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Abstract

Bayesian networks are a formalism for probabilistic reasoning that have grown in-
creasingly popular for tasks such as classification in data-mining. In some situations,
the structure of the Bayesian network can be given by an expert. If not, retrieving
it automatically from a database of cases is a NP-hard problem; notably because of
the complexity of the search space. In the last decade, numerous methods have been
introduced to learn the network’s structure automatically, by simplifying the search
space or by using an heuristic in the search space. Most methods deal with completely
observed data, but some can deal with incomplete data. The Bayes Net Toolbox for
Matlab, introduced by Murphy (2004), offers functions for both using and learning
Bayesian Networks. But this toolbox is not ’state of the art’ as regards structural
learning methods. This is why we propose the SLP package.

Keywords: Bayesian Networks, Structure Learning, Classification, Information Re-
trieval from Datasets, Matlab Toolbox.

1. Introduction

Bayesian networks are probabilistic graphical models introduced by Kim and Pearl
(1987), Lauritzen and Spiegelhalter (1988), Jensen (1996), Jordan (1998).

Definition 1. B = (G, 0) is a discrete bayesian network (or belief network) if G = (X, E)
is a directed acyclic graph (DAG) where the set of nodes represents a set of random
variables X = {Xq, -+, Xy}, and if 6; = []P)(Xl'/Xpa(Xl_))] is the matrix containing the
conditional probability of node i given the state of its parents Pa(X;).

A Bayesian network B represents a probability distribution over X which admits the
following joint distribution decomposition:

P(X1, Xa, -+, Xu) = [ P(Xi/Xpa(x,)) ey
i=1

This decomposition allows the use of some powerful inference algorithms for which
Bayesian networks became simple modeling and reasoning tools when the situation is

(©2008 Olivier Francois and Philippe Leray.


Francois.Olivier.C.H@gmail.com
http://ofrancois.tuxfamily.org
Philippe.Leray@univ-nantes.fr
http://www.polytech.univ-nantes.fr/COD/?Pages_personnelles:Philippe_Leray

FRANCOIS AND LERAY

uncertain or the data are incomplete. Bayesian networks are also practical for classifi-
cation problems when interactions between features can be modelized with conditional
probabilities. When the network structure is not given (by an expert), it is possible to
learn it automatically from data. This learning task is hard, because of the complexity
of the search space. Many softwares deal with Bayesian networks, for instance :

e gR Lauritzen et al. (2004) e JavaBayes Drakos and Moore (1998)
e BNT Murphy (2004) e ProBayes Mazer et al. (2004)
e PNL Bradski (2004) e BayesialLab Munteanu et al. (2001)

e BNJ Perry and Stilson (2002) e Hugin Andersen et al. (1989)

e TETRAD Spirtes et al. (2004) « Netica Netica (1998)

e Causal explorer Tsamardinos et al.

(2005) e BayesWare Sebastiani et al. (1999)
e LibB Friedman and Elidan (1999) o MSBNx Kadie et al. (2001)
e BNPC Cheng et al. (2001) e B-Course Myllymaiki et al. (2002)
e Web WeavR Xiang (1999) e Bayes Builder Nijman et al. (2002)

For experiments, we have used Matlab with the Bayes Net Toolbox Murphy (2004)
and the Structure Learning Package we develop and propose over our website Leray
et al. (2003). This paper is organized as follows. We introduce some general con-
cepts concerning Bayesian network structures, how to evaluate these structures and
some interesting properties of scoring functions. In section 3, we describe the common
methods used in structure learning; from causality search to heuristic searches in the
Bayesian network space. We also discuss the initialization problems of such methods.
In section 4, we compare these methods using two series of tests. In the first series,
we try to retrieve a known structure while the other tests aim at obtaining a good
Bayesian network for classification tasks. We then conclude on the respective advan-
tages and drawbacks of each method or family of methods before discussing future
relevant research. We describe the syntax of a function as follows.

Ver
[outl, out2] = function(inl, in2)
Brief description of the function.
’Ver’, in the top-right corner, specifies the function location : BNT if it is a

native function of the BNT, or v1.5 if it can be found in the SLP package
The following fields are optionals :
INPUTS :

inl - description of the input argument inl

in2 - description [default value in brackets for optional arguments]
OUTPUTS :

outl - description of the output argument outl

e.g., out = function(in), a sample of the calling syntax.
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2. Preliminaries

2.1 Exhaustive search and score decomposability

The first (but naive) idea as to finding the best network structure is the exploration
and evaluation of all possible graphs in order to choose the best structure. Robinson
Robinson (1977) has proven that r(n), the number of different structures for a Bayesian
network with 7 nodes, is given by the recursive formula of equation 2.

= Zn: ’“( )21(” Dp(n — i) = n2"" (2)

i=1

This equation gives r(2) = 3, r(3) = 25, r(5) = 29281, r(10) ~ 4,2 x 108, T

Gs = mk_all_dags(n, order)

generates all DAGs with n nodes according to the optional ordering

Since equation 2 is super exponential, it is impossible to perform an exhaustive
search in a decent time as soon as the node number exceeds 7 or 8. So, structure
learning methods often use search heuristics.

In order to explore the DAGs space, we use operators like arc-insertion or arc-
deletion. In order to make this search effective, we have to use a local score to limit
the computation to the score variation between two neighboring DAGs.

Definition 2. A score S is said to be decomposable if it can be written as the sum or the
product of functions that depend only of one vertex and its parents. If n is the numbers
of vertices in the graph, a decomposable score S must be the sum of local scores s:

AM:

S(B) =) s(X;,pa(X;)) or S(B Hs X;, pa(X

i=1

2.2 Markov equivalent set and Completed-PDAGs

Definition 3. Two DAGs are said to be equivalent (noted =) if they imply the same
set of conditional (in)dependencies (i.e. have the same joint distribution). The Markov
equivalent classes set (named £) is defined as £ = A/_ where A is the DAGS’ set.

Definition 4. An arc is said to be reversible if its reversion leads to a graph which
is equivalent to the first one. The space of Completed-PDAGs (CPDAGs or also named
essential graphs) is defined as the set of Partially Directed Acyclic Graphs (PDAGs) that
have only undirected arcs and unreversible directed arcs.

For instance, as Bayes’ rule gives

P(A,B,C) = P(A)P(B|A)P(C|B) = P(A|B)P(B)P(C|B) = P(A|B)P(B|C)P(C)

those structures, (4)—~®—© = (AW)~—®—0 = (A~—®~—Q© , are equivalent

(they all imply AL C|B).

Then, they can be schematized by the CPDAG (4)—®—(© without ambiguities.

But they are not equivalent to (4)—~®~—(© (where P(A, B,C) = P(A)P(B|A,C)P(C) ) for
which the corresponding CPDAG is the same graph, which is named a V-structure.
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Verma and Pearl (1990) have proven that DAGs are equivalent if, and only if, they
have the same skeleton (i.e. the same edge support) and the same set of V-structures
(like (4)~®~<©). Furthermore, we make the analogy between the Markov equivalence
classes set (£) and the set of Completed-PDAGs as they share a natural one-to-one re-
lationship. Dor and Tarsi (1992) proposes a method to construct a consistent extension

of a DAG.
vl.5

dag = pdag_to_dag(pdag)

gives an instantiation of a PDAG in the DAG space whenever it is possible.

