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Abstract

We have classified Bochner-Kähler manifolds of real dimension > 4,

which are also Bach flat. In the 4-dimensional case, we have shown

that, if the scalar curvature is harmonic, then it is constant. Finally,

we show that the gradient of scalar curvature of any Bochner-Kähler

manifold is an infinitesimal harmonic transformation, and if it is con-

formal then the scalar curvature is constant..

Mathematics Subject Classification: 53 B35, 53 C25

Keywords : Bochner-Kaehler manifold, Cotton tensor, Bach flat, Holomor-
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1 Introduction

In [2] Bochner introduced a new type of curvature tensor on Kähler manifolds
as an analogue of the Weyl conformal curvature tensor in Riemannian geom-
etry. Let M be a Kähler manifold of real dimension n (which is even and
equal to complex dimension n

2
) with Kählerian metric g and almost complex

structure J . We denote by ∇, R, Ric, Q and r the Riemannian connection,
Riemannian curvature tensor, the Ricci tensor, the Ricci operator and the
scalar curvature of g, respectively. The Bochner curvature tensor B of M is
defined by

B(X, Y )Z = R(X, Y )Z −
1

n+ 4
[g(Y, Z)QX − g(QX,Z)Y

+ g(JY, Z)QJX − g(QJX,Z)JY + g(QY,Z)X − g(X,Z)QY

+ g(QJY, Z)JX − g(JX,Z)QJY − 2g(JX,QY )JZ

− 2g(JX, Y )QJZ] +
r

(n+ 2)(n+ 4)
[g(Y, Z)X − g(X,Z)Y

+ g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ]. (1.1)
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where X, Y, Z denote arbitrary vector fields on M . We will follow this no-
tation throughout this paper. A Kähler manifold M is said to be Bochner-
Kähler if the Bochner tensor vanishes on M . The curvature tensor of a
Riemannian metric decomposes under the orthogonal group as the sum of
three irreducible parts, namely the scalar curvature, traceless Ricci tensor
and the Weyl tensor. As observed by Bochner, the curvature tensor of a
Kähler metric decomposes under the unitary group as the sum of three ir-
reducible parts, namely the scalar curvature, traceless Ricci tensor and the
Bochner curvature tensor. For n > 4, a conformally flat Kähler manifold is
flat, however for n = 4, the conformal flatness of a Kähler metric implies only
that it is Bochner-Kähler with vanishing scalar curvature. A Kähler manifold
has constant holomorphic sectional curvature if and only if it is Einstein and
Bochner-Kähler. It was shown by Matsumoto [11] that a Bochner-Kähler
manifold of constant scalar curvature is locally symmetric. Matsumoto and
Tanno [12] showed that a locally symmetric Bochner-Kähler manifold is lo-
cally isometric to either (i) a space of constant holomorphic sectional cur-
vature, or (ii) the product of two complex spaces of constant holomorphic
sectional curvatures c and −c. Thus, a Bochner-Kähler manifold of constant
scalar curvature is locally either (i) or (ii). For details, we refer to the funda-
mental work of Bryant [3]. Bochner-Kähler manifolds were also studied by
Chen [5], Deprez [7], Ganchev and Mihova [10], Tachibana [15], Tachibana
and Liu [16], Calvaruso [4], Olszak [13], and others.

As the space of constant holomorphic sectional curvature is Einstein, we
recall a generalization of Einstein metrics, called Bach flat metrics for which
the Bach tensor vanishes. The notion of Bach tensor was introduced by R.
Bach [1] to study conformal relativity. This is a symmetric traceless (0, 2)
type tensor B on an n-dimensional Riemannian manifold (M, g), defined as

B(X, Y ) =
1

n− 1
(∇ei∇ejW )(X, ei, ej, Y )

+
1

n− 2
Ric(ei, ej)W (X, ei, ej, Y )

which can also be expressed as (Chen and He [6])

B(X, Y ) =
1

n− 2
[(∇eiC)(ei, X)Y − g(QW (X, ei)Y, ei)], (1.2)

where i is summed over 1, 2, 3, ..., n and C is the (0, 3)-type Cotton tensor
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defined by

