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Abstract—Increasing integration densities and high operating
speeds are leading to subtle manifestations of defects at the board
level. Board-level functional test is therefore necessary for prod-
uct qualification. The diagnosis of functional failures is especially
challenging, and the cost associated with board-level diagnosis is
escalating rapidly. An effective and cost-efficient board-level diagnosis
strategy is needed to reduce manufacturing cost and time-to-market,
as well as to improve product quality. In this paper, we use Bayesian
inference to develop a new board-level diagnosis framework that
allows us to identify faulty devices or faulty modules within a device
on a failing board with high confidence. Bayesian inference offers a
powerful probabilistic method for pattern analysis, classification, and
decision making under uncertainty. We apply this inference technique
by first generating a database of fault syndromes obtained using fault-
insertion test at the module pin level on a fault-free board, and then
use this database along with the observed erroneous behavior of a
failing board to infer the most likely faulty device. Results on a
case study using an open-source RISC system-on-chip highlight the
effectiveness of the proposed framework in terms of fault-localization
accuracy and correctness of diagnosis.

I. INTRODUCTION

Diagnosis of board-level failures is required to improve product

yield and accelerate time-to-market during manufacturing. How-

ever, as hardware designers push technologies to the limit, defects-

per-million rates continue to increase, and the cost of system

test and field service escalates following the “rule of ten”; see

Table I [1]. It is therefore necessary to detect and diagnose most

failures at an early stage. However, some defects inevitably escape

detection until functional test is performed on the board. Fault

isolation is very difficult when a system-level functional test fails.

Consequently, an effective board-level test and diagnosis strategy

is urgently needed.

Test and diagnosis strategies vary depending on the assembly

stage. At the chip level, most of the tests are structural tests and

all chip I/Os, clocks, voltage and temperatures are controllable;

diagnosis is relatively easy compared to that at the board/system

level. At the board level, both structural and functional tests

can be performed. Test access port (TAP)-based instructions are

commonly used to control board-level tests, since the automatic

test equipment (ATE) is not available at this level. In system

test, all boards in one or more chassis and all devices on the

boards are exercised together under functional test sequences.

Many devices are only accessible via control and status registers

(CSR)s (e.g. external memory) resulting in access difficulty and

test time increase [2], [3].
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TABLE I
RULE OF TEN IN TEST ECONOMICS [1].

Testing Chip Board System Out in
Testing Testing Testing Field

Cost of Test 1 10 100 1000

The difficulty of board-level test and diagnosis can be attributed

to the following three reasons [2]. First, ASICs that pass ATE

test might still fail during board test. One reason for this kind

of failure is that test conditions on ATE are different from that

in board test. Additional noise, power, and clock-supply quality

issues in board test affect the behavior of ASICs. Second, signal

integrity test at the board level becomes a challenge as data rate

continuously increases. The signals transmitted through complex

telecommunication boards have reached data rate of 10 GHz today.

Signal integrity issues such as crosstalk, reflection, dielectric loss

make board-level test and diagnosis challenging [4]. Third, the

performance of external memory devices on a board and their

connectivity quality to the board are unknown until board test.

Due to the lack of test structures provided in a memory device,

diagnosis of memory at the board level is often difficult.

To solve these challenges, several diagnosis strategies have been

published in the literature. Built-in self-test (BIST) technologies

are mainly adopted for board/system test and diagnosis. In [5],

a hierarchical system self-test architecture was proposed and a

standard BIST interface was constructed at the system level that

allows re-use of tests designed into chips and boards throughout

the life cycle. In [2], an approach for extending the functionalities

of structural test techniques to the board/system level was pre-

sented. Besides BIST-based structural test, inference-based diag-

nosis techniques have been published as a solution for board-level

diagnosis. In [6], a model-based inference engine was built on the

basis of the correct operation of a device, and improvements to this

basic inference engine were presented as well. In [7], an automated

diagnosis system named MonteJade was developed based on a

combination of model-based and probabilistic approaches.