Chickering (1996) introduces a method for finding a DAG which instantiates a CDPAG
and also proposes the method which permits to find the CDPAG representing the equiv-

alence classe of a DAG.
vl.5

cpdag = dag_to_cpdag(dag)
gives the complete PDAG of a DAG (also works with a cell array of cpdags, return-—
ing a cell array of dags).

vl.5

dag = cpdag_to_dag(cpdag)
gives an instantiation of a cPDAG in the DAG space (also works with a cell array
of cpdags, returning a cell array of dags).

2.3 Score equivalence and dimensionality

Definition 5. A score is said to be equivalent if it returns the same value for equivalent
DAGs.

For instance, the BIC score is decomposable and equivalent. It is derived from
principles stated in Schwartz (1978) and has the following formulation:

BIC(B,D) = logP(D|B,oMF) — %Dim(B) log N (3)

where D is the dataset, 9" are the parameter values obtained by likelihood maximi-
sation, and where the network dimension Dim(B) is defined as follows.

As we need r; — 1 parameters to describe the conditional probability distribution
P(X;/Pa(X;) = pa;) , where r; is the size of X; and pa; a specific value of X; parents, we
need Dim(X;, B) parameters to describe P(X;/Pa(X;)) with

Dim(X;, B) = (ri—1)q; where q;= [] 71; 4
X]'EPH(XZ‘)

n
And the dimension of the Bayesian network is defined by Dim(B) = Z Dim(X;, B).
i=1
v1.5

D = compute_bnet_nparams (bnet)

gives the number of parameters of the Bayesian network bnet
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The BIC-score is the sum of a likelihood term and a penalty term which penalizes
complex networks. As two equivalent graphs have the same likelihood and the same
complexity, the BIC-score is equivalent. Using scores with these properties, it becomes
possible to perform structure learning in Markov equivalent space (i.e. £ = AL). This
space has good properties: since a algorithm using a score over the DAGs space can
happen to cycle on equivalent networks, the same method with the same score on the
& space will progress (in practice, such a method will manipulate CPDAGS).

vl.5

score = score_dags(Data, ns, G)

compute the score (’Bayesian’ by default or ’BIC’ score) of a dag G

This function exists in BNT, but the new version available in the Structure Pack-
age uses a cache to avoid recomputing all the local score in the score_family
sub-function when we compute a new global score.

INPUTS
Data{i,m} - value of node i in case m (can be a cell array).
ns(i) - size of node i.
dags{g} - g’th dag

The following optional arguments can be specified in the form of (’name’,value)
pairs : [default value in brackets]

scoring_fn - ’Bayesian’ or ’bic’ [’Bayesian’] currently,
only networks with all tabular nodes support Bayesian scoring.
type - type{i} is the type of CPD to use for node i, where the type is a
string of the form ’tabular’, ’noisy_or’, ’gaussian’, etc.
[all cells contain ’tabular’]
params - params{i} contains optional arguments passed to the CPD
constructor for node i, or [] if none.
[all cells contain {’prior’, 1}, meaning use uniform Dirichlet priors]
discrete - the list of discrete nodes [1:N]
clamped - clamped(i,m) = 1 if node i is clamped in case m
[zeros (N, ncases)]
cache - data structure used to memorize local score computations (ct.
SCORE_INIT_CACHE function) [ [] ]

OUTPUT :
score(g) is the score of the i’th dag

e.g., score = score_dags(Data, ns, mk_all_dags(n), ’scoring fn’, ’bic’,
>params’, [],’cache’,cache);

In particular, CPDAGs can be evaluated with TE
vli.

score = score_dags(Data, ns, cpdag_to_dag(CPDAGs), ’scoring_fn’, ’bic’)
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As the global score of a DAG is the product (or the summation is our case as we
take the logarithm) of local scores, caching previously computed local scores can prove
to be judicious. We can do so by using a cache matrix. 1E

cache = score_init_cache(N,S);

INPUTS:
N - the number of nodes
S - the lentgh of the cache

QUTPUT:
cache - entries are the parent set, the son node, the score of the

familly, and the scoring method

2.4 discretization

Most structure learning implementations work solely with tabular nodes. Therefore,
the SLP package comprises a discretizing function. This function, proposed in Colot

et al. (1994), returns an optimal discretization.
v1.5

[n,edges,nbedges,xechan] = hist_ic(ContData,crit)
Optimal Histogram based on IC information criterion bins the elements of ContData
into an optimal number of bins according to a cost function based on Akaike’s

Criterion.

INPUTS:
ContData(m,i) - case m for the node i
crit - different penalty terms (1,2,3) for AIC criterion or can ask the

function to return the initial histogram (4) [3]

OUTPUTS:
n - cell array containing the distribution of each column of X

edges - cell array containing the bin edges of each column of X
nbedges - vector containing the number of bin edges for each column of X

xechan - discretized version of ContData

When the bin edges are given, the discretization can be done directly.
v1.5

[n,xechan] = histc_ic(ContData,edges)
Counts the number of values in ContData that fall between the elements in the

edges vector

INPUTS:
ContData(m,i) - case m for the node i
edges - cell array containing the bin edges of each column of X

OUTPUT:
n - cell array containing these counts

xechan - discretized version of ContData
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3. Algorithms and implementation

The algorithms we use in the following experiments are: PC (causality search), MWST
(maximum weight spanning tree), K2 (with two random initializations), K2+T (K2
with MWST initialization), K2-T (K2 with MWST inverse initialization), GS (starting
from an empty structure), GS+T (GS starting from a MWST-initialized structure), GES
(greedy search in the space of equivalent classes) and SEM (greedy search dealing with
missing values, starting from an empty structure). We also use NB (Naive Bayes) and
TANB (Tree Augmented Naive Bayes) for classification tasks.

In the following, the term n represents the number of nodes of the expected Bayesian
network and the number of attributes in the dataset Data. Then the size of the dataset
is [n,m] where m is the number of cases.

3.1 Dealing with complete data

3.1.1 A CAUSALITY SEARCH ALGORITHM

A statistical test can be used to evaluate the conditional dependencies between vari-
ables and then use the results to build the network structure. The PC algorithm has
been introduced by Spirtes et al. (2000). Pearl and Verma (1991) also proposed a simi-
lar algorithm (IC) at the same time.

