

mine the quality of the solution—the node with the maximum

cumulative weight corresponds to a bus matrix with the least

number of busses. The highlighted node in Fig. 6 corresponds to

the optimal solution. Fig. 7 shows all the clustering operations

for the solution branch corresponding to this node.

The solutions obtained from the static branch and bound

clustering algorithm are ranked from best to worst and stored



PASRICHA et al.: BMSYN: BUS MATRIX COMMUNICATION ARCHITECTURE SYNTHESIS FOR MPSoC 1459

Fig. 6. Branch and bound clustering illustration.

Fig. 7. Flow of clustering operations of best solution, for the example MPSoC
system.

in a solution database. The next phase (phase 4 in Fig. 4)

validates the solutions by simulation. We use a fast transaction-

based bus cycle accurate simulation engine [13], [19] to verify

that the reduced matrix still satisfies all the constraints in the

design. The designs are simulated after setting the bus clock

frequency values to the maximum allowed by Ψ, for the buses

in the matrix. We perform arbitration strategy selection at this

stage (from the allowed schemes in the constraint set Ψ). The

lowest cost arbitration schemes from Ψ are applied to the slave

clusters and the entire design is simulated. If a TCP constraint

violation is detected for the edges connected to a slave cluster,

TABLE I
NUMBER OF CORES IB MPSoC APPLICATIONS

we apply other arbitration schemes on the slave cluster, in

increasing order of implementation costs, and simulate the

design to verify constraint satisfaction. For example, if a simple

static priority-based scheme for a slave cluster (with priorities

distributed among slave ports according to throughput require-

ments) results in TCP constraint violations, we first make use

of simpler arbitration scheme like round-robin (RR), before re-

sorting to the more elaborate two-level TDMA/RR scheme like

that used in [4].

It is possible that even after using these different arbitration

conflict schemes, there are TCP constraint violations. In such

a case, we remove the solution from the solution database

and proceed to select the next best solution, continuing in this

manner until we reach a solution which successfully passes the

simulation-based verification. This is the minimal cost solution,

having the least number of busses in the matrix, while still sat-

isfying all TCP constraints in the design. Once we arrive at such

a solution, we call the minimize_design procedure (phase 5

in Fig. 4) where we attempt to minimize the bus clock speeds

and prune OO buffer sizes. In this procedure, we iteratively

select busses in the matrix and attempt to arrive at the lowest

value of bus clock speeds (as allowed by Ψ) which does not

violate any TCP constraint. We verify any changes made in

bus speeds via simulation. After minimizing bus speeds, we

prune the OO buffer sizes from the maximum values allowed to

their peak traffic buffer count utilization values, obtained from

simulation. Finally, we output the synthesized minimal cost bus

matrix, with a well-defined topology and parameter values.

IV. CASE STUDIES

We applied our BMSYN approach on four MPSoC

applications—VIPER, SIRIUS, ORION4, and HNET8—from

the networking domain. While VIPER and SIRIUS are vari-

ants of existing industrial strength applications, ORION4 and

HNET8 are larger systems which have been derived from the

next generation of MPSoC applications currently in develop-

ment. Table I shows the number of components in each of these

applications. The Masters column includes the processors in the

design, which are primarily ARM-based microprocessors.

Fig. 8 shows the CTG for the VIPER MPSoC application.

For clarity, the TCPs are presented separately in Table II. The

ARM1 processor is used for overall system control, generating

data cells for signaling, operating and maintenance, commu-

nicating and controlling external hardware, and to setup and

close data stream connections. The ARM2 processor interacts

with data streams from external interfaces and performs data

packet/frame encryption and compression. These processors

interact with each other via shared memory and a set of

shared registers (not shown here). The DMA engine is used



1460 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

Fig. 8. CTG for VIPER MPSoC application.

TABLE II
TCPs FOR VIPER

TABLE III
CUSTOMIZABLE PARAMETER CONSTRAINT SET (VIPER)

to handle fast memory to memory and network interface data

transfers, freeing up the processors for more useful work. The

application-specific integrated circuit (ASIC1) block performs

data packet segmenting and reassembling for multiple concur-

rent data streams. VIPER also has several peripherals such

as a multifunctional serial port interface, a serial flash interface,

a universal asynchronous receiver/transmitter block (UART), a

general purpose I/O block (GPIO), timers (Timer, Watchdog),

an interrupt controller (ITC), proprietary external network in-

terfaces (Network I/F1, Network I/F2), on-chip static-random-

access-memory modules (MEMx) and a synchronous dynamic

random access memory (SDRAM) memory block.