In this paper, a board-level fault diagnosis method based on

Bayesian inference is presented. In order to apply Bayesian infer-

ence, we artificially create several faulty scenarios and compare the

behavior of a real malfunctioning board with behaviors obtained

from artificial faulty scenarios. Bayesian inference is then used to

derive logical conclusions and determine the likely faulty devices.

This inference-based diagnosis approach does not depend on any

particular BIST design.

The remainder of this paper is organized as follows. Section

II introduces fault-insertion test and fault model used in our

diagnosis framework, especially for creating the database for
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Bayesian inference. Section III provides the basics of Bayesian

inference and its application to board-level diagnosis. Section IV

presents the development of the diagnosis framework and potential

directions for improving diagnostic resolution. Section V presents

the design of experiments and experimental results for Open RISC

1200 system-on-chip (SoC). Section VI concludes the paper and

future directions are presented in Section VII.

II. FAULT-INSERTION TEST AND FAULT MODEL

Fault-insertion test (FIT) is a promising method for

board/system reliability test and diagnosis coverage measurement

[8], [9]. It facilitates the timely release of a quality diagnostic

program before manufacturing and provides feedback on the

fault tolerance of a complicated system. Hardware FIT verifies

error detection, error handling, and recovery on a board by

intentionally inserting wrong values at the pin/logic level.

Artificial faults are used to model the effects of manufacturing

defects and in-field intermittent and transient errors [8], [10]. In

Fig. 1, a block diagram depicts a board with forcing circuitry

and switches added. The forcing circuitry is used for inducing

artificial error stimulus at the ASIC and memory I/O to force

the net under test to an incorrect logic level, and the switches

are used for fault activation. Hardware FIT can be implemented

via a number of methods and the choice depends on what is

available within the design; typical methods include probe-based

FI, boundary-scan-based FI and multiplexer-based FI [11], [12].

An artificial faulty scenario can be created by activating a pin-

level fault during runtime. Therefore, the response of a board to a

known fault induced by FIT can be “learned”. The board responses

under different faulty scenarios are recorded and used for future

comparison with responses of an actual failing board. By learning

board behaviors under various artificial faults, we construct a

priori knowledge for Bayesian inference. To take advantage of

Bayesian inference in diagnosis, we also need to define the type

of faults to be used with FIT.

Generally, hardware can encounter three types of errors in

operation: hard failure, transient failure, and intermittent failure

[13]. Hard failure is a physical defect that is permanent and

readily reproducible. It is relatively easy to screen these using

BIST features. Transient failure is a one-time fault that cannot be

recreated. This fault is usually attributable to high-energy particles

(cosmic radiation, alpha particles) striking latches or memory cells

and altering circuit logic values, which may potentially result in

Fig. 1. Illustration of fault-insertion test.

a soft error [14]. Intermittent failure is an occasional fault that

occurs as a result of frequency, voltage or other environmental

condition that is reproducible under the same condition. This type

of fault is usually attributable to corner conditions in the design.

While high coverage of hard failure can be achieved using state-

of-the-art method, transient failure is a major concern for high-

availability systems. This paper is focused on transient faults that

are not easily detected by traditional DFT features. The bit-flip

fault model is used to mimic the subtle effects of transient faults.

III. BAYESIAN INFERENCE AND APPLICATION TO

BOARD-LEVEL DIAGNOSIS

Bayesian theory provides a unified and intuitively appealing

approach for drawing inferences from observations and a priori

beliefs. It builds on Bayes’ theorem, shown in (1), in which F1

through Fm are a set of mutually exclusive and jointly exhaus-

tive events. The parameter Rk is an event that depends on the

occurrence of F1,...,Fm. P (F1) through P (Fm) are probabilities

(priors) of the occurrence of each event F1 through Fm. Priors

are a priori beliefs obtained before observation on event Rk is

made. The conditional probability P (Rk|Fi) is the probability of

occurrence of event Rk given that event Fi occurs. The occurrence

probability of event Fi given that event Rk occurs is denoted by

P (Fi|Rk). This probability is defined as posterior, which depends

on the a priori belief of the occurrence probability of event Fi and

the observation on event Rk.