These functions already exist in BNT Murphy (2004). They need an external function
to compute conditional independence tests.

v1l.5

[CI Chi2] = cond_indep_chisquare(X, Y, S, Data, test, alpha, ns)
This boolean function perfoms either a Pearson’s Chi2 Test or a G2 Likelyhood

Ration test

INPUTS :
Data - data matrix, n cols * m rows
X - index of variable X in Data matrix
Y - index of variable Y in Data matrix
S - indexes of variables in set S
alpha - significance level [0.01]
test - ’pearson’ for Pearson’s chi2 test, ’LRT’ for G2 test [’LRT’]

ns - node size [max(Data’)]

OUTPUTS :
CI - test result (l1=conditional independency, O=no)
Chi2 - chi2 value (-1 if not enough data to perform the test -> CI=0)
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Remark that this algorithm does not give a DAG but a completed PDAG which only
contains unreversible arcs. BNT

PDAG = learn_struct_pdag_pc(’cond_indep’, n, n-2, Data);
INPUTS:
cond_indep - boolean function that perfoms statistical tests and that can
be called as follows : feval(cond_indep_chisquare, x, y, S, ...)
n - number of node
k - upper bound on the fan-in
Data{i,m} - value of node i in case m (can be a cell array).

OUTPUT :
PDAG is an adjacency matrix, in which
PDAG(i,j) = -1 if there is an i->j edge
PDAG(i,j) = P(j,i) = 1 if there is an undirected edge i <-> j
Then to have a DAG, the following operation is needed :
DAG = cpdag_to_dag(PDAG) ;

The IC* algorithm learns a latent structure associated with a set of observed variables.
The latent structure revealed is the projection in which every latent variable is a root
node or is linked to exactly two observed variables. Latent variables in the projection
are represented using a bidirectional graph, and thus remain implicit. BNT

PDAG = learn_struct_pdag_ic_star(’cond_indep_chisquare’, n, n-2, Data);
INPUTS:
cond_indep - boolean function that perfoms statistical tests and that can
be called as follows : feval(cond_indep_chisquare, x, y, S, ...)
n - number of node
k - upper bound on the fan-in
Data{i,m} - value of node i in case m (can be a cell array).

OUTPUTS :
PDAG is an adjacency matrix, in which
PDAG(i,j) = -1 if there is either a latent variable L such that
i <-L-> j OR there is a directed edge from i->j.
PDAG(i,j) = -2 if there is a marked directed i-*>j edge.

PDAG(i,j) = PDAG(j,i) = 1 if there is and undirected edge i-j
PDAG(i,j) = PDAG(j,i) = 2 if there is a latent variable L such that
i<-L->j.
A improvement of PC, BNPC-B Cheng et al. (2002), has been introduced. vi.5

DAG = learn_struct_bnpc(Data);

The following arguments (in this order) are optionnal:
ns - a vector containing the nodes sizes [max(Data’)]
epsilon - value uses for the probabilistic tests [0.05]
mwst - 1 to use learn_struct_mwst instead of Phase_1 [0]
star - 1 to use try_to_separate_B_star instead of try_to_separate_B, more

accurate but more complexe [0]
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3.1.2 MAXIMUM WEIGHT SPANNING TREE

Chow and Liu (1968) have proposed a method derived from the maximum weight span-
ning tree algorithm (MWST). This method associates a weigth to each edge. This
weight can be either the mutual information between the two variables Chow and Liu
(1968) or the score variation when one node becomes a parent of the other Heckerman
et al. (1994). When the weight matrix is created, a usual MWST algorithm (Kruskal
or Prim’s ones) gives an undirected tree that can be oriented given a root.

v1.5

T = learn_struct_mwst(Data, discrete, ns, node_type, score, root);
INPUTS:

Data(i,m) is the node i in the case m,

discrete - 1 if discret-node O if not

ns - arity of nodes (1 if gaussian node)

node_type - tabular or gaussian

score - BIC or mutual_info (only tabular nodes)

root - root-node of the result tree T

OUTPUT:
T - a sparse matrix that represents the result tree

3.1.3 NAIVE BAYES STRUCTURE AND AUGMENTED NAIVE BAYES

The naive bayes classifier is a well-known classifier related to Bayesian networks. Its
structure contains only edges from the class node C to the other observations in order
to simplify the joint distribution as P(C, Xy, ..., X;;,) = P(C)P(X;3|C)...P(X,|C)

vl.5

DAG = mk_naive_struct(n,C)

where n is the number of nodes and C the class node

The naive bayes structure supposes that observations are independent given the
class, but this hypothesis can be overridden using an augmented naive bayes classifier
Keogh and Pazzani (1999); Friedman et al. (1997a). Precisely, we use a tree-augmented
structure, where the best tree relying all the observations is obtained by the MWST
algorithm Geiger (1992).

v1.5

DAG = learn_struct_tan(Data, C, root, ns, scoring_fn);
INPUTS :
Data - data(i,m) is the m®
C - number of the class node

! observation of node i

root - root of the tree built on the observation node (root#C)
ns - vector containing the size of nodes, 1 if gaussian node
scoring_fn - (optional) ’bic’ (default value) or ’mutual_info’

OUTPUT:
DAG - TAN structure
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3.1.4 K2 ALGORITHM

The main idea of the K2 algorithm is to maximize the structure probability given the
data. To compute this probability, we can use the fact that:

P(G/D) ‘b5 _ P(Gi,D)

P(G/D) ~ E@xDl ~ B(Gy, D)

and the following result given by Cooper and Hersovits (1992) :

Theorem 1 let D the dataset, N the number of examples, and G the network structure
on X. If pajj is the jth instantiation of Pa(X;), Nijx the number of data where X; has the
v

value xj and Pa(X;) is instantiated in paijand Nij = Z Nij then
k=1

P(G,D) =P(G)P(D|G) with P(DI|G) HH N H _1 HNl]k (5)
ij 1

i=1j= 1
where P(G) is the prior probability of the structure G.

Equation 5 can be interpreted as a quality mesure of the network given the data
and is named the Bayesian mesure.

Given an uniform prior on structures, the quality of a node X and its parent set
can be evaluated by the local score described in equation 6.

_ ! .
s(Xi, Pa(Xi)) =[] mkql\]ﬁk! (6)

We can reduce the size of the search space using a topological order over the nodes
Cooper and Hersovits (1992). According to this order, a node can only be the parent
of lower-ordered nodes. The search space thus becomes the subspace of all the DAGs
admitting this very topological order.

The K2 algorithm tests parent insertion according to a specific order. The first node
can’t have any parent while, as for other nodes, we choose the parents sets (among
admitable ones) that leads to the best score upgrade.

Heckerman et al. (1994) has proven that the Bayesian mesure is not equivalent and
has proposed the BDe score (Bayesian mesure with a specific prior on parameters) to
make it so. It is also possible to use the BIC score or the MDL score Bouckaert (1993)
in the K2 algorithm which are both score equivalent.

