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ABSTRACT Our paper is focused on spaces of generalized almost periodic
functions which, as in classical Fourier analysis, are associated with a Fourier
series with real frequencies. In fact, based on a pertinent equivalence relation
defined on the spaces of almost periodic functions in Bohr, Stepanov, Weyl and
Besicovitch’s sense, we refine the Bochner-type property by showing that the
condition of almost periodicity of a function in any of these generalized spaces
can be interpreted in the way that, with respect to the topology of each space,
the closure of its set of translates coincides with its corresponding equivalence
class.
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1 Introduction

The theory of almost periodic functions was mainly created during the 1920’s by
the Danish mathematician H. Bohr (1887-1951). The definition given by Bohr
of an almost periodic function is based upon two properly generalized concepts:
the periodicity to the so-called almost periodicity, and the periodic distribution
of periods to the so-called relative density of almost periods. Specifically, let
f(t) be a real or complex function of an unrestricted real variable t, the notion
above of almost periodicity involves the fact that f(t) must be continuous, and
for every ε > 0 there corresponds a number l = l(ε) > 0 such that each interval
of length l contains a number τ satisfying |f(t+ τ)− f(t)| < ε for all t. We will
denote as AP (R,C) the space of almost periodic functions in the sense of this
definition (Bohr’s condition).

The theory of almost periodic functions opened a way to study a wide class
of trigonometric series of the general type and even exponential series (in this
context, we can cite among others the papers [3, 4, 5, 6, 8, 11]). Furthermore, it
has many important applications in problems of ordinary differential equations,
dynamical systems, stability theory and partial differential equations (see for
example recent developments in [10, 12, 13]). A very important result of this
theory is the approximation theorem according to which the class of almost peri-
odic functions AP (R,C) coincides with the class of limit functions of uniformly

1This is a preprint of an article published in Mediterranean Journal of Mathematics. The
final authenticated version is available online at: https://doi.org/10.1007/s00009-020-01628-x
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convergent sequences of trigonometric polynomials of the type

a1e
iλ1t + . . .+ ane

iλnt (1)

with arbitrary real exponents λj and arbitrary complex coefficients aj . More-
over, an equivalent definition for AP (R,C), called normality, was provided by
S. Bochner (in fact, sometimes it is called the Bochner-type definition) and it
makes use of the generalization of the relative compactness, in the sense of uni-
form convergence, of translates of a continuous periodic function. Specifically,
AP (R,C) consists of the continuous functions f : R 7→ C such that, given any se-
quence {hj}j≥1 of real numbers, there exists a subsequence {hjk}k≥1 ⊂ {hj}j≥1

satisfying that the sequence of functions {f(t+hjk)}k≥1 is uniformly convergent.
In the course of time, Bohr’s theory has been developed by a number of

outstanding mathematicians. Indeed, several variants and extensions of Bohr’s
concept were introduced by A. S. Besicovitch, W. Stepanov and H. Weyl. We
next provide their description, in the following three paragraphs, as a means for
the reader to readily review their historical development and identify the rela-
tionship between them. It is already worth keeping in mind that any generalized
almost periodic function f(t) which is considered in this paper (the same as in
[3]) has a Fourier series in the form of a general trigonometric series

∑
ane

iλnt,
where λn ∈ R are called Fourier exponents and ak are the coefficients of f (see
[3, p. 104]).

In this respect, the first generalizations of almost periodic functions in Bohr’s
sense were given by Stepanov [16], who succeeded in removing the continuity
restrictions and characterize this new class in terms of mean values over integrals
of fixed length. To do this, let M(R,C) be the more general space of locally

integrable maps f from R into C satisfying sup{
∫ x+1

x
|f(t)| dt : x ∈ R} <∞. It

is not difficult to prove that |f |M := sup{
∫ x+1

x
|f(t)| dt : x ∈ R} defines a norm

on M(R,C) and, in fact, M(R,C) is a Banach space endowed with this norm.
In this way, the space S(R,C) of almost periodic functions in Stepanov sense is
the closure in M(R,C) of the set of trigonometric polynomials of the form (1).
With this definition, S(R,C) is a Banach space over the complex field C and it
is verified that AP (R,C) ⊂ S(R,C). In general, the norm