P (Fi|Rk) =
P (Rk|Fi)P (Fi)

P (Rk)
=

P (Rk|Fi)P (Fi)∑m

j=1 P (Rk|Fj)P (Fj)
(1)

Bayesian inference has been successfully used in power-circuit

and analog-circuit diagnosis [15], [16]. There is much interest

today in applying inference-based methods to digital system diag-

nosis [6], [7]. In this paper, Bayesian inference is used for board-

level fault diagnosis. Suppose that we want to locate the faulty

ASIC in a malfunctioning board. To apply Bayesian inference

to this practical problem, let F1 through Fm in (1) be a set of

faults at the pin level of ASICs. These faults are candidates for

the root cause of board failure. Let Rk be the kth observation

point. Specifically, observation points are observable registers (e.g.

CSRs) on the board. The artificial faults and the observation points

are denoted on a real board shown in Fig. 2. Note that prior P (Fi)
is the a priori occurrence probability of fault Fi; P (Rk|Fi) is the

probability of an error occurring on the kth register given that fault

Fi occurs. P (Fi|Rk) is the occurrence probability of Fi given

an error in the kth register. This is the posterior based on the

observation on the kth register.

To understand this inference process better, suppose that there

are two possible faults (F1 and F2) on a failing board and one

register (R1) is observable. The problem is to determine the more

likely fault resulting in the board failure (out of F1 and F2).

Assume that when fault F1 occurs, the occurrence probability of

error on register R1 is 0.8; when fault F2 occurs, the occurrence

probability of error on register R1 is 0.4. Note that we find an

error on register R1 on the actual failing board. In this scenario:
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Fig. 2. FIT for applying Bayesian-inference.

P (F1) = P (F2) = 0.5

P (R1|F1) = 0.8, P (R1|F2) = 0.4

P (F1|R1) =
P (R1|F1)P (F1)

P (R1|F1)P (F1)+P (R1|F2)P (F2)
= 0.67

P (F2|R1) =
P (R1|F2)P (F2)

P (R1|F1)P (F1)+P (R1|F2)P (F2)
= 0.33.

Therefore, the probability that F1 occurs is 0.67 and the

probability that F2 occurs is 0.33. Based on the given conditional

probabilities and the observations from the bad board, we infer

that fault F1 is the more likely suspect fault causing board failure.

In Bayesian inference-based diagnosis, we initialize the prior for

each fault in an equiprobable manner, i.e., 1/m. The parameter m is

the number of all the possible faults. There is only one observable

register in the above example. When multiple registers are observ-

able, the posterior is updated iteratively by observation on each

register. The calculated posterior, based on the observation of reg-

ister Rk, is used as the prior of the next calculation based on the

observation of register Rk+1. Thus, there is no requirement on the

number of observation points (observable registers). Decisions can

be made based on existing observations and when new observation

is available, the inference results can be updated. This adaptive

attribute is one of the main advantages of Bayesian inference.

Another advantage of using Bayesian inference in diagnosis is

efficiency, since it eliminates the debug time for devices that are

determined to be fault-free by the inference engine. Moreover,

an inference-based engine such as this allows for an automated

diagnostic process. Assuming that the Bayesian framework is

accurate, diagnosis results can be directly gathered by sending

the fault syndrome and database to the inference engine. The fault

syndrome refers to the observations on registers from bad boards,

and database includes all the conditional probabilities needed in

the posterior calculation, which are learned from fault-insertion

test.

IV. DIAGNOSIS FRAMEWORK

The Bayesian inference based diagnosis framework consists

of a learning step and the diagnosis process. In the learning

step, pin-level faults are intentionally inserted to a fault-free

(reference) board. The inserted faults and corresponding behaviors

of the board are recorded. Conditional probabilities (P (Rk|Fi)) are

computed and saved to a database. In the second step, according

to the conditional probabilities in the database and bad-board

syndrome, the probability of each artificial fault occurring or

being the root cause is inferred using Bayes’ formula and the

TABLE II
AN EXAMPLE OF FAULT SYNDROMES.