10
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BNT

DAG = learn_struct_k2(Data, ns, order);

INPUTS:
Data - Data(i,m) = value of node i in case m (can be a cell array)
ns - ns(i) is the size of node i

order - order(i) is the i’th node in the topological ordering

The following optional arguments can be specified in the form of (’name’,value)
pairs : [default value in brackets]

max_fan_in - this the largest number of parents we allow per node [N]
scoring_fn - ’Bayesian’ or ’bic’, currently, only networks with all
tabular nodes support Bayesian scoring [’Bayesian’]
type - type{i} is the type of CPD to use for node i, where the type is a
string of the form ’tabular’, ’noisy_or’, ’gaussian’, etc.
[all cells contain ’tabular’]
params - params{i} contains optional arguments passed to the CPD
constructor for node i, or [] if none.
[all cells contain ’prior’, 1, meaning use uniform Dirichlet priors]
discrete - the list of discrete nodes [1:N]
clamped - clamped(i,m) = 1 if node i is clamped in case m
[zeros(N, ncases)]

verbose - ’yes’ means display output while running [’no’]

OUTPUT:
DAG - The learned DAG which respect with the enumeration order

e.g., dag = learn_struct_K2(data,ns,order,’scoring_fn’,’bic’,’params’, [])

BNT

[sampled_graphs, accept_ratio, num_edges] = learn_struct_mcmc(Data, ns);

Monte Carlo Markov Chain search over DAGs assuming fully observed data

INPUTS:
Data - Data(i,m) = value of node i in case m (can be a cell array)
ns - ns(i) is the size of node i
The following optional arguments can be specified as in K2
scoring_fn, type, params, discrete, clamped,
nsamples - number of samples to draw from the chain after burn-in 100%N]
burnin - number of steps to take before drawing samples [5*N]
init_dag - starting point for the search [zeros(N,N)]

OUTPUT:
sampled_graphsm

the m’th sampled graph

accept_ratio(t) = acceptance ratio at iteration t
num_edges(t) = number of edges in model at iteration t

e.g., samples = learn_struct_mcmc(data, ns, ’nsamples’, 1000);

11
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3.1.5 MARKOV CHAIN MONTE CARLO

We can use a Markov Chain Monte Carlo algorithm called Metropolis-Hastings (MH)
to search the space of all DAGs Murphy (2001). The basic idea is to use the MH
algorithm to draw samples from P(D|G) (cf equ. 5) after a burn-in time. Then a
new graph G’ is kept if a uniform variable take a value greater than the bayes factor

P(D|G’
M (or a ponderated bayes factor). Remark that this method is not deterministic.

P(DI[g)

3.1.6 GREEDY SEARCH

The greedy search is a well-known optimisation heuristic. It takes an initial graph,
defines a neighborhood, computes a score for every graph in this neighborhood, and
chooses the one which maximises the score for the next iteration. With Bayesian net-
works, we can define the neighborhood as the set of graphs that differ only by one
insertion, reversion or deletion of an arc from our current graph.

As this method is complex in computing time, we recommend to use a cache. e
vli.

DAG = learn_struct_gs2(Data, ns, seeddag, ’cache’, cache);

This is an improvement of learn_struct_gs which was written by Gang Li.

As this algorithm computes the score for every graphs in the neighborhood (cre-
ated with mk_nbrs_of_dag_topo developped by Wei Hu instead of mk_nbrs_of_dag),
we have to use a decomposable score to make this computation efficient and then

recover some local scores in cache.

INPUT:
Data - training data, data(i,m) is the m obsevation of node i
ns - the size array of different nodes
seeddag - initial DAG of the search, optional
cache - data structure used to memorize local score computations

OUTPUT:
DAG - the final structure matrix

3.1.7 GREEDY SEARCH IN THE MARKOV EQUIVALENT SPACE

Recent works have shown the interest of searching in the Markov equivalent space
(see definition 3). Munteanu and Bendou (2002) have proved that a greedy search
in this space (with an equivalent score) is more likely to converge than in the DAGs
space. These concepts have been implemented by Chickering (2002a); Castelo and
Kocka (2002); Auvray and Wehenkel (2002) in new structure learning methods. Chick-
ering (2002b) has proposed the Greedy Equivalent Search (GES) which used CPDAGs to
represent Markov equivalent classes. This method works in two steps. First, it starts
with an empty graph and adds arcs until the score cannot be improved, and then it
tries to suppress some irrelevant arcs.

12
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v1.5

DAG = learn_struct_ges(Data, ns,’scoring_fn’,’bic’,’cache’,cache);
Like most of others methods, this function can simply be calling as
learn_struct_ges(Data, ns) but this calling does not take advantages of the
caching implementation.

INPUTS:
Data - training data, data(i,m) is the m obsevation of node i
ns - the size vector of different nodes

The following optional arguments can be specified in the form of (’name’,value)
pairs : [default value in brackets]

cache - data structure used to memorize local scores [ [] ]
scoring_fn - ’Bayesian’ or ’bic’ [’Bayesian’]
verbose - to display learning information [’no’]

OUTPUT:

DAG - the final structure matrix

3.1.8 INITIALIZATION PROBLEMS

Most of the previous methods have some initialization problems. For instance, the run
of the K2 algorithm depends on the given enumeration order. As Heckerman et al.
(1994) propose, we can use the oriented tree obtained with the MWST algorithm to
generate this order. We just have to initialize the MWST algorithm with a root node,
which can either be the class node (as in in our tests) or randomly chosen. Then we
can use the topological order of the tree in order to initializ K2. Let us name "K2+T",

the algorithm using this order with the class node as root.
v1.5

dag = learn_struct_mwst(Data, ones(n,1), ns, node_type, ’mutual_info’,

class);
order = topological_sort(full(dag));

dag = learn_struct_K2(Data, ns, order);

With this order, where the class node is the root node of the tree, the class node can be
interpreted as a cause instead of a consequence. That’s why we also propose to use the
reverse order. We name this method "K2-T". Simply replace order by order(n:-1:1)
in the code above.

Greedy search can also be initialized with a specific DAG. If this DAG is not given by
an expert, we also propose to use the tree given by the MSWT algorithm to initialize

the greedy search instead of an empty network and name this algorithm "GS+T".
v1.5

seeddag = full(learn_struct_mwst(Data, ones(n,1), ns, node_type));

cache = score_init_cache(n,cache_size);

dag = learn_struct_gSQ(Data, ns, seeddag, ’cache’, cache) ;
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3.2 Dealing with incomplete data
3.2.1 STRUCTURAL-EM ALGORITHM

Friedman Friedman (1998) first introduced this method for structure learning with
incomplete data. This method is based on the Expectation-Maximisation principle
Dempster et al. (1977) and deals with incomplete data without adding a new modality
to each node which is not fully observed.