‖f‖Sp := sup

{(∫ x+1

x

|f(t)|p dt
)1/p

: x ∈ R

}
leads us to the spaces Sp(R,C), 1 ≤ p < ∞. However, it is accomplished that
Sp(R,C) ⊂ S(R,C), which tells us that the space S(R,C) is the richer space of
almost periodic functions in Stepanov’s sense. Furthermore, the spaces Sp(R,C)
can also be characterized through a Bohr-type definition in the sense that a
locally integrable map f from R into C is in Sp(R,C) if and only if for every
ε > 0 there corresponds a relatively dense set of real numbers {τ} satisfying
‖f(t + τ) − f(t)‖Sp < ε (see [3, pp. 79,88]). In the same way, this notion is
also equivalent in this case to the Sp-normality, i.e. the relative compactness,
with respect to the topology given by ‖ · ‖Sp , of the family of the translates
{f(t+ h)}, h ∈ R (see for example [2, Theorem 3.5]).
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A generalization of these functions was given by H. Weyl through the spaces
which we will denote as W p(R,C) ⊃ Sp(R,C), 1 ≤ p < ∞. Specifically, the
functions in W p(R,C) are obtained by the completion of the trigonometric poly-
nomials of the form (1) with respect to the seminorm

‖f‖Wp := lim
l→∞

sup


(

1

l

∫ x+l

x

|f(t)|p dt

)1/p

: x ∈ R

 .

Equivalently, a locally integrable map f from R into C is in W p(R,C) if and only
if for every ε > 0 there corresponds a relatively dense set {τ} of real numbers
and a number L0 > 0 satisfying

sup


(

1

l

∫ x+l

x

|f(t+ τ)− f(t)|p dt

)1/p

: x ∈ R

 < ε ∀τ ∈ {τ} ∀l ≥ L0,

i.e.
‖f(t+ τ)− f(t)‖Sp

l
< ε ∀τ ∈ {τ} ∀l ≥ L0,

where ‖f‖Sp
l

:= sup


(

1

l

∫ x+l

x

|f(t)|p dt

)1/p

: x ∈ R

, l > 0. (See for exam-

ple [3, pp. 82,88], [9, p. 5] or [2, Definition 4.1 and p. 140] where the functions
in this space are also called equi-almost-periodic in the sense of Weyl). In this
case, the analogous theorem for the W p-normality is stated in the sense that a
locally integrable map f from R into C is in W p(R,C) if and only if the family
of the translates {f(t + h)}, h ∈ R, is relatively compact with respect to the
topology given by ‖ · ‖Sp

l
, for l sufficiently large (see [2, Definition 4.2 and Theo-

rem 4.12]). Furthermore, every function in the space W p(R,C) satisfies the fact
that the family of the translates {f(t + h)}, h ∈ R, is relatively compact with
respect to the topology given by ‖ · ‖Wp (see [2, Definition 4.5 and Theorem
4.25]). However, W p(R,C) is not a complete space (see for example [7, Section
2.3]).

On the other hand, the Besicovitch spaces Bp(R,C), 1 ≤ p < ∞, are ob-
tained by the completion of the trigonometric polynomials of the form (1) with
respect to the topology, which is weaker than that of the uniform convergence,
given by the seminorms

‖f‖Bp :=

(
lim sup
l→∞

1

2l

∫ l

−l
|f(t)|p dt

)1/p

.

Equivalently, the functions in Bp(R,C) satisfy that for every ε > 0 there cor-
responds a satisfactorily uniform set {τk}k∈Z of real numbers (i.e. there exists
l > 0 such that the ratio of the maximum number of terms of {τk} included in
an interval of length l to the minimum number is less than 2), with τi < τj if
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j < i, such that ‖f(t+ τk)− f(t)‖Bp < ε for each k, and that for every c > 0

lim sup
T→∞

(
1

2T

∫ T

−T

(
lim sup
n→∞

1

2n+ 1

n∑
k=−n

1

c

∫ x+c

x

|f(t+ τk)− f(t)|p dt

)
dx

) 1
p

< ε.