F1 F2 F3 F4

R1 1 0 1 1

R2 1 1 1 1

R3 0 1 0 1

R4 0 0 0 1

R5 1 1 1 0

fault with the highest occurrence probability is deemed to be the

most-likely candidate. Therefore, the ASIC where the most suspect

fault resides is considered to be the faulty ASIC leading to board

failure. This framework can be hierarchically used to diagnose

faulty components inside ASICs as well.

A. Learning step

The purpose of the learning step is to study board responses

to the artificial faults. In (1), we can see that the conditional

probability P (Rk|Fi) is the key to posterior calculation. The

computation of this conditional probability is the main task in

the learning step. More details of the conditional probability

calculation are presented below.

In FIT, an artificial fault can be inserted on the board by turning

on fault-insertion logic. During fault simulation, logic values of

observable registers are recorded, and a set of comparison results

of register values is called the fault syndrome. The logical values

of registers in fault simulation are compared with golden values.

For each register, the comparison result is either a match or a

mismatch. Specifically, if there is a match, we record a “0”; if

there is a mismatch, we record a “1”. Thus, the fault syndrome

can be denoted by a binary vector. The length of this vector is equal

to the number of observable registers n. Therefore, the number of

all possible comparison outcomes is 2n. A fault syndrome table is

shown in Table II. There are 5 observable registers on the board

and four pin-level faults are inserted. For example, when pin-level

fault F1 is inserted, the fault syndrome is (1,1,0,0,1), which means

that detectable errors appear in register R1, R2 and R5 in the

presence of pin-level fault F1.

Thus far, fault syndromes in the presence of different pin-

level faults have been obtained, but we cannot conclude that the

probability of error occurring on register R1 is 1 when pin-level

fault F1 occurs. The reason for this is that the effect of defects

on modern boards is subtle and error responses are not always

reproducible. To get an accurate error-occurrence probability, fault

simulation needs to be run multiple times and an average is used

to compute the conditional probability. Therefore, we repeat fault

simulation multiple times, and accumulate the count of errors

occurring on each register. The relative frequency of error is equal

to the count of error occurrence divided by the total number

of simulations. When the simulation times is large enough, our

premise is that the relative frequency of an error converges to

the corresponding conditional probability. For example, in Table

III, fault simulation is performed 100 times for bit-flip fault F1.

During these 100 simulation runs, the bit-flip fault is inserted at

various time instants during test execution, and the number of

error occurrences in Register R1 is found to be 90. Thus, the

conditional probability P (R1|F1) is 0.9. In this learning step, by
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TABLE III
DATABASE OF CONDITIONAL PROBABILITIES.

F1 F2 F3 F4

R1 90/100 2/100 99/100 71/100

R2 82/100 68/100 21/100 71/100

R3 0/100 92/100 10/100 65/100

R4 4/100 0/100 7/100 100/100

R5 86/100 46/100 51/100 30/100

recording the faults and corresponding syndromes, the database of

conditional probabilities is obtained. This database is reusable for

the diagnosis of different failing boards.

B. Diagnosis Process

In the diagnosis step, the probability of each fault being the

root cause is inferred using Bayes’ formula. According to the fault

syndrome on the bad board, if an error occurs on register Rk, the

possibility of fault Fi to be root cause can be directly calculated

using (1). The conditional probability P (Rk|Fi) can be computed

from the database constructed in the first step. If no error occurs

on register Rk, the probability that fault Fi is the root cause is

calculated using (2):

P (Fi|Rk) =
P (Rk|Fi)P (Fi)

∑m

j=1 P (Rk|Fj)P (Fj)
(2)

where P (Rk|Fi) = 1 − P (Rk|Fi). The probability P (Fi|Rk)
denotes the occurrence probability of Fi when the observation

from register Rk does not contain an error. The computation is

similar for the case of error occurrence.