C(X, Y )Z = (∇XRic)(Y, Z)− (∇YRic)(X,Z)

−
1

2(n− 1)
[g(Y, Z)(Xr)− g(X,Z)(Y r)] (1.3)

and W is the Weyl conformal curvature tensor defined by

W (X, Y )Z = R(X, Y )Z +
1

n− 2
[g(QX,Z)Y − g(QY,Z)X

+ g(X,Z)QY − g(Y, Z)QX

−
r

(n− 1)(n− 2)
[g(X,Z)Y − g(Y, Z)X]. (1.4)

The Riemannian metric is said to be Bach flat if B = 0. In view of the defi-
nition (1.2), we see that Bach flatness is a natural generalization of Einstein
and conformal flatness. We also note that Bach flat metrics in dimension 4
are the critical points of the Weyl functional W(g) =

∫
M
|Wg|

2dvolg.

The 4-dimensional half-conformally flat (i.e. self-dual or anti-self-dual) met-
rics are Bach flat. We also note that the Weyl curvature tensor of a Kähler
metric is not simply the Bochner curvature tensor, e.g. for a Kähler manifold
of real dimension n = 4, the Bochner curvature tensor turns out to be W−,
the anti-self-dual part of the Weyl tensor, and hence the Bochner-Kähler
metrics for n = 4 are the same as the self-dual Kähler metrics (Bryant [3])
and thus are Bach flat, and moreover locally conformally Einstein (Derdzin-
ski [8]). These facts motivate us to examine Bochner-Kähler manifolds that
are also Bach flat. The standard example of this situation is a complex space
of constant holomorphic sectional curvature because it is Bochner-Kähler as
well as Einstein. We obtain the following result.

Theorem 1.1 A Bochner-Kähler Bach flat manifold (M,J, g) of real dimen-

sion n > 4 is either a space of constant holomorphic sectional curvature or

locally, the product of two complex spaces of constant holomorphic sectional

curvatures c and −c.

2 Preliminaries

A smooth oriented manifold M is said to be a Kähler manifold if it carries
a global (1,1)-tensor field J and a Riemannian metric such that J2 = −I,
g(JX, JY ) = g(X, Y ) and ∇J = 0. It is orientable and has real even dimen-
sion n, and symplectic 2-form Ω defined by Ω(X, Y ) = g(X, JY ). The Ricci

3



2-form ρ defined by ρ(X, Y ) = Ric(X, JY ) is closed. A Kähler manifold has
the following properties:

Ric(JX, JY ) = Ric(X, Y ), QJ = JQ. (2.1)

The covariant derivative of the Ricci tensor of a Bochner-Kähler manifold is
given by

(2n+ 4)(∇XRic)(Y, Z) = g(X, Y )(Zr) + g(X,Z)(Y r) + 2g(Y, Z)(Xr)

− g(JX, Y )(JZr)− g(JX,Z)(JY r). (2.2)

We denote the gradient operator of g by D and the Laplacian of a smooth
function by ∆ = −div ◦D. Let (ei)[i = 1, 2, 3, ..., n] be a local orthonormal
frame on M . If an index i is repeated in an expression, then there is a
summation over the range of i.

3 Lemmas

We now prove two Lemmas.

Lemma 3.1 For a Bochner-Kähler manifold (M,J, g), the following formu-

las hold.

(n+ 4)g(R(X, ei)Z,Qei) = −4g(Q2X,Z)−
nr

n+ 2
g(QX,Z),

+ (|Q|2 −
r2

n+ 2
)g(X,Z), (3.1)

2(n+ 2)[g(Q2X, Y ) − g(R(X, ei)Z,Qei)]

+ (∆r)g(X, Y ) + ng(∇XDr, Y ), (3.2)

1

n+ 4
{ng(Q2X, Y ) − |Q|2g(X, Y )}

−
r

(n+ 2)(n+ 4)
{ng(QX, Y )− rg(X, Y )}

= −
1

2(n+ 2)
[(∆r)g(X, Y ) + ng(∇XDr, Y ). (3.3)
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Proof. By hypothesis B = 0. So, making use of (1.1), replacing Y by ei,
taking its inner product with Qei and then summing over i, together with
the J-invariance (2.1) of Q one gets (3.1). Next, re-writing (2.2) as