(See [3, pp. 78, 95, 100] or [2, Theorem 5.12]). For this case, if f ∈ Bp(R,C)
then it is accomplished the relative compactness, with respect to the topology
given by ‖·‖Bp , of the family of its translates {f(t+h)}, h ∈ R (see [2, Theorem
5.34]).

It is worth noting that, in general, when we write that a function f is in
one of these spaces we do not have in mind the function f itself, it does repre-
sent a whole class of equivalent functions according to the relation f1 ' f2

given by the corresponding seminorm (which certainly becomes a norm on
the spaces composed of equivalence classes). Moreover, the space B1(R,C)
is denoted by B(R,C) and it contains AP (R,C), S(R,C), W (R,C) and all
spaces of almost periodic functions we have discussed so far. In fact, it is
satisfied that AP (R,C) ⊂ S2(R,C) ⊂ W 2(R,C) ⊂ B2(R,C) ⊂ B(R,C) and
AP (R,C) ⊂ S(R,C) ⊂ W (R,C) ⊂ B(R,C). Furthermore, for every function
f ∈ B(R,C) there exists the mean value

M(f) = lim
l→∞

1

2l

∫ l

−l
f(t) dt

and, at most, a countable set of values of λk ∈ R such that ak = a(f, λk) =
M(f(t)e−iλkt) 6= 0. In this way, the series

∑
k≥1 ake

iλkt is called the Fourier
series of f [8, Section 4.2].

For our purposes, it will be worth taking into consideration that if an almost
periodic function f has as Fourier series

∑
k≥1 ake

iλkt, then f can be approxi-
mated, with respect to its corresponding topology, by (Bochner-Fejér’s) polyno-

mials of the form P fk (t) =
∑
j≥1 pj,kaje

iλjt, where the terms pj,k only depend
on the frequency λj not on the function f (see the Bochner-Fejér’s method of
summation [3, Chapter 1, Section 9], [3, p. 105, Theorem II] or [7, pp. 46-47]).

Besicovitch’s generalization is interesting because, for this extension, the
analogue of the Riesz-Fischer theorem is also valid, that is to say, any trigono-
metric series

∑
n≥1 ane

iλnt, with
∑
n≥1 |an|2 < ∞, is the Fourier series of a

B2(R,C) almost periodic function [3, p. 110] (in this sense, B2(R,C) is also
called AP2(R,C) in [8]). This is not the case for some Stepanov or Weyl func-
tions [11]. Note that Riesz-Fischer theorem was used in [15] in order to obtain
our results for these spaces (see the proof of [15, Lemma 1]).

Precisely, in the context of the Besicovitch almost periodic functionsB(R,C),
among which it was considered an equivalence relation in terms similar to Bohr’s
equivalence relation on general Dirichlet series (see [15, Definition 5]), the main
result of [15] states that, given an almost periodic function in B2(R,C), the
limit points of the set of its translates are precisely the functions which are
equivalent to it. Likewise, in terms of this equivalence relation on the space
AP (R,C), the paper [14] refined Bochner’s result in the sense that we proved
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that the condition of almost periodicity (in AP (R,C)) is equivalent to that
every sequence of translates has a subsequence that converges uniformly to an
equivalent function.

In this paper we show that the Bochner-type property, which is satisfied for
all these classes of generalized almost periodic functions, can be refined in the
sense that the condition of almost periodicity (in AP (R,C), Sp(R,C), W p(R,C)
or Bp(R,C)) implies that every sequence of translates has a subsequence that
converges, with respect to the topology of the corresponding space, to an equiv-
alent function (see Theorem 14 and Corollary 16). This means that, while it
is true that the proofs of the intermediate results of this paper are notably dif-
ferent from those of [14, 15], the main results of both papers [14, 15] are now
extended to all these spaces. In fact, we can go further by extending these re-
sults to every existing space of generalized almost periodic functions satisfying
the appropriate conditions (see Remark 17).

2 Preliminaries

We shall refer to the expressions of the type

P1(p)eλ1p + . . .+ Pj(p)e
λjp + . . .

as exponential sums, where the frequencies λj are complex numbers and the
Pj(p) are polynomials in p. In this paper we are going to consider some functions
which are associated with a concrete subclass of these exponential sums, where
the parameter p will be changed by t in the real case. In this way, as in [14], we
take the following definition.