Table III shows the global customizable parameter set ΨG.

For the synthesis, we target an AMBA3 AXI [21]-based bus

matrix structure. Fig. 9 shows the matrix structure output by our

synthesis flow, which satisfies all four throughput constraints in

the design (Table II). The data bus width used in the matrix

Fig. 9. Synthesized bus matrix for VIPER MPSoC application.

Fig. 10. Effect of changing OO buffer size.

is 32 bits, and the slave-side arbitration strategies, operating

speeds for the busses and OO buffer sizes (for components

supporting OO transaction completion) are shown in the figure.

While the full bus matrix architecture used 60 busses, after the

global optimization phase (Fig. 4) we were able to reduce this

number to 29 for the maximally connected reduced matrix. The

final synthesized matrix further reduces the number of busses

to as few as 13 (this includes the local busses for the masters)

which is almost a 5× saving in the number of busses used when

compared to the original full bus matrix.

To demonstrate the importance of synthesizing parameter

values during communication architecture synthesis, we per-

formed experiments involving the VIPER application. In the

first experiment, we focused on OO buffer size and varied

the values for this parameter, to observe the effect on system

cost and performance. In VIPER, since MEM1, MEM4, and

SDRAM are the only blocks which support OO buffering of

transactions, we attempt to change their buffer sizes for this

purpose. Fig. 10 shows the results of this experiment. The

x axis indicates OO buffer sizes for the components—we keep

the same buffer size for the MEM1, MEM4, and SDRAM

components and reduce the size along the x axis. The y axis

represents a performance metric in the form of application

completion time—a decrease in performance is a result of a

corresponding increase in application completion time.



PASRICHA et al.: BMSYN: BUS MATRIX COMMUNICATION ARCHITECTURE SYNTHESIS FOR MPSoC 1461

Fig. 11. Effect of ignoring arbitration space during BMSYN.

As the buffer size of the components decreases, it can be

seen that the performance of the system deteriorates. With

decreasing buffer size, we also find that the minimum number

of busses needed to meet all TCP constraints increases. Note

that performance numbers in Fig. 10 are obtained for a constant

number of busses (13 busses)—adding additional busses tends

to improve performance due to the additional parallelism in-

troduced in the system. Of course, the improved performance

comes at the price of additional wire congestion (busses) in

the matrix. Without taking the concurrence inherent in the

target application into consideration (which we do during our

synthesis approach), designers might end up fixing OO buffer

sizes to large conservative values resulting in increased system

cost and an overdesigned system; reducing buffer sizes on the

other hand can end up increasing the number of busses in a

matrix and again increase system cost.

For the next experiment, we focused on another commu-

nication parameter—the arbitration strategy used for conflict

resolution by shared slaves. We attempted to determine the

effect of not taking this parameter into consideration, as done

in [8], during synthesis for the VIPER application. Fig. 11

shows the consequence of such an assumption. BMSYN is our

approach applied on the VIPER application, which considers

a combination of several different arbitration schemes during

synthesis. We compared the result from our approach with two

approaches, which perform topology synthesis and keep a fixed

arbitration scheme for all shared slaves (which is the approach

used in [8]). The first approach uses a fixed static priority-

based arbitration (static) and the second uses RR arbitration.

For the case of static arbitration, there are 24 static priority com-

binations possible, because there are four masters in VIPER,

and the number of static priority combinations possible for a

system having n masters is n! (and consequently 4! = 24). We

synthesize a bus matrix architecture for each of the possible

combinations, for the static case.

As can be seen from the figure, if we fix the arbitration policy

for the entire system to a single type of arbitration scheme such

as static priority or RR, the resulting synthesized system needs

a larger number of busses in order to meet all performance

constraints in the design, compared to our approach which

considers a combination of several different arbitration schemes

during synthesis. As shown in Fig. 9, BMSYN uses a com-

bination of several different arbitration schemes such as static

priority, RR, and TDMA/RR, which allows better management

of traffic conflicts for different subsystems within VIPER and

consequently reduces matrix cost.

Fig. 12. CTG for SIRIUS MPSoC application.

TABLE IV
TCPs FOR SIRIUS

From these two experiments involving OO buffer sizes and

arbitration strategies, we can see that these communication

parameters can have a significant impact on system cost and

performance, and thus should not be ignored in a communica-

tion architecture synthesis effort.