This is an iterative method, which convergence has been proven by Friedman
(1998). It starts from an initial structure and estimates the probability distribution
of variables which data are missing with the EM algorithm. Then it computes the
expectation of the score for each graph of the neighborhood and chooses the one which

maximises the score.
BNT

bnet = learn_struct_EM(bnet, Data, max_loop);
INPUTS:
bnet - this function manipulates the baysesian network bnet instead of only
a DAG as it learns the parameters in each iteration
Data - training data, data(i,m) is the m obsevation of node i
max_loop - as this method has a big complexity, the maximum loop number
must be specify

OUTPUT:

DAG - the final structure matrix

3.2.2 MWST-EM ALGORITHM

In the same way than for completly observed datasets, we could use an algorithm based
on minimum spanning tree search from incomplete datasets. This method gives an tree
shaped bayesian network that could be use as it, or that could be use to initialize the
learn_struct_EM algorithm. Let see Leray and Francois (2005) for implementation
details and experimentations.

v1l.5
bnet = learn_struct_mwst_EM(data, discrete, node_sizes, prior, nbloopmax,
t)
INPUTS :

datai,m a cell where the node i in the case m,

discrete = [ 1 if discret-node 0 if not ], (ones)
node_sizes = 1 if gaussian node, (max on complete samples)
prior = 1 to use uniform Dirichlet prior (0)

root is the futur root-node of the tree T. (random)
nbloopmax = max loop number (ceil(log(N*log(N))))

t = the convergence test’s threshold (1le-3)

OUTPUTS :
bnet = the output bayesian network
Ebic = the espected BIC score of bnet given the data
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3.2.3 TAN-EM ALGORITHM

To learn a bayesian network classifier from incomplete datasets, the function
learn_struct_tan_EM allow to obtain very good classification rates whatever the size

of the dataset with a very small learning time.
vl.5

bnet = learn_struct_tan_EM(data, class, node_sizes, root, prior, nbloop-

max, t)
INPUTS and OUTPUTS are the same than learn_struct_mwst_EM

3.2.4 GES-EM ALGORITHM

An extention of learn_struct_ges to incomplete datasets is also proposed. This ver-
sion could use a initial structure that is not an empty one. Remark that the GES
algorithm is said to be optimal when it is intitialise with an empty structure. Never-
theless, as the learning time is high an as this extention is no more optimal another
choice could be made. Let see Borchani et al. (2006) for experimentations.

v1l.5
[bnet,cpdag,BIC_score,nloop] = learn_struct_ges_EM(bnet, data, max_loop,
loop_em)
INPUTS :

bnet is an initial bayesian network structure,

datai,m a cell where the node i in the case m, max_loop is the number of
step in the structure space,

loop_em is the number of loop of the inner EM on parameters
OUTPUTS :

bnet is the final result as a bayesian network,

cpdag is the final partialy oriented structure,

BIC_score is the score on learning data of bmet,

nloop is the number of loop that has been used.

3.2.5 USING PAIRWISE DELETION INSTEAD EM

Poeple who does not want to use EM estimation as it is too much time computing could
use some complete structure learning algorithms with pairwise deletion estimation
(available cases analysis). The scoring_family function in the Structure Learning
package allow to perform count on incomplete datasets using a cell array as input.

vl.5

A way to implement learn_struct_ges_ACA

if data is an array containing the value ’misv’ for missing values : GESACA =

learn_struct_ges(mat_to_bnt(data,misv,), ns,’scoring_fn’,’bic’,’cache’,cache))

3.3 Generating incomplete data

To generate incomplete data, you first have to build a model, and then you could use it
to build the dataset. See Francois and Leray (2007) for details on modelisation.
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3.3.1 MCAR CASE MODEL BUILDING

Methods that have been proposed for MCAR dataset generation usually remove data
for each variable with the same probability «. We propose here a more general method
where a different "missing" probability is associated to each variable.

In the special case of MCAR mechanisms Rubin (1976), we have P(R|O, H,u) =
B(R|).

vl.5

bnet_miss = gener_MCAR_net(bnet_orig, base_proba)
INPUTS

bnet_orig : a bnet,

base_proba : a goal mean probability for value to be missing
OUTPUTS :

bnet_miss : a bnet that could be used in gener_data_from_bnet_miss function
to generate incomplete MCAR dataset.

3.3.2 MAR CASE MODEL BUILDING

For MAR processes, nodes representing the missingness of a variable can no longer
be disconnected from observable nodes (we now have P(R|O, H, u) = P(R|O, 1)). So
there are more a lot more parameters than in MCAR mechanisms to fix.

v1l.5
bnet_miss = gener_MAR_net(bnet_orig, base_proba)
same INPUTS and OUPUTS as gener_MCAR_net
3.3.3 GENERATING DATA

v1l.5

[data, comp_data, bnet_miss, rate, bnet_orig, notok] =
gener_data_from_bnet_miss(bnet_miss, m, base_proba ,v, testdata)

INTPUTS :

bnet_orig : see gener_[MCAR or MAR]_net function,

m : the length of the dataset

base_proba : a goal mean probability for value to be missing

v==1 to enter the verbose mode [0]

testdata==1 to always build the same dataset <- rand(’state’,0) [0]
OUTPUTS :

data : the generated dataset

data : the full original dataset

bnet_miss : see gener_[MCAR or MAR]_net function
ratem : the mean rate of missing data in data
bnet_orig : the original bnet

notok==1 iff the generated dataset missing rate is to far from ratem.
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4. Experimentation
4.1 Retrieving a known structure
TEST NETWORKS AND EVALUATION TECHNIQUES

We used two well-known network structures. The first, ASIA, was introduced by Lau-
ritzen and Spiegelhalter (1988) (cf figure 1.a). All its nodes are binary nodes. We can
notice that concerning the edge between A et T, the a priori probability of A is small,
and the influence of A on T is weak. The second network we use is INSURANCE with
27 nodes (cf figure 1.b) and is available in Friedman et al. (1997Db).

Data generation has been performed for different sample sizes in order to test the
influence of this size over the results of the various structure learning methods. To
generate a sample, we draw the parent node values randomly and choose the son node
values according to the Bayesian network parameters.

RiskAversion

@%Eg

(a) (b)

Figure 1: Original networks : (a) ASIA and (b) INSURANCE

In order to compare the results obtained by the different algorithms we tested, we
use an ’editing measure’ defined by the length of the minimal sequence of operators
needed to transform the original graph into the resulting one (operators are edge-
insertion, edge-deletion and edge-reversal, note that the edge-reversal is considered
as a independent operator and not as the deletion and insertion of the opposite edge).
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Table 1: Editing measures, networks and BIC scores obtained with different methods
(in row) for several dataset lengths (in column).
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INSURANCE 250 500 1000 2000 5000 10000 15000
MWST 37,-3373 34;-3369 36;-3371 35;-3369 34;-3369 34;-3369 34;-3369
K2 56,-3258 62;-3143 60;-3079 64;-3095 78;-3092 82;-3080 85;-3085
K2(2) 26;-3113 22;-2887 20;-2841 21;-2873 21;-2916 18:-2904 22;-2910
K2+T 42;-3207 40;-3009 42;-3089 44;-2980 47:-2987 51;-2986 54;-2996
K2-T 55;-3298 57;-3075 57;-3066 65;-3007 70:-2975 72;-2968 73;-2967
MCMC” 50;-3188 44;-2967 46;-2929 40;-2882 50;-2905 51;-2898 54,2892
GS 37,-3228 39,-3108 302944 33;-2888 29;-2859 25:-2837 28,-2825
GS+T 43;-3255 35;-3074 28;-2960 26;-2906 33;-2878 19:-2828 21;-2820
GES 43;-2910 41;-2891 39;-2955 41;-2898 38;-2761 38;-2761 38;-2752

Table 2: Editing measures and BIC scores, divided by 100 and rounded, obtained with
different methods (in row) for several dataset lengths (in column) (* As the
method MCMC is not deterministic, the results are meaned over five runs).