Definition 1 Let Λ = {λ1, λ2, . . . , λj , . . .} be an arbitrary countable set of dis-
tinct real numbers, which we will call a set of exponents or frequencies. We will
say that an exponential sum is in the class SΛ if it is a formal series of type∑

j≥1

aje
λjp, aj ∈ C, λj ∈ Λ. (2)

We next consider the same equivalence relation on the classes SΛ as that of
[15, Definition 2].

Definition 2 Given an arbitrary countable set Λ = {λ1, λ2, . . . , λj , . . .} of dis-
tinct real numbers, consider A1(p) and A2(p) two exponential sums in the class
SΛ, say A1(p) =

∑
j≥1 aje

λjp and A2(p) =
∑
j≥1 bje

λjp. We will say that A1

is ∗-equivalent to A2 (in that case, we will write A1
∗∼ A2) if for each integer

value n ≥ 1, with n ≤ ]Λ, there exists a Q-linear map ψn : Vn → R, where Vn
is the Q-vector space generated by {λ1, λ2, . . . , λn}, such that

bj = aje
iψn(λj), j = 1, . . . , n.
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Let GΛ = {g1, g2, . . . , gk, . . .} be a basis of the vector space over the rationals
generated by a set Λ of exponents, which implies that GΛ is linearly independent
over the rationals and each λj is expressible as a finite linear combination of
terms of GΛ, say

λj =

qj∑
k=1

rj,kgk, for some rj,k ∈ Q. (3)

By abuse of notation, we will say that GΛ is a basis for Λ. Moreover, we will
say that GΛ is an integral basis for Λ when rj,k ∈ Z for any j, k. Now, the
equivalence relation introduced in Definition 2 can be characterized in terms of
a basis for Λ (see the proof in [15, Proposition 1]).

Proposition 3 Given Λ = {λ1, λ2, . . . , λj , . . .} a set of exponents, consider
A1(p) and A2(p) two exponential sums in the class SΛ, say A1(p) =

∑
j≥1 aje

λjp

and A2(p) =
∑
j≥1 bje

λjp. Fixed a basis GΛ for Λ, for each j ≥ 1 let rj be

the vector of rational components satisfying (3). Then A1
∗∼ A2 if and only

if for each integer value n ≥ 1, with n ≤ ]Λ, there exists a vector xn =
(xn,1, xn,2, . . . , xn,k, . . .) ∈ R]GΛ such that bj = aje

<rj ,xn>i for j = 1, 2, . . . , n.

Furthermore, if GΛ is an integral basis for Λ then A1
∗∼ A2 if and only if there

exists x0 = (x0,1, x0,2, . . . , x0,k, . . .) ∈ R]GΛ such that bj = aje
<rj ,x0>i for every

j ≥ 1.

In particular, the coefficients of ∗-equivalent exponential sums have the same
modulus [15, Remark 1].

In the last part of this section, we focus our attention on the following classes
of finite exponential sums or trigonometric polynomials.

Definition 4 Let Λ = {λ1, . . . , λn} be a set of n ≥ 1 distinct real numbers. We
will say that a function f : R 7→ C is in the class PR,Λ if it is of the form

f(t) = a1e
iλ1t + . . .+ ane

iλnt, aj ∈ C, λj ∈ Λ, j = 1, . . . , n.

It is clear that Definition 2 can be particularized to the classes PR,Λ. Note
that if the set of exponents Λ is finite it is always feasible to find an integral
basis for Λ.

In the context of trigonometric polynomials, we next prove the following
result which will be very useful to get the main results in this paper.