Next, we describe the BMSYN process for the SIRIUS

application. Fig. 12 shows the CTG for SIRIUS. Again, for

clarity, the TCPs are presented separately in Table IV. ARM1 is

a protocol processor (PP) while ARM2 and ARM3 are network

processors (NP). The ARM1 PP is responsible for setting up

and closing network connections, converting data from one

protocol type to another, generating data frames for signaling,

operating, and maintenance, and exchanging data with NP

using shared memory. The ARM2 and ARM3 NPs directly

interact with the network ports and are used for assembling

incoming packets into frames for the network connections,

network port packet/cell flow control, assembling incoming

packets/cells into frames, segmenting outgoing frames into

packets/cells, keeping track of errors and gathering statistics.

The ASIC1 block performs hardware cryptography acceleration

for Data Encryption Standard (DES), Triple Data Encryption



1462 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

TABLE V
CUSTOMIZABLE PARAMETER CONSTRAINT SET (SIRIUS)

Fig. 13. Synthesized bus matrix for SIRIUS MPSoC.

Standard (3DES), and Advanced Encryption Standard (AES).

The DMA is used to handle fast memory to memory and

network interface data transfers, freeing up the processors

for more useful work. Besides these master cores, SIRIUS

also has a number of memory blocks, network interfaces and

peripherals such as ITCs (ITC1, ITC2), timers (Watchdog,

Timer1, Timer2), UART, and a packet accelerator (Acc1).

Table V shows the global customizable parameter set ΨG.

For the synthesis, we target an AMBA3 AXI [21]-based bus

matrix communication architecture. Fig. 13 shows the matrix

structure output by our synthesis flow, which satisfies all six

throughput constraints in the design (Table IV). The data bus

width used in the matrix is 32 bits, and the slave-side arbitration

strategies, operating speeds for the busses and OO buffer sizes

(for components supporting OO transaction completion), are

shown in the figure. While the full bus matrix architecture used

95 busses, after the global optimization phase (Fig. 4), we were

able to reduce this number to 34 for the maximally connected

reduced matrix. The final synthesized matrix further reduces the

number of busses to as few as 16 (this includes the local busses

for the masters) which is almost a 6× saving in the number

of busses used when compared to the original full bus matrix.

The entire synthesis process took just a few hours to complete

instead of the several days or even weeks it would have taken

for a manual effort.

We now present results from three sets of experiments. The

first experiment compares the synthesis results of our approach

using variable bus frequencies with an approach using a fixed

bus frequency for the entire matrix. The second experiment

TABLE VI
NUMBER OF BUSES IN SYNTHESIZED SOLUTION FOR SIRIUS, USING

VARIABLE AND FIXED FREQUENCIES IN MATRIX

compares our synthesis results with previous work in the area

of BMSYN. Finally, the third experiment compares the results

of applying our synthesis approach on the four MPSoC appli-

cations mentioned earlier in the section.

BMSYN allows a designer the flexibility to assign variable

bus clock frequencies for each of the buses in the matrix.

However, there is an overhead in the form of frequency con-

verters at the interfaces (which might use buffering for timing

isolation) when compared to an approach where a fixed bus

clock frequency is assigned to all the buses in the matrix.

Table VI compares the synthesis result of applying BMSYN

on the SIRIUS application, for the original case with variable

bus clock frequencies in the matrix, and for three additional

cases, where all the buses in the matrix are assigned a fixed

bus clock frequency of 100, 200, and 400 MHz, respectively. It

can be seen that for the case where all the buses in the matrix

have a single fixed bus clock frequency of 100 MHz in the

matrix, no solution can be found which satisfies the throughput

constraints in SIRIUS. For the case that uses a single fixed

bus clock frequency of 200 MHz in the matrix, the number of

buses is more than for the variable frequency case, because of

excessive traffic overlap for one of the higher throughput paths,

which consequently reduces the clustering and increases the

number of buses. For the high single fixed bus clock frequency

case of 400 MHz, the solution quality (number of buses) is the

same as compared to the variable frequency case, but there are

important differences between these two approaches, which are

not apparent from the table. The 400-MHz fixed frequency case

has the advantage of not needing any frequency converters, and

thus has less complex interfaces with a lower area footprint

(due to the absence of frequency conversion logic). Since it

operates at a higher frequency, its throughput performance is

also better. However, it must be noted that we are not concerned

with absolute throughput values—instead we are interested in

satisfying throughput constraint values, while minimizing the

number of buses in the matrix, which both the approaches

manage to do. The fixed 400-MHz approach has a drawback

in the form of a larger power dissipation in its bus lines and

bus logic components, due to its high frequency of operation.