The BIC score of networks is also precised in a comparative way (computed from
additional datasets of 30000 cases for ASIA and 20000 cases for INSURANCE).

RESULTS AND INTERPRETATIONS

Dataset length influence

Figure 1 shows us that MWST algorithm appears to be quite insensitive to the length
of the dataset. It always gives a graph close to the original one, although the search
space is the tree space which is poorer than the DAGs-space .

The PC also gives good results with a small number of wrong edges.

The K2 method is very fast and is frequently used in the literature but presents
the drawback of being very sensitive to its initial enumeration order. Figure 1 shows
the results of K2 on ASIA data with 2 different orders ("ELBXASDT" and "TALDSXEB").
We can notice that the results are constant for a given initialization order, but two
different initialization orders will lead to very different solutions. This phenomenon
can also be observed in figure 2 with the INSURANCE data sets.

The results given by the BNPC algorithm are good in arc retrieval but do not have
great scores.

The MCMC based method permit to obtain good results whatever the dataset
length. In all runs, this method has given similar results from a scoring point of view
but there was significant differences among the editing distances.

The GS algorithm is robust to dataset length variation, especially when this algo-
rithm is initialized with MWST tree.

The GES method has given good results whatever the dataset length. Given an
significant amount of data, the networks issued from this method return better scores
than those found by a classical greedy search. But for the more complex INSURANCE
network, the results are significantly better as for the scoring function than those

19



FRANCOIS AND LERAY

obtained with a greedy search in the DAGs space but are worse in terms of editing
distances.

Weak dependance recovering

Most of the tested methods have not recovered the A-T edge of the ASIA structure.
Only the simple method MWST, PC and K2 initialised with MWST structure retrieve
this edge when the dataset is big enough. This can be explained for all the scoring
methods: this edge-insertion does not lead to a score increase because the likelihood
increase is counterbalanced by the penalty term increase.

4.2 Learning Efficient Bayesian Network for Classification
DATASETS AND EVALUATION CRITERION

ASIA

We reuse the dataset previously generated with 2000 instances for the learning phase
and the one with 1000 instances for testing.

HEART

This dataset, available from Statlog project Sutherland and Henery (1992); Michie
et al. (1994), is a medical diagnosis dataset with 14 attributes (continuous attributes
have been discretized). This dataset is made of 270 cases which we split into two sets
of respectively 189 cases as learning data and 81 cases as test data.

AUSTRALIAN

This dataset, which is available on Michie et al. (1994), consists in a credit offer evalua-
tion granted to an Australian customer evaluate considering 14 attributes. It contains
690 cases which have been separated into 500 instances for learning and 190 for test-
ing.

LETTER

This dataset from Michie et al. (1994) is the only one we tested which doesn’t consist in
a binary classificiation: the arity of the class variable being of 26. It has been created
from handwritten letter recognition and contains 16 attributes like position or height
of a letter but also means or variances of the pixels over the x and the y axis. It con-
tains 15000 samples for learning and 5000 samples for testing.

THYROID

This dataset, available at Blake and Merz (1998), is a medical diagnosis dataset. We
use 22 attributes (among the 29 original ones): 15 discrete attributes, 6 continuous at-
tributes that have been discretised and one (binary) class node. This dataset is made
of 2800 learning data cases and 972 test data cases.

CHESS

This dataset is also available at Blake and Merz (1998) (Chess — King+Rook versus
King+Pawn). It is a chess prediction task: determining if white can win the game ac-
cording to the current position described by 36 attributes (the class is the 37/"). This
dataset is made of 3196 data cases we decompose into 2200 learning data cases and
996 test data cases.
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ASTA HEART AUTRALIAN LETTER THYROID CHESS
att, L, T 8, 2000, 1000 | 14,189, 81 15, 500, 190 | 17, 15000, 5000| 22, 2800, 972 | 37, 2200, 996
NB 86.5%[84.2;88.5] 87.6%(78.7;93.21/87.9%(82.4;91.81] 73.5%[72.2;74.71]95.7%[94.2;96.91 86.6%[84.3;88.61
TANB 86.5%(84.2;88.5]| 81.5%I(71.6;88.51 86.3%[80.7;90.51| 85.3%I84.3;86.31 | 95.4%[93.8;96.61 86.4%[84.0;88.4]
MWST-BIC||86.5%[84.2;88.51 86.4%[77.3;92.3] 87.4%I[81.8;91.4] 74.1%[72.9;75.4] | 96.8%[95.4;97.8] 89.5%[87.3;91.3]
MWST-MI ||86.5%[84.2;88.5]82.7%I73.0;89.5]| 85.8%[80.1;90.11| 74.9%[73.6;76.1] | 96.1%[94.6;97.2] 89.5%[87.3;91.3]
PC 84.6%][82.2;86.8]|85.2%][75.7;91.3]| 86.3%[80.7;90.5]] memory crash | memory crash | memory crash
K2 86.5%[84.2;88.5] 83.9%1(74.4;90.41 83.7%[77.8;88.31| 74.9%(73.6;76.1] 96.3%[94.9;97.41 92.8%[90.9;94.3]
K2+T 86.5%[84.2;88.5]| 81.5%[71.6;88.51| 84.2%[78.3;88.81| 74.9%I73.6;76.11 | 96.3%[94.9;97.4] 92.6%[90.7;94.1]
K2-T 86.5%1[84.2;88.5] 76.5%(66.2;84.51| 85.8%[80.1;90.1]| 36.2%[34.9;37.6] | 96.1%[94.6;97.2] 93.0%[91.2;94.5]
MCMC* 86.44$1+0.14 | 84.20%+2.95 80.00%=+0 72.96%+4.99 | 96.17%+0.16 | 95.62%1.79
GS 86.5%[84.2;88.5] 85.2%(75.8;91.41 86.8%[81.3;91.01| 74.9%(73.6;76.11 | 96.2%[94.7;97.31 94.6%[93.0;95.9]
GS+T 86.2%(83.9;88.3] 82.7%173.0;89.51| 86.3%[80.7;90.51| 74.9%I(73.6;76.11 | 95.9%[94.4;97.0] 92.8%[90.9;94.3]
GES 86.5%1[84.2;88.5] 85.2%1(75.8;91.4184.2%(78.3;88.81| 74.9%173.6,76.11 | 95.9%(94.4;97.01 93.0%[91.2;94.5]
[kNN [186.5%(84.2;88.5185.2%175.8;91.41 80.5%[74.3;85.6]] 94.8%[94.2;95.51 | 98.8%[97.8;99.4] 94.0%[92.3;95.4]

Table 3: Good classification percentage on test data and 95% confidence interval for classifiers
obtained with several structure learning algorithms (Naive Bayes, Tree Augmented
Naive Bayes with Mutual Information score, Maximum Weight Spanning Tree with
Mutual Information or BIC score, PC, K2 initialisate with [class node , observation
nodes with numerous order] or with MWST or inverse MWST initialisation, MCMC
(* As this method is not deternimistic the results are meaned over five runs), Greedy
Search starting with an empty graph or with MWST tree, Gready Equivalent Search.
These results are compared with a k-nearest-neighbour classifier (k = 9).