Proposition 5 Given Λ = {λ1, λ2, . . . , λn} a finite set of exponents, let f1(t) =∑n
j=1 aje

iλjt and f2(t) =
∑n
j=1 bje

iλjt be two ∗-equivalent functions in the class
PR,Λ. Given ε > 0, there exists a relatively dense set A of real numbers such
that

‖f1(t+ τ)− f2(t)‖G ≤ ε ∀τ ∈ A,

where G could be Sp, Spl , W p or Bp, with 1 ≤ p <∞ and l > 0.
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Proof. Fixed ε > 0, by [15, Corollary 1] we assure the existence of a rela-
tively dense set A of real numbers τ such that |f1(t + τ) − f2(t)| < ε ∀t ∈ R.
Consequently, by virtue of [3, p. 73] (or [2, p. 170]), every τ ∈ A satisfies

‖f1(t+ τ)− f2(t)‖G ≤ sup{|f1(t+ τ)− f2(t)| : t ∈ R} ≤ ε,

which proves the result.

We recall that if Λ is a finite set of exponents and G is an equivalence class
in PR,Λ/

∗∼, then G is compact with respect to the topology of the uniform
convergence (see [15, Proposition 3]).

3 Generalized almost periodic functions in terms
of an equivalence relation

As we showed in the introduction, every space of generalized almost periodic
functions is associated with a concrete distance or metric. When we wish refer
to a function of one of these spaces or a distance without specifying a definite
kind we shall write a G-a.p. function or ‖ · ‖G, respectively, where G could
be Sp, W p, Bp, with 1 ≤ p < ∞, or even AP (associated with the uniform
convergence).

Note that, by [3, p. 109], if two G-a.p. functions f1(t) and f2(t) have the
same Fourier series, then ‖f1(t)− f2(t)‖G = 0. Therefore, when we write that a
function f(t) is in these spaces we do not have in mind the function f(t) itself, it
does represent a whole class of equivalent functions. We will denote as G(R,C)
this space of equivalence classes of G-a.p. functions.

For our purposes, it is also worth taking into consideration that the Bochner-
Fejér’s method of summation, which is very important in the class AP (R,C)
(see, in this regard, [3, Chapter 1, Section 9]), can be transferred to the G-
a.p. functions in the sense that if a function f(t) belongs to G(R,C), then any

Bochner-Fejér’s sequence P fk (t) satisfies ‖f(t)−P fk (t)‖G → 0 as k →∞ (see [3,
p. 105, Theorem II] or [7, pp. 46-47]).

We next focus our attention on the following classes of almost periodic func-
tions in G(R,C).

Definition 6 Let Λ = {λ1, λ2, . . . , λj , . . .} be an arbitrary countable set of dis-
tinct real numbers. We will say that a function f : R→ C is in the class FG,Λ
if it is an almost periodic function in G(R,C) whose associated Fourier series
is of the form ∑

j≥1

aje
iλjt, aj ∈ C, λj ∈ Λ. (4)

In terms of Definition 2, we can define an equivalence relation on the func-
tions in the classes FG,Λ. More specifically, we establish the following definition.
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Definition 7 Given Λ = {λ1, λ2, . . . , λj , . . .} a set of exponents, consider the
functions f1, f2 ∈ G(R,C) whose associated Fourier series are respectively given
by ∑

j≥1

aje
iλjt and

∑
j≥1

bje
iλjt, aj , bj ∈ C, λj ∈ Λ.

We will say that f1 is ∗-equivalent to f2 if for each integer value n ≥ 1, with
n ≤ ]Λ, there exists a Q-linear map ψn : Vn → R, where Vn is the Q-vector
space generated by {λ1, λ2, . . . , λn}, such that

bj = aje
iψn(λj), j = 1, . . . , n.

In that case, we will write f1
∗∼ f2.

The next important lemma allows us to prove that if a function f2 is ∗-
equivalent (in the sense of Definition 7) to a function f1 belonging to the space
G(R,C), then f2 also belongs to G(R,C).

Lemma 8 Let f1(t) ∈ G(R,C) be an almost periodic function whose Fourier
series is given by

∑
j≥1 aje

iλjt, aj ∈ C, where {λ1, . . . , λj , . . .} is a set of dis-

tinct exponents. Consider bj ∈ C such that
∑
j≥1 bje

iλjt and
∑
j≥1 aje

iλjt are
∗-equivalent. Then

∑
j≥1 bje

iλjt is the Fourier series associated with an almost

periodic function f2(t) ∈ G(R,C) so that f1
∗∼ f2.