Thus, a designer needs to be aware of the tradeoff between

using fixed frequency for the entire bus matrix and a variable

frequency for the buses in the matrix when using BMSYN

to synthesize a matrix. If simplicity of design is preferred,

BMSYN can be made to synthesize a bus matrix for a single

fixed frequency value; otherwise, if the overhead of frequency

converters can be tolerated, a variable frequency can be used.

When using a single fixed frequency in the matrix, choosing

lower values can result in infeasible or high congestion matrix

solutions; while choosing a higher value can result in higher

power consumption.



PASRICHA et al.: BMSYN: BUS MATRIX COMMUNICATION ARCHITECTURE SYNTHESIS FOR MPSoC 1463

Fig. 14. Comparison with threshold-based approach for SIRIUS.

TABLE VII
SYNTHESIS TIME FOR MPSoC APPLICATIONS

To compare the quality of the synthesis results using

BMSYN, we chose the closest existing piece of work that deals

with automated matrix synthesis with the aim of minimizing

number of busses [8]. Since their approach only generates

matrix topology (while we generate both topology and pa-

rameter values), we restricted our comparison to the number

of busses in the final synthesized design. The threshold-based

approach proposed in [8] requires the designer to statically

specify: 1) the maximum number of slaves per cluster and

2) the traffic overlap threshold, which if exceeded prevents two

slaves from being assigned to the same bus cluster. The results

of our comparison study are shown in Fig. 14. BMSYN is our

approach while the other comparison points are obtained from

[8]. S(x), for x = 0, 10, 20, 30, 40, represents the threshold-

based approach where no two slaves having a traffic overlap of

greater than x% can be assigned to the same bus, and the x axis

in Fig. 14 varies the maximum number of slaves allowed in a

bus cluster for these comparison points. Note that the values

of x are chosen based on the recommendations from [8]. It is

clear from Fig. 14 that our synthesis approach produces a lower

cost system (having lesser number of busses) than approaches

which force the designer to statically approximate application

characteristics.

Table VII presents the total number of simulation runs and

time taken for synthesis for each of the four MPSoC appli-

cations, while Fig. 15 compares the number of busses in a

full bus matrix, a maximally connected reduced matrix and

the final synthesized bus matrix using our approach, for these

applications. It can be seen that our BMSYN approach takes in

the order of a few hours to complete, instead of the several days

or even weeks it would take for a manual effort. The branch and

bound clustering algorithm and the static optimization phases

take a negligible amount of time compared to the simulation

time, for verification and design minimization in the last step

in Fig. 4. Our BMSYN approach results in significant matrix

component savings, ranging from 2.1× to 3.2× when compared

to a maximally connected bus matrix, and savings ranging from

4.6× to 9× when compared with a full bus matrix.

Fig. 15. Comparison of number of busses for MPSoC applications.

In the present and near future, we believe that the bus matrix

communication architecture can efficiently support MPSoC

systems with tens to hundreds of cores with several data

throughput constraints in the multiple gigabits-per-second

range. However, for very large MPSoC systems in the fu-

ture, bus-based communication systems will suffer from unpre-

dictable wire cross-coupling effects, significant clock skews on

longer wires (requiring repeaters, thus limiting performance),

and serious routability issues for multiple wires crossing the

chip in a nonregular manner. NoC-based communication ar-

chitectures, with a regular wire layout and having all links of

the same length, offer a predictable model for wire crosstalk

and delay. This predictability will permit aggressive clock rates

and thus be able to support much larger throughput constraints.

Therefore, we believe that for very large MPSoC systems in

the future having several hundreds of cores and with terabits

per second data throughput constraints, a packet-switched NoC

communication backbone would be a more suitable choice.

V. CONCLUSION

In this paper, we presented an approach for the auto-

mated synthesis of a bus matrix communication architecture

(BMSYN) for MPSoC designs with high bandwidth require-

ments. Our synthesis approach satisfies all throughput perfor-

mance constraints in the design, while generating an optimal

bus matrix topology having a minimal number of busses, as well

as values for parameters such as bus speeds, OO buffer sizes and

arbitration strategies. Results from the synthesis of an AMBA3

AXI [21]-based bus matrix for four MPSoC applications from

the networking domain show a significant reduction in bus

count in the synthesized matrix when compared with a full bus

matrix (up to 9×) and a maximally connected reduced matrix

(up to 3.2×). Our approach is not restricted to an AMBA3

[21] matrix-based architecture and can be easily extended to

synthesize CoreConnect [2] and STBus [3] crossbars as well.