2(n+ 2)(∇XQ)Y = g(X, Y )Dr + g(Y,Dr)X + 2g(X,Dr)Y

+ g(JX, Y )JDr − g(JY,Dr)JX, (3.4)

using it in the Ricci identity:

R(Z,X)QY −QR(Z,X)Y = (∇Z∇XQ−∇X∇ZQ−∇[Z,X]Q)Y,

substituting ei for Z and taking its inner product with ei provides

2(n+ 2)[g(Q2X, Y )− g(R(ei, X)Y,Qei)] =

− [(∆r)g(X, Y ) + g(∇JXDr, JY ) + (n− 1)g(∇XDr, Y )] (3.5)

where we have used the equation g(∇eiDr, Jei) = 0 which can be obtained
by taking the local orthonormal frame {ei} as a J-adapted frame {ea, Jea :
a = 1, 2, ..., n

2
}, and the following computation:

g(∇eiDr, Jei) = g(∇eaDr, Jea) + g(∇JeaDr, J2ea)

= g(∇eaDr, Jea)− g(∇JeaDr, ea) = 0,

through Poincaré lemma: d2 = 0. Using (3.1) in (3.5) yields

1

n+ 4
{ng(Q2X, Y )− |Q|2g(X, Y )} −

r

(n+ 2)(n+ 4)
{ng(QX, Y )

− rg(X, Y )} = −
1

2(n+ 2)
[(∆r)g(X, Y )

+ (n− 1)g(∇XDr, Y ) + g(∇JXDr, JY ). (3.6)

Substituting JX and JY for X and Y respectively, in the foregoing equation,
using (2.1) and then subtracting the resulting equation from (3.6) shows that

g(∇JXDr, JY ) = g(∇XDr, Y ). (3.7)

Consequently, (3.6) takes the form of equation (3.3). In addition, equation
(3.5) assumes the form of equation (3.2), completing the proof of Lemma 1.

Lemma 3.2 For a Bochner-Kähler manifold, Dr is analytic, and satisfies

the equation: 2Ric(X,Dr) = X(∆r).
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Though this lemma occurs in Ganchev and Mihova [10], we include its proof
for the sake of completeness.

Proof. Denoting the Lie-derivative operator by L, we have (LDrJ)X =
LDrJX − J(LDrX) = −∇JX + J∇XDr. Using this and (3.7) we find that
g((LDrJ)X, JY ) = 0. Hence LDrJ = 0, i.e. Dr is analytic. Now we recall
the commutation formula (Duggal and Sharma [9], p. 39):

(LDr∇XJ −∇XLDrJ − ∇[Dr,X]J)Y

= (LDr∇)(X, JY )− J((LDr∇)(X, Y )).

Using ∇J = 0 and LDrJ = 0 in the above formula, and substituting X = ei,
Y = Jei we get (LDr∇)(ei, ei) + J(LDr∇)(ei, ei) = 0. The second term
vanishes, because (LDr∇)(X, Y ) and g(X, JY ) are symmetric and skew-
symmetric respectively, in X, Y . Hence (LDr∇)(ei, ei) = 0, i.e.

∇ei∇eiDr −∇∇ei
eiDr +R(Dr, ei)ei = 0

which is essentially, (∇i∇i + Q)Dr = 0 [∇i∇i is the rough Laplacian in
terms of a local coordinate system]. As the Hodge Laplacian acts on Dr as
(−∇i∇i + Q)Dr, the preceding equation assumes the form ∆Dr = 2QDr,
completing the proof.