Proof. Take Λ = {λ1, . . . , λj , . . .}. By hypothesis, f1 ∈ FG,Λ ⊂ G(R,C) is
determined by a series of the form

∑
j≥1 aje

iλjt, aj ∈ C, λj ∈ Λ. In virtue

of [7, pp. 46-47] or [3, p. 105], let Pk(t) =
∑
j≥1 pj,kaje

iλjt, k = 1, 2, . . .,
be the Bochner-Fejér polynomials which converge to f1 with respect to the
topology of G(R,C) (in fact, pj,k → 1 as k → ∞). Now take τ ∈ R, then
Pk,τ (t) =

∑
j≥1 pj,kaje

iλj(t+τ), k = 1, 2, . . ., are the Bochner-Fejér polynomials
which converge to f1,τ (t) := f1(t + τ), t ∈ R. On the other hand, let Qk(t) :=∑
j≥1 pj,kbje

iλjt, with t ∈ R and k = 1, 2, . . .. Given ε > 0, by [15, Corollary 1],
there exists a relatively dense set of real numbers τ such that∣∣∣∣∣∣

∑
j≥1

pj,kaje
iλj(t+τ) −

∑
j≥1

pj,kbje
iλjt

∣∣∣∣∣∣ < ε

3
∀t ∈ R.

Thus, by virtue of [3, p. 73], for this set of real numbers τ it is satisfied∥∥∥∥∥∥
∑
j≥1

pj,kaje
iλj(t+τ) −

∑
j≥1

pj,kbje
iλjt

∥∥∥∥∥∥
G

≤

sup


∣∣∣∣∣∣
∑
j≥1

pj,kaje
iλj(t+τ) −

∑
j≥1

pj,kbje
iλjt

∣∣∣∣∣∣ : t ∈ R

 ≤ ε

3
.
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Furthermore, by the Bochner-Féjer property [3, p. 105], for every τ ∈ R there
exists k0 ∈ N such that

‖Pk,τ (t)− f1,τ (t)‖G =

∥∥∥∥∥∥
∑
j≥1

pj,kaje
iλj(t+τ) − f1(t+ τ)

∥∥∥∥∥∥
G

≤ ε

3
for each k > k0.

Finally, by the property ofG-normality applied to the sequence {f1,τ (t)}τ , where
τ varies in the set above, we can extract a subsequence {f1,τm(t)}m ⊂ {f1,τ (t)}
which converges to a certain function f2(t) with respect to the topology of
G(R,C). This implies the existence of m1 ∈ N such that

‖f2(t)− f1(t+ τm)‖G ≤
ε

3
for each m > m1.

Now, take τm with m > m1, and let k > k0. We deduce from above that∥∥∥∥∥∥
∑
j≥1

pj,kbje
iλjt − f2(t)

∥∥∥∥∥∥
G

≤

≤

∥∥∥∥∥∥
∑
j≥1

pj,kbje
iλjt −

∑
j≥1

pj,kaje
iλj(t+τm)

∥∥∥∥∥∥
G

+

+

∥∥∥∥∥∥
∑
j≥1

pj,kaje
iλj(t+τm) − f1(t+ τm)

∥∥∥∥∥∥
G

+

+ ‖f1(t+ τm)− f2(t)‖G ≤ ε,

which implies that the sequence of trigonometric polynomials
∑
j≥1 pj,kbje

iλjt

converges to f2 with respect to the topology of G(R,C) and, in fact, f2 ∈
G(R,C) (recall that G(R,C) is defined as the closure of the trigonometric poly-

nomials with respect to ‖ · ‖G). Finally, by Definition 7 it is clear that f1
∗∼ f2.

Note that the proof of the lemma above is notably different from that of [14,
Lemma 2] and [15, Lemma 1]. Our next purpose is to prove that the equivalence

classes of FG,Λ/
∗∼ are closed, for which we will use the next remark and lemma.