Future work will deal with extending our BMSYN framework

to include the effect of power consumption and area overhead,

so that the designer can trade-off power, performance, and area

characteristics of the synthesized bus matrix architecture.

REFERENCES

[1] ARM AMBA Specification and Multi Layer AHB Specification, 2001,
(rev2.0). [Online]. Available: http://www.arm.com

[2] IBM On-Chip CoreConnect Bus Architecture Specification, 2001,
(rev2.1). [Online]. Available: http://www.chips.ibm.com/products/
coreconnect/index.html



1464 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 8, AUGUST 2007

[3] “STBus communication system: Concepts and definitions,” Reference

Guide, STMicroelectronics, Geneva, Switzerland, May 2003, pp. 1–111.
[4] Sonics Integration Architecture, Sonics Inc., 2006, (rev1.0). [Online].

Available: http://www.sonicsinc.com
[5] L. Benini and G. D. Micheli, “Networks on chips: A new SoC paradigm,”

Computers, vol. 35, no. 1, pp. 70–78, Jan. 2002.
[6] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks: A scalable,

communication-centric embedded system design paradigm,” in Proc.

VLSI Des., 2004, pp. 845–851.
[7] M. Nakajima et al., “A 400 MHz 32b embedded microprocessor core

AM34-1 with 4.0 GB/s cross-bar bus switch for SoC,” in Proc. ISSCC,
2002, pp. 274–504.

[8] S. Murali and G. De Micheli, “An application-specific design methodol-
ogy for STbus crossbar generation,” in Proc. DATE, 2005, pp. 1176–1181.

[9] V. Lahtinen, E. Salminen, K. Kuusilinna, and T. Hamalainen, “Com-
parison of synthesized bus and crossbar interconnection architectures,”
in Proc. ISCAS, 2003, pp. 433–436.

[10] K. K. Ryu, E. Shin, and V. J. Mooney, “A comparison of five different
multiprocessor SoC bus architectures,” in Proc. DSS, 2001, pp. 202–209.

[11] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon, “Analyzing
on-chip communication in a MPSoC environment,” in Proc. DATE, 2004,
pp. 752–757.

[12] M. Gasteier and M. Glesner, “Bus-based communication synthesis on
system level,” in Proc. ACM TODAES, Jan. 1999, pp. 65–70.

[13] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Fast exploration of bus-
based on-chip communication architectures,” in Proc. CODES+ISSS,
2004, pp. 242–247.

[14] S. Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane, “Floorplan-
aware automated synthesis of bus-based communication architectures,” in
Proc. DAC, 2005, pp. 565–570.

[15] K. Srinivasan, K. S. Chatha, and G. Konjevod, “Linear programming
based techniques for synthesis of network-on-chip architectures,” in Proc.
ICCD, 2004, pp. 422–429.

[16] D. Bertozzi et al., “NoC synthesis flow for customized domain spe-
cific multiprocessor systems-on-chip,” IEEE Trans. Parallel Distrib. Syst.,
vol. 16, no. 2, pp. 113–129, Feb. 2005.

[17] O. Ogawa et al., “A practical approach for bus architecture optimization
at transaction level,” in Proc. DATE, 2003, pp. 176–181.

[18] SystemC Language Reference Manual, May 2005, (ver2.1). [Online].
Available: http://www.systemc.org

[19] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Extending the transac-
tion level modeling approach for fast communication architecture explo-
ration,” in Proc. DAC, 2004, pp. 113–118.

[20] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Automated throughput-
driven synthesis of bus-based communication architectures,” in Proc.

ASPDAC, 2005, pp. 495–498.
[21] ARM AMBA AXI Specification, 2004, (ver:1.0). [Online]. Available: http://

www.arm.com/armtech/AXI
[22] S. Pasricha, “Transaction level modeling of SoC with SystemC 2.0,” in

Proc. SNUG, 2002, pp. 55–59.
[23] K. Lahiri, A. Raghunathan, and S. Dey, “Efficient exploration of the

SoC communication architecture design space,” in Proc. ICCAD, 2000,
pp. 424–430.

[24] U. Ogras and R. Marculescu, “Energy–and performance-driven NoC
communication architecture synthesis using a decomposition approach,”
in Proc. DATE, 2005, pp. 352–357.

[25] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Efficient
synthesis of networks on chip,” in Proc. ICCD, 2003, pp. 146–150.