Evaluation
The evaluation criterion is the good classification percentage on test data, with an a%
confidence interval proposed by Bennani and Bossaert (1996) (cf eq. 7).

2 T(-T) , 7

T+ 28 + Zgy/ U 4 Lo

I(a,N) = — 2N "% . AN? @)
1+%

where N is the sample size, T is the classifier good classification percentage and Z, =
1.96 for « = 95%.

RESULTS AND INTERPRETATIONS

Classifier performances and confidence intervals corresponding to several structure
learning algorithms are given table 3. These results are compared with a k-nearest-
neighbour classifier (k = 9).

Notice that the memory crash obtained with PC algorithm on medium-sized datasets
is due to the actual implementation of this method. Spirtes et al. (2000) proposes a
heuristic that can be used on bigger datasets than the actual implementation can.

For simple classification problems like ASIA, a naive bayes classifier gives as good
results as complex algorithms or as the KNN methods. We can also point up that the
tree search method (MWST) gives similar or better results than naive bayes for our
datasets. It appears judicious to use this simple technic instead of the naive structure.
Contrary to our intuition the TANB classifier gives little worse results that the naive
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bayes classifier except on HEART dataset where the results are much worse and on
LETTER problem where it has given the best recognition rate (except if we consider the
KNN). Even if this method permits to relax the conditional independencies between
the observations, it also increases the network complexity, and then the number of
parameters that we have to estimate is too big for our dataset length.

For more complex problems like CHESS, structure learning algorithms obtain bet-
ter performances than naive bayes classifier. Differing to the previous structure search
experience, the several initialisations we use with the K2 algorithm do not lead to an
improvement of the classification rate. Nevertheless, using another method to choose
the initial order permits to stabilize the method. The MCMC method gives poor re-
sults for problems with a small number of nodes but seems to be able to find very good
structures as the number of nodes increases. Surprisingly, the Greedy Search does not
find a structure with a better classification rate, although this method parses the en-
tire DAGs space. It can be explained by the size of the dag space and the great number
of local optima in it. In theory, the Greedy Equivalent Search is the most advanced
score based method of those we tested. In the previous experiments, it lead to the
finding of high-scoring structures. But over our classification problems, its results are
out-performed by those obtained by a classical greedy search.

Bayesian networks outperform the k-nearest neighbor classifier on AUSTRALIAN
dataset and kNN outperforms on LETTER dataset. But we can notice that the resulting
Bayesian network can also be used in many ways. For instance by infering on other
nodes than the class one, by interpretating the structure.

4.3 Retrieving a known structure from incomplete datasets
TEST NETWORKS AND EVALUATION TECHNIQUES

For these experiments, we have used the ASIA network of figure 1.a Lauritzen and
Spiegelhalter (1988) to generate full datasets by MCMC simulation of various sizes
(500, 1000, 2000, 5000, 10000). These datasets are randomly cleared of the third
(33.33%) of their values to test learning algorithms from incomplete datasets. These
structure learning algorithms are equivalent to greedy searches in tree space, in DAG
space and in CPDAG space.

RESULTS AND INTERPRETATIONS

Results are shown in table 4. First look at figures shows that using pairwise deletion
leads to high number of arcs whilst the use of the EM algorithm leads to low number
of arcs. These differences don’t apply for MWST, and one could see MWST-ACA gives
better results than MWST-EM. Note that MWST-ACA is the only ’direct’ algorithm,
and it is very time efficient for such quality of results.

Differences between GS-ACA and SEM (GS-EM) one one side and GES-ACA and
GES-EM on the other side are very close. SEM and GES-EM find too few edges when
dataset size is small and tend too give good results for bigger datasets. Surprisingly
GS-ACA ang GES-ACA give very good results when we care about the BIC score. Even
if the results are very complexe ones, they really capture the distribution of data (with-
out overfitting as BIC score should be low). But structures from these methods could
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Table 4: Editing measures, networks and BIC scores obtained with different meth-
ods (in row) for several dataset lengths (in column).
and Kullback-Leiber divergence means (on five parameters learning) are also
printed in boxes.
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not be interprete as they are too complexe. On the other side, SEM and GES-EM give
interpretable structure but with lower scores.

Then results from EM methods are better to understand while results from ACA
seems to be better for classification or simulation tasks. In the next section we will see
if it is true for classification task.

4.4 Learning Efficient Bayesian Network classifier from incomplete
datasets

TEST DATASETS AND EVALUATION TECHNIQUES

The experiment stage aims at evaluating the Tree Augmented Naive Bayes classifier
on incomplete datasets from Blake and Merz (1998): Hepatitis, Horse, House, Mush-
rooms and Thyroid.

The TAN-EM method we proposed here is compared to the Naive Bayes classifier
with EM parameters learning. We also indicate the classification rate obtained by three
methods: MWST-EM, SEM initialised with a random chain and SEM initialised with the
tree given by MWST-EM (SEM+T). The first two methods are dedicated to classification
tasks while the others do not consider the class node as a specific variable. We also
give an 95%-confidence interval based on equation 7 for each classification rate.

RESULTS AND INTERPRETATIONS

The results are summed up in table 5. First, we could see that even if the Naive
Bayes classifier often gives good results, the other tested methods allow to obtain bet-
ter classification rates. Whislt all runs of NB and ACA methods give same results, EM
methods do not always give same results because of the first parameters estimation
random initialisation. We have also noticed (not reported here) that TAN-EM seems
the most stable method concerning the evaluated classification rate while MWST-EM
seems to be the less stable of EM methods.

The method GS-EM could obtain very good structures with a good initialisation.
Then, initialising it with the results of MWST-EM gives stabler results (see Leray and
Francois (2005) for a more specific study of this point).

In our tests, except for Hepatits dataset (that have only 90 learning samples),
TAN-EM and TAN-ACA always obtain structures that lead to better classification rates
in comparison with the other structure learning methods.

Remark that MWST methods could occasionaly give good classification rates even
if the class node is connected to a maximum of two other attributes. In that case, it
could be a good hint for most relevant attributs to the class node.

Regarding the log-likelihood reported in table 5, we see that GS-ACA give best
results while TAN methods finds structures that can also lead to a good approximation
of the underlying probability distribution of the data, even with a strong constraint on
the graph structure.