Due to the adaptive attribute of Bayesian inference, we know

that the posterior can be updated when new observations are

made. Therefore, if the number of observable registers on the board

is q, the posterior of each fault will be updated q times. The

posterior in the final update is considered to be the probability

of the fault being the root cause. In the first round, the prior is

initialized in an equiprobable manner. Afterwards, the prior is

updated by the posterior calculated in the previous round.

Fault syndromes for a failing board might also not be repro-

ducible due to the subtle manifestations of transient faults. To

describe the fault syndrome of the failing board more realistically

and get accurate diagnosis, simulation on the failing board is

performed multiple times as well. The final posterior is the

average of all the posterior computed from each fault syndrome.

Due to the lack of observability and limitation of the inference

model, some faults cannot be distinguished from one another,

resulting in an ambiguity group. In order to retain diagnosis

accuracy, we not only consider the fault with the highest posterior

as the root cause, but also several faults with high posterior

values. A discussion on how to improve diagnosis accuracy and

shrink the ambiguity group size is presented in Section V.

V. EXPERIMENT DESIGN AND RESULTS

A. Experiment Design

To evaluate the proposed framework, experiments are performed

on the OpenRISC 1200 SoC [17]. The OpenRISC 1200 is a 32-

bit RISC with Harvard microarchitecture, 5 stage integer pipeline,

virtual memory support (MMU) and basic DSP capabilities. It con-

sists of a CPU, memory management units, data cache, instruction

cache. Flash memory, SRAMs, audio/video/ethernect connections,

etc. The system block diagram is shown in Fig. 3. Although there

are differences between a SoC and a manufactured board, the

SoC here is used to establish the feasibility and effectiveness of

the proposed method. In this simulation framework, the functional

units and memory cells on the SoC can be viewed as the ASICs and

memory devices mounted on a real board. In future, the proposed

method will be applied to a manufactured board.

The CPU block is the critical part in this system. Therefore, arti-

ficial faults are inserted at the output pins of six functional modules

inside the CPU, namely ALU, Ctrl, Insn fectch, Operand MUX

and Gen PC, as shown in Fig. 4. These six modules are the

suspect modules causing system malfunction. We assume that

registers in six memory units are observable, namely IMMU,

DMMU, DC top, IC top, register files and special purpose register

(SPR). Four functional tests, Dhry, Basic, CBasic and Multi, are

pre-loaded in flash for diagnosis. Dhry is a synthetic benchmark

workload, Basic and Cbasic include most basic instructions, and

the test Multi mainly consists of multiply instructions [17].

In our experiments, a total of 23 pins from six functional

modules are selected for fault insertion. In the 23 pins, some of

them are bits of data buses and the others are flag signals. More

details of the pin-level fault selection technique can be found in

[10]. The fault syndrome is a combination of observations from

17 registers. Fault simulation with pin-level faults is used for

constructing the database of error-occurrence probabilities for a

specified pin-level fault. A malfunctioning system is created by

inserting bit-flip faults within one of the six functional modules.

Fault simulation is repeated multiple times for each fault due to the

subtle effects of transient faults. The number of simulation runs

can be adjusted according to the length of the test sequences. In

our experiments, fault simulation is repeated 100 times for each

fault. The time instants of fault insertion are randomly selected

during test execution.

B. Experimental Results

In this subsection, experimental results for the OpenRISC1200

are presented. All the experiments were performed on a pool of

state-of-the-art servers running Linux. The Verilog simulator for

all simulations is VCS (Y-2006.06-SP1-16). Four functional tests

were applied to the OpenRISC system. A single run of the tests

takes 0.5 min, 1 min, 4 min and 4.5 min respectively. According

to the experiment design above, fault simulation is repeated 100

times for each fault. The total simulation time is nearly 600 hrs.

Bayesian inference is implemented using Matlab and it takes only

a few seconds to obtain the inference results.