[26] A. Jalabert, S. Murali, L. Benini, and G. De Micheli, “XpipesCompiler:
A tool for instantiating application specific networks on chip,” in Proc.
DATE, 2004, pp. 884–889.

[27] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli, “Constraint-driven
communication synthesis,” in Proc. DAC, 2002, pp. 783–788.

[28] K. K. Ryu and V. J. Mooney, III, “Automated bus generation for multi-
processor SoC design,” in Proc. DATE, 2003, pp. 202–209.

[29] S. Pandey and M. Glesner, “Statistical on-chip communication bus syn-
thesis and voltage scaling under timing yield constraint,” in Proc. DAC,
2006, pp. 663–668.

[30] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya, “Automatic gener-
ation of application-specific architectures for heterogeneous multiproces-
sor system-on-chip,” in Proc. DAC, 2001, pp. 518–523.

[31] S. Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane, “FABSYN:
Floorplan-aware bus architecture synthesis,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 14, no. 3, pp. 241–253, Mar. 2006.
[32] W. J. Bainbridge and S. B. Furber, “CHAIN: A delay insensitive CHip

area interconnect,” IEEE Micro—Special Issue Design Test System Chip,
vol. 22, no. 5, pp. 16–23, Sep./Oct. 2002.

[33] K. Goossens, J. Dielissen, and A. Radulescu, “The Aethereal network
on chip: Concepts, architectures, and implementations,” IEEE Des. Test
Comput., vol. 22, no. 5, pp. 21–31, Sep./Oct. 2005.

Sudeep Pasricha (S’02) received the B.E. degree
in electronics and communication engineering from
Delhi Institute of Technology, Delhi, India, in 2000
and the M.S. degree in computer science from the
University of California, Irvine, in 2005, where he is
currently working toward the Ph.D. degree.

His general area of research interest is design
automation and synthesis of embedded systems, and
more specifically multiprocessor system on chips,
with a particular focus on on-chip communication ar-
chitecture design. His other interests include system-

level modeling languages and design methodologies, computer architecture,
very large scale integration (VLSI) computer-aided design (CAD) algorithms
and middleware for distributed embedded systems. He has a filed for a U.S.
patent, presented tutorials on the topic of on-chip communication architectures
at ASPDAC 2006 and VLSID 2007, and coauthored over 20 technical papers.

Mr. Pasricha received the Best Paper Award at ASPDAC 2006. He is a
member of Association for Computing Machinery (ACM).

Nikil D. Dutt (S’81–M’89–SM’97) received the
Ph.D. degree in computer science from the Univer-
sity of Illinois, Urbana–Champaign, in 1989.

He is currently a Chancellor’s Professor of elec-
trical engineering and computer science with the
University of California, Irvine, and is affiliated with
the following centers at UCI: CECS, CPCC, and
CAL-IT2. His research interests are in embedded
systems design automation, computer architecture,
optimizing compilers, system specification tech-
niques, and distributed embedded systems.

Dr. Dutt currently serves as Editor-in-Chief of ACM Transactions on Design

Automation of Electronic Systems and as Associate Editor of ACM Transactions

on Embedded Computer Systems. He was an ACM SIGDA Distinguished
Lecturer during 2001–2002, and an IEEE Computer Society Distinguished
Visitor for 2003–2005. He has served on the steering, organizing, and program
committees of several premier CAD and Embedded System Design conferences
and workshops, including ASPDAC, CASES, CODES+ISSS, DATE, ICCAD,
ISLPED, and LCTES. He serves or has served on the advisory boards of ACM
SIGBED and ACM SIGDA and is Vice-Chair of IFIP WG 10.5. He received
best paper awards at CHDL89, CHDL91, VLSIDesign2003, CODES+ISSS
2003, and ASPDAC-2006.

Mohamed Ben-Romdhane (M’90) received the
B.S. and M.S. degrees in electrical engineering,
both from Ecole National des Ingenieurs de Tunis,
Tunisia, in 1987 and 1989, respectively, and the
Ph.D. degree in digital signal processing from
Georgia Institute of Technology, Atlanta, in 1995.

He is currently the Vice President of baseband
engineering for Newport Media, Inc., Lakeforest,
CA, focusing on designing chips for mobile au-
dio and video standards such as DVB-H, ISDB-T,
T-DMB, and DAB. Previously, he served as Execu-

tive Director of SOC, IP, and Software for Conexant Systems, Inc. His research
interests include wireless systems, low-power design, embedded systems, DSP
algorithms and implementation, and SOC design.