4 Proof Of Theorem 1

In order to compute the Bach tensor of the Bochner-Kähler manifold, we
compute each term of the right hand side of (1.2) separately. To compute
the first term, we use (2.2) in (1.3) to get

(2n+ 4)C(X, Y )Z = −
3

n− 1
{g(Y, Z)g(X,Dr)− g(X,Z)g(Y,Dr)}

− 2g(JX, Y )g(JZ,Dr)− g(JZ, Y )g(JX,Dr)

− g(JX,Z)g(JY,Dr). (4.1)

Taking its covariant derivative along an arbitrary vector field U , and substi-
tuting ei for U and X, and using the equation (3.7) along with the property:
g(Jei,∇eiDr) = 0 noted earlier, we find that

(∇eiC)(ei, Y )Z =
3∆r

(2n+ 4)(n− 1)
g(Y, Z)

+
3n

(2n+ 4)(n− 1)
g(Y,∇ZDr). (4.2)
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Next, the use of equation (1.4) in conjuction with (3.1) shows that the second
term turns out to be

g(QW (X, ei)Z, ei) = −
6n

(n+ 4)(n− 2)
g(Q2X,Z)

+
3n(3n+ 2)r

(n− 1)(n− 2)(n+ 2)(n+ 4)
g(QX,Z)

+[
6|Q|2

(n+ 4)(n− 2)
−

3r2(3n+ 2)

(n− 1)(n− 2)(n+ 2)(n+ 4)
]g(X,Z).

At this point, we use the Bach flatness. Substituting the above expression
and (4.2) in the Bach tensor (1.2) and using the hypothesis:B = 0 provides

3n(3n+ 2)r

(n− 1)(n− 2)(n+ 2)(n+ 4)
g(QX,Z)−

6n

(n+ 4)(n− 2)
g(Q2X,Z)

+[
6TrQ2

(n+ 4)(n− 2)
−

3r2(3n+ 2)

(n− 1)(n− 2)(n+ 2)(n+ 4)
]g(X,Z)

−
3∆r

(2n+ 4)(n− 1)
g(Y, Z)−

3n

(2n+ 4)(n− 1)
g(Y,∇ZDr) = 0.

Eliminating the covariant derivative of Dr between the above equation and
equation (3.3) of Lemma 1, we get

n{ng(Q2X,Z)− |Q|2g(X,Z)} = 2r{ng(QX,Z)− rg(X,Z)}. (4.3)

Next, eliminating Q2 between (4.3) and (3.3) gives the equation

(∇XDr +
∆r

n
X) +

2r

n
(QX −

r

n
X) = 0 (4.4)

which shows that g is locally conformally Einstein, i.e. r−2g is Einstein over
an open dense subset of M on which r 6= 0. Computing R(X, Y )Dr through
(4.4), substituting ei for X, taking inner product with ei, and using the twice
contracted Bianchi’s second identity: divQ = 1

2
dr yields

(n+ 2)Ric(Y,Dr) +
(n− 4)

n
r(Y r) = (n− 1)(Y∆r). (4.5)

At this point, we use Lemma 2 to eliminate Y∆r from the above equation
and thus obtain

(n− 4)[S(Y,Dr)−
r

n
g(Y,Dr)] = 0. (4.6)
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By hypothesis, n > 4, and so we conclude

QDr =
r

n
Dr. (4.7)

Substituting Dr for Z in (4.3) and using (4.7) provides

[|Q|2 −
r2

n
]Dr = 0. (4.8)

Since |Q− r
n
I|2 = |Q|2 − r2

n
, equation (4.8) assumes the form

|Q−
r

n
I|2Dr = 0. (4.9)

Now, either (i) r is constant on M , or (ii) Dr 6= 0 on an open dense subset
U of M . In case (ii), (4.9) implies that g is Einstein and hence r is constant,
i.e. Dr = 0 on U which is a contradiction. Hence case (ii) is ruled out, and
therefore r is constant on M . So, applying the results of Matsumoto [11] and
Matsumoto and Tanno [12] mentioned in Section 1, we complete the proof.

5 Real 4-dimensional Case

We prove the following result.

Proposition 5.1 If the scalar curvature of a real 4-dimensional Bochner-

Kähler manifold is harmonic, then it is constant.