Due to the irreproducible nature of transient fault and practical

limits on the number of simulations, faults at the pins of an

actual faulty module may not always have the highest occurrence

probability, which necessitates the inclusion of faults with smaller

occurrence probability in an ambiguity group. In our experiments,
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Fig. 3. Block Diagram of the OpenRISC 1200 SoC.

Fig. 4. Block Diagram of the CPU in OpenRISC 1200.

if the posterior value of a fault is greater than 0.05 and this

fault ranks in the list of faults with the top five posterior values,

we place this fault in the ambiguity fault group. The threshold

for selection depends on the number of fault candidates, but a

characterization of the optimal threshold is left for future work.

Table IV shows functional modules and the corresponding faults

at the ports. These faults are used for locating faulty modules

inside the system. For example, F19, F20, F21 are faults inserted at

ALU output ports for learning. According to the diagnosis results,

if F19 has the highest occurrence probability, our conclusion is

that the ALU module is the most likely faulty module causing

system failure. Faults at the ports of the actual faulty module are

called target faults. Diagnosis is considered to be correct, when at

least one target fault falls in the ambiguity fault group.

Table V shows diagnosis results for six different failing cases

using the first functional test Basic. Each row is related to one

failing case. The first column in Table V lists the actual faulty

module in the failing system. The second column is the ambiguity

fault group. Faults are placed in the ambiguity group if they meet

the criteria defined above. Target faults are highlighted in bold.

The third column shows the highest rank of target faults out of

23 fault candidates. The fourth column indicates the correctness of
TABLE IV

FUNCTIONAL MODULES AND CORRESPONDING FAULTS AT THE PORTS.

Functional modules Corresponding faults at the ports

ALU F19, F20, F21

Ctrl F9, F10, F11, F12

IF F5, F6, F7, F8

O MUX F13, F14, F15, F16, F17, F18

Multi F22, F23

Gen PC F1, F2, F3, F4

TABLE V
DIAGNOSIS RESULTS USING FUNCTIONAL TEST Basic.

Faulty module Ambiguity fault group Rank correctness

ALU F21,F6,F20,F4,F3 3 Yes

Ctrl F4,F3 7 No

IF F20,F17 ,F13,F18,F5 1 Yes

O MUX F17,F18,F4,F3 3 Yes

Multi F23,F17,F14,F13,F11 5 Yes

Gen PC F1,F4,F3 1 Yes

TABLE VI
DIAGNOSIS RESULTS USING FUNCTIONAL TEST Dhry.

Faulty module Ambiguity fault group Rank correctness

ALU F15,F21,F8,F2,F3 3 Yes

Ctrl F11,F2,F3 3 Yes

IF F21 ,F15,F20,F2 9 No

O MUX F15,F21,F2,F3,F5 5 Yes

Multi — — —

Gen PC F2,F3 1 Yes

diagnosis. From Table IV, we can see 5 cases out of 6 are correctly

diagnosed based on only one functional test. Unfortunately, if the

faulty module is Ctrl in the failing system, we cannot correctly

locate it using test Basic.

Likewise, diagnosis results for six failing cases using the second

functional test Dhry are shown in Table VI. In Table VI, the

system with the faulty IF module cannot be correctly diagnosed,

but the faulty Ctrl module can be distinguished by Dhry. We

get blank results for faulty multiplier case, because the internal

defects inserted in the multiplier do not cause errors on any of

the observable registers for the Dhry test. In other words, Dhry

cannot be used to detect/diagnose the faults occurring inside the

multiplier module.

In Table VII, two functional tests are used to improve diagnostic

resolution. Here diagnostic resolution refers to the size of the

ambiguity fault group. Four correctly diagnosed cases using the

Basic test are selected for this experiment. First, the test Basic is

applied to the system and ambiguity fault groups obtained under

this test are shown in the second column in Table VII, which

are the same as the results shown in Table V. Subsequently, the

Dhry test is applied to distinguish/rank faults in the ambiguity

fault group obtained based on the previous test. In the second

round inference, the candidates are only those faults in the previous

ambiguity fault group. If the posterior value of a candidate is

greater than 0.2 and it ranks in top-3 highest posterior, it is placed

in the second-round ambiguity group, shown in the third column.