Remark 9 If a sequence of trigonometric polynomials

Pk(t) =
∑
j≥1

a
(k)
j eiλjt, k = 1, 2, . . . , (5)

converge to a certain function f(t) with respect to the topology of G(R,C), then
the Fourier series of f(t) is given by the formal limit of the series (5), i.e.

the Forier series of f(t) is given by
∑
j≥1 aje

iλjt, where aj = limk→∞ a
(k)
j

for each j ≥ 1. Equivalently, |M(Pk(t)e−iλjt) −M(f(t)e−iλjt)| tends to 0 as
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k → ∞. Indeed, this result derives from [3, p. 21, Theorem] for the case
G(R,C) = AP (R,C), and the general case is deduced from [3, p. 105]. In
fact, if {Pk(t)}k converges to f(t) with respect to the topology of G(R,C), then
it also converges with respect to the topology of B(R,C) and, by [3, p. 105],

|a(k)
j − aj | = |M(Pk(t)e−iλjt)−M(f(t)e−iλjt)| tends to 0 as k →∞.

Lemma 10 Given Λ a set of exponents, let G be an equivalence class in FG,Λ/
∗∼.

Let {fl(t)}l≥1 ⊂ G and for each l ≥ 1 consider Pl,k(t), k = 1, 2, . . ., the
Bochner-Fejér polynomials converging to fl(t) with respect to the topology of
G(R,C). If h(t) ∈ FG,Λ is the limit of a certain sequence {Plm,klm (t)}m≥1, with
{lm}m≥1 ⊂ {l}l≥1 and {klm}m≥1 ⊂ {k}k≥1, then h(t) belongs to G.

Proof. Let {fl}l≥1 be a sequence in G and, for each l = 1, 2, . . ., suppose that
the Fourier series associated with fl(t) is given by∑

j≥1

al,je
iλjt with al,j ∈ C \ {0}, λj ∈ Λ.

Also, given l ≥ 1, let

Pl,k(t) =
∑
j≥1

pj,kal,je
iλjt, k = 1, 2, . . . ,

be the Bochner-Fejér polynomials which converge to fl with respect to the
topology of G(R,C) (and which satisfy pj,k → 1 as k →∞) [3, p. 105, Theorem
II]. Furthermore, let

∑
j≥1 bje

iλjt be the Fourier series of h(t) ∈ FG,Λ. By
reductio ad absurdum, suppose that h(t) is not in G, which implies the existence
of n0 ∈ N, with n0 ≤ ]Λ, satisfying

bj = a1,je
iψn0

(λj), j = 1, . . . , n0, (6)

is not satisfied for any Q-linear map ψn0
: Vn0

→ R (see Definition 7). By
hypothesis, the sequence {Plm,klm (t)}m≥1 converges to h(t) with respect to
the topology of G(R,C). From it, draw a subsequence {Plm,1,klm,1

(t)}m≥1 ⊂
{Plm,klm (t)}m≥1 such that p1,klm,1

6= 0 for each m ≥ 1. Analogously, draw a

subsequence {Plm,2,klm,2
(t)}m≥1 ⊂ {Plm,1,klm,1

(t)}m≥1 such that p2,klm,2
6= 0

(and p1,klm,2
6= 0) for each m ≥ 1. In this way, we can draw a subsequence

{Plm,n0
,klm,n0

(t)}m≥1 ⊂ {Plm,klm (t)}m≥1 such that pj,klm,n0
6= 0 for each j =

1, 2, . . . , n0 and m ≥ 1 (this process is similar to that of Remark of [3, p. 51]).
Now, since the polynomials

Plm,n0 ,klm,n0
(t) =

n0∑
j=1

pj,klm,n0
alm,n0 ,j

eiλjt+
∑
j>n0

pj,klm,n0
alm,n0 ,j

eiλjt, m = 1, 2, . . .

converge to h(t), the Fourier series of h(t) is the formal limit of the Fourier
series of Plm,n0 ,klm,n0

(t), i.e. bj = limm→∞ pj,klm,n0
alm,n0 ,j

= limm→∞ alm,n0 ,j

10



for each j ≥ 1 (see Remark 9). This implies in particular that the functions

Qlm,n0
(t) :=

n0∑
j=1

alm,n0
,je

iλjt, m = 1, 2, . . .

converge to
∑n0

j=1 bje
iλjt. Furthermore, it is clear that {Qlm,n0

(t)}m≥1 is a
sequence of ∗-equivalent trigonometric polynomials and, by [15, Proposition 3],
its limit is in the same equivalence class as

∑n0

j=1 a1,je
iλjt, which represents a

contradiction with (6).