Proof. As the real 4-dimensional Bochner-Kähler manifold is self-dual, it is
Bach flat. For any 4-dimensional Kähler manifold we know [8] that equation
(4.3) holds identically, and therefore equation (3.3) implies (4.4), i.e. g is
locally conformally Einstein [8], precisely: r−2g is Einstein when r 6= 0. To
prove the proposition, let us assume that r is not constant, and hence Dr 6= 0
on some open dense subset U ofM . By Lemma 2, and the hypothesis ∆r = 0,
we have QDr = 0. Differentiating it along an arbitrary vector field X, using
(4.4) and contracting the resulting equation with respect to X gives

|Dr|2 − r|Q|2 +
r3

4
= 0 (5.1)

Next, using QDr = 0 in equation (4.3) we get r2 = 2|Q|2. Eliminating |Q|
between the preceding equation and (5.1) we find

4|Dr|2 = r3 (5.2)
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At this point, we recall the following fact (Prop. 4 of [8]) for a 4-dimensional
Bach flat Kähler manifold:

r3 − 6r∆r − 12|Dr|2

is constant. As ∆r = 0, the aforementioned fact means that r3 − 12|Dr|2

is constant. This, in conjunction with (4.2), shows that r is constant, and
hence Dr = 0 on U , contradicting our assumption. This completes the proof.

Remark In the compact case, the hypothesis ∆r = 0 of Proposition 1 auto-
matically implies, by Hopf’s lemma, that r is constant.

6 More On Bochner-Kähler Manifolds

We recall (Stepanov and Shelepova[14]) that a vector field V on a Riemannian
manifold (M, g) is called an infinitesimal harmonic transformation if the 1-
parameter group of local transformations of (M, g) generated by V consists of
local harmonic diffeomorphisms, and is defined by the equation gijLV Γ

k
ij = 0,

where Γk
ij are the connection coefficients of gij. Such a V was called a geodesic

vector field (not to be confused with a vector field whose integral curves are
geodesics) by Yano and Nagano [18]. Basically, this means that V preserves
the geodesics on the average, and is equivalent to the equation �V = 0,
where � is the Yano operator (Yano [17]) which is self-adjoint and acts on
a smooth vector field V such that �V is a vector field with components
−(gjk∇j∇kV

i + Ri
jV

j). For a Bochner-Kähler manifold, during the proof
of Lemma 3.2, we observed that Dr satisfies �Dr = 0. So, for a Bochner-
Kähler manifold, the gradient of the scalar curvature ∈ Ker(�) ,and hence
is an infinitesimal harmonic transformation. We state this as follows.

Proposition 6.1 The gradient of the scalar curvature of a Bochner-Kähler

manifold lies in the kernel of the Yano operator, and hence is an infinitesimal

harmonic transformation.

Another example of an infinitesimal harmonic transformation is the associ-
ated vector field V of a Ricci soliton defined by LV g + 2Ric = 2λg on a
Riemannian manifold (M, g), where λ is a dilation constant [14].

For a Bochner-Kähler manifold, it is known [10] that the vector field JDr

is Killing and analytic. Hence Dr is also analytic, and [Dr, JDr] = 0. But
Dr is not necessarily Killing. If r is constant, then, evidently, the right
side of equation (3.3) vanishes. The vanishing of the right side of equation
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(3.3) means that Dr is conformal. We examine this condition and prove the
following.

Proposition 6.2 If the gradient of the scalar curvature r of a Bochner-

Kähler manifold M is conformal, then r is constant.

Proof. By hypothesis, LV g = 2σg for a smooth function σ on M , equiva-
lently,

∇XDr = σX. (6.1)

The g-trace of the above equation is

∆r = −nσ. (6.2)

A straightforward computation using (6.1) and (6.2) provides

Ric(X,Dr) =
n− 1

n
X(∆r).

This, in conjunction with Lemma 3.1, implies that ∆r is constant, and so
QDr = 0. Now, using this in (3.3) with X = Dr, we obtain

(r2 − (n+ 2)|Q|2)Dr = 0. (6.3)

We claim that r is constant. Assume that it is not true. ThenDr 6= 0 on some
open dense subset U of M . So, in view of the identity: |Q|2 = |Q− r

n
I|2+ r2

n
,

(6.3) implies that

n(n+ 2)|Q−
r

n
I|2 + 2r2 = 0

Thus we conclude thatQ = r
n
I and r = 0 on U , contradicting our assumption,

and hence completing the proof.
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