The correctness is shown in the fourth column in Table VII. The

average of ambiguity group size shrinks from 4.25 to 2.75 without

loss of diagnosis correctness.

Fig. 5 shows the improvement of diagnosis accuracy for the Ctrl

module when multiple functional tests are used. In Fig. 5, the y-

axis is the rank of a corresponding fault of the Ctrl module, and

the x-axis refers to the functional tests applied for diagnosis. To

diagnose a system with faulty Ctrl module, we start by using the

Basic test. The rank of fault F11 is 7. Next we apply the Dhry test

based on the first test, and fault F11 is now rank third. When the

third test Multi is also used, the rank becomes 2. This shows that

when multiple tests are applied in diagnosis, diagnosis accuracy

can be improved using Bayesian inference.
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TABLE VII
IMPROVED DIAGNOSIS USING THE Basic AND Dhry TESTS.

Faulty module Ambiguity group Ambiguity group Correctness
in Basic in Dhry

ALU F21,F6,F20,F4,F3 F4,F20,F3 Yes

IF F20,F17 ,F13,F18,F5 F20,F5 Yes

O MUX F17,F18,F4,F3 F18,F4,F3 Yes

Gen PC F1,F4,F3 F1,F4,F3 Yes

TABLE VIII
MULTIPLE FAULT DIAGNOSIS USING TEST Basic.

Faulty module Ambiguity fault group Inferred suspect module

ALU & IF F18 F5,F4,F3 IF, O MUX,Gen PC

O MUX & Gen PC F2,F3,F4 Gen PC

IF & Gen PC F1,F2,F4,F3 Gen PC

ALU & O MUX F20,F17,F4,F18,F3 ALU,O MUX,Gen PC

We next study the diagnosis of multiple faults using the pro-

posed framework. Two faults inside different functional modules

are inserted per trial to mimic the situation that multiple faults exist

in a malfunction system. The database of conditional probability

is the same as before. The diagnosis results are shown in Table

VIII. They are not as accurate as before, since the conditional

probabilities used in the computation are obtained from single

fault simulation. Multiple fault diagnosis is difficult and com-

putationally expensive, as the volume of fault hypotheses grows

exponentially with the number of faults in the system. A promising

solution is to partition the overall system into subsystems, within

which there is likely to be a single fault. This partitioning enables

the application of single-fault diagnosis, which has only linear

complexity, to the subsystems without the need to handle the

exponential hypothesis explosion.

VI. CONCLUSION

We have presented a board-level Bayesian inference-based fault

diagnosis strategy. This approach offers two key advantages. First,

it does not depend on the structural test circuity, which eliminates

the requirement of building standard BIST features for all devices

on a board. Second, by learning the behavior of board/system

under different faulty scenarios, the inference engine can auto-

matically perform diagnosis without manual effort. Experiments

have been performed on an open-source RISC SoC to illustrate

the use of Bayesian inference in fault diagnosis. Our results show

that Bayesian inference-based diagnosis is a promising strategy

to tackle the challenges involved in quality assurance of complex

boards. By being adaptive, automated and self-learning, the ap-

proach is expected to lead to a new breakthrough in board/system

diagnosis.

VII. FUTURE WORK

In the construction of our diagnosis framework, several param-

eters have yet to be optimized. Our future work includes selecting

output pins that are the most capable of distinguishing faulty

modules, and choosing observation points (registers) to create the

least-correlated fault syndromes in the presence of different faults.

We will also focus on selecting the most effective observation

intervals instead of saving all logic values at runtime. In order

to verify the effectiveness of the proposed method in practice,

Fig. 5. Improvement of diagnosis accuracy using more tests for the Ctrl module.

experiments will be performed on manufactured boards in the near

future.
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