In these experiments, we could confirm that ACA methods could outperform EM
methods on classification for GS and GES learning methods but not systematicaly.
Results are similar for MWST and TAN methods.
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Method HEPATITIS HORSE HoUsE MUSHROOMS THYROID
sizes 20;90;65; 8% 28;300;300; 88% 17;290;145;46%  23;5416;2708;31%  22;2800;972;30%
NB 73.8%162.0;83.01 73.5%162.0;82.6]1 89.7%183.6;93.6] 94.4%1[93.5;95.21 96.0% [94.6;97.1]
-1122 (0s) -1540 (0s) -1404 (0s) -41147 (0s) -15728 (0s)
MWST-ACA|58.5%146.3;69.6]1 82.4%1[71.6;89.6] 90.3%184.4;94.21 75.0%173.3;76.6]1 77.4% [74.6;79.9]
-847 (2s) -1240 (16s) -1282 (55) -31447 (178s) -15359 (96s)
MWST-EM |75.4%1[63.7;84.21 82.4%1[71.6;89.61 82.1%1[75.0;87.5]1 60.3%1[58.5;62.21 93.8%1[92.1;95.2]
-1114 (45s) -1306 (299s) -1462 (67s) -39773 (1389s) -16912 (2254s)
TAN-ACA |64.6%1[52.5;75.11 73.5%162.0;82.6] 93.1%187.8;96.21 98.4%197.8;98.81 95.9% [94.4;97.0]
-1123 (2s) -1319(15s) -1284 (4s) -20453 (183s) -15894 (86s)
TAN-EM [64.6%[52.5;75.11 77.9%166.7;86.21 91.7%1[86.1,95.21 98.4%197.8;98.8]1 97.0%1[95.7;97.9]
-1186 (71s) -1546 (307s) -1339 (185s) -33885 (2345s) -16292 (1936s)
GS-ACA |67.7%155.6;77.81 80.9%170.0;88.5]1 91.7%1(86.1;95.21 76.7%175.0;78.21 77.4% [74.6;79.9]
-865 (55s) -1052 (774s) -1289 (71s) -25256 (9086s) -15394 (2537s)
SEM 64.6%[52.5;75.11 51.5%1[39.8;62.91 67.6%1[59.6;74.71 T4.9%1[73.2;76.5] 93.8%1[92.1;95.2]
-1091 (156s) -1442 (977s) -1483 (982s) -50969 (22562s) -16197 (963s)
GS+T-ACA |58.5%1[46.3;69.61 77.9%166.7;86.21 93.1%1[87.8;96.21 77.1%1[75.5;78.6]1 T77.4% [74.6;79.9]
-826 (16s) -1052 (603s) -1233 (52s) -20469 (5050s) -15391 (856s)
SEM+T |64.6%[52.5;75.11 51.5%1[39.8;62.91 93.1%187.8;96.21 74.9%1[73.2;76.51 93.8%1[92.1,95.2]
-1112 (341s) -1447 (2190s) -1485 (1094s) -50969 (30417s) -15729 (5492s)
GES-ACA (64.6%[52.5;75.11 82.4%171.6;89.6] 93.8%188.6;96.71 77.1%1[75.5;78.6] 96.1% [94.7;97.1]
-866 (76s) -1160 (536s) -1293 (123s) -23462 (6350s) -15535 (515s)
GES-EM |64.6%152.5;75.11 51.5%139.8;62.91 68.3%160.3;75.31 74.9%173.2;76.5] 93.8%1[92.1;95.2]
-1101 (240s) -1446 (1120s) -1522(1062s) -38947 (54748s) -16197 (1545s)

Table 5: Two first lines : names of datasets; number of attributs; length of the learning
dataset; length of the test dataset; percentage of incomplete entries.
Following lines : name of method; best good classification percentage on three
runs; 95%-confidence interval; selected model likelyhood; learning time in
seconds on a laptop 2.4GHz with Matlab®R2006a.
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Figure 2: Histogram of x? value of parameters tested from generated samples and
Zoom of the flat part on the right.
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Finally, the table 5 illustrates that TAN-EM and MWST-EM have about the same
complexity (regarding the computational time) and are a good compromise between
NB and greedy searches in DAG andCPDAG spaces.

4.5 Generating incomplete datasets

For the experimentation stage, we have used our formalism to generate datasets from
randomly generated Bayesian networks (between 4 and 13 nodes). Those networks
have been used to gener MAR incomplete datasets with 10000 samples with a percent-
age of missingness which is randomly chosen between 15% and 40% (results on MCAR
datasets are similar). Then we pick up different parameters which model the percent-
age of missingness of an attribute in a specific context for each incomplete dataset
generative Bayesian network. We then calculate the x? critical value that this param-
eter has if we test it on the corresponding generated dataset.

In figure 2, an histogram of Chi-square values of parameters tested on generated
datasets is shown.

As we could see on figure 2, the distribution of Chi-square values is high for small
values (i.e. < 0.05) and arround 65% of the parameters tested have a Chi-square value
smaller than 0.01.

On figure 2, we could see that arround 0.02% of tested parameters could have a
fixed Chi-square value higher than 0.3. Those values are reach for parameters that
lead to a small number of samples in the datasets. Then the tests are not reliable in
this case as the number of corresponding samples is often smaller than 20 samples.

5. Conclusions and future work

Learning Bayesian network structure from data is a difficult problem for which we
reviewed the main existing methods.

Our first experiment allowed us to evaluate the precision of these methods retriev-
ing a known graph. Results show us that finding weak relations between attributes
is difficult when the sample size is too small. For most methods, random initializa-
tions can be replaced effectively by initializations issued from a simple algorithm like
MWST.

Our second experiment permited to evaluate the effectiveness of these methods
for classification tasks. Here, we have shown that a good structure search can lead
to results similar to the k-NN method but can also be used in other ways (structure
interpretating, inference on other nodes and dealing with incomplete data). More-
over, simple methods like Naive Bayes or MWST give results as good as more complex
methods on simple problems (i.e. with few nodes).

Recent works show that parsing the Markov equivalent space (cf definition 3) in-
stead of the DAGs space leads to optimal results. Munteanu et al. Munteanu and
Bendou (2002) proved that this space has better properties and Chickering (2002a);
Castelo and Kocka (2002) propose a new structure learning in this space. Moreover
Chickering (2002a) proved the optimality of his GES method. In our experiments, this
method has returned the best results regarding the scoring function, but if we consider
the editing distance or the classification rate, the results are not so satisfying.
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The EM algorithm, which is very often used, don’t seems to give good results re-
garding those that are obtained using pairwise deletion. The two estimation technics
leads to different results. When we want to interpret the structure, we should use EM,
and when we want to perform classification or simulation task, we should prefer using
ACA.

Adapting existing methods to deal with missing data is very important while deal-
ing with realistic problems. The SEM algorithm performs a greedy search in the DAGs
space but the same principle could be used with other algorithms (MWST for instance)
in order to quickly find a good structure with incomplete data. Some initialization
problems are also yet to be solved. Finally, the final step could consist in adapting the
Structural EM principle to Markov equivalent search methods.

In future work, we should study sensitivity of all structure learning algorithms to
the fitting function that is optimised. In this study, we have used the BIC criterion,
but we could also use MDL or BDe criterion for instances.
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