With respect to the topology of G(R,C), we next prove that the equivalence

classes of FG,Λ/
∗∼ are sequentially compact (and hence compact), which gener-

alizes [15, Proposition 3]. The reader can observe that the proof given here is
quite different from that of [15, Proposition 3].

Proposition 11 Let Λ be a set of exponents and f ∈ FG,Λ. Then the equiva-

lence class which contains f is sequentially compact in FG,Λ/
∗∼.

Proof. Let G be the equivalence class which contains f ∈ G(R,C). We first

note that, by Lemma 8, G is included in FG,Λ/
∗∼. So, let {fl}l≥1 be a sequence

in G. Given l ≥ 1, let Pl,k(t), k = 1, 2, . . ., be the Bochner-Fejér polynomials
which converge to fl with respect to the topology of G(R,C) [3, p. 105, Theorem
II]. Given ε > 0 and l ≥ 1, let kl ≥ 1 such that

‖Pl,k(t)− fl(t)‖G <
ε

4
for each k ≥ kl. (7)

Without loss of generality, suppose k1 ≤ . . . ≤ kl ≤ . . ., which particularly
implies that

‖P1,kl(t)− f1(t)‖G <
ε

4
for each l ≥ 1. (8)

Moreover, given l ≥ 1 and kl as above, by Proposition 5 there exists τl,kl such
that

‖P1,kl(t+ τl,kl)− Pl,kl(t)‖G <
ε

4
. (9)

Now, consider the sequence {f1(t+ τl,kl)}l≥1. Since the set of translates of f1 is
relatively compact (see the comments on the G-normality in the introduction),
there exists a subsequence {f1(t+τl(n),kl(n)

)}n≥1 which is convergent to a certain
function h(t) ∈ G(R,C). Let n0 ≥ 1 satisfy

‖f1(t+ τl(n),kl(n)
)− h(t)‖G <

ε

4
for each n ≥ n0. (10)

So, for each n ≥ n0, we deduce from (7), (8), (9) and (10) that

‖h(t)− fl(n)(t)‖G ≤
‖h(t)− f1(t+ τl(n),kl(n)

)‖G + ‖f1(t+ τl(n),kl(n)
)− P1,kl(n)

(t+ τl(n),kl(n)
)‖G+

+ ‖P1,kl(n)
(t+ τl(n),kl(n)

)− Pl(n),kl(n)
(t)‖G + ‖Pl(n),kl(n)

(t)− fl(n)(t)‖G < ε,

11



which implies that h(t) is an accumulation point of {fl(t)}l≥1. Furthermore, in
virtue of

‖h(t)− Pl(n),kl(n)
(t)‖G ≤ ‖h(t)− fl(n)(t)‖G + ‖fl(n)(t)− Pl(n),kl(n)

(t)‖G,

h(t) is the limit of the Bochner-Féjer polynomials {Pl(n),kl(n)
(t)}n≥1 and, by

Lemma 10, h ∈ G.

Remark 12 We remind the reader that all these functions are regarded as mem-
bers of a metric space and, hence, sequential compactness is the same as com-
pactness (in the topology induced by the metric), and it implies being closed.
Hence, as a consequence of Proposition 11, we can immediately generalize [15,
Corollary 3].

Corollary 13 Let Λ be a set of exponents and f ∈ FG,Λ. Then the limit points
of the set of functions Tf = {fτ (t) := f(t+ τ) : τ ∈ R} are functions which are
∗-equivalent to f .

Proof. Since it is plain that the functions included in the set given by Tf =
{fτ (p) := f(t + τ) : τ ∈ R} are in the same equivalence class as f (see in [8,
Section 4.2] the Fourier series of the translates of a function in B(R,C)), the
result follows easily from Proposition 11.

Now Corollary 13 can be improved with the following result which proves
that, given a function f ∈ FG,Λ, the limit points of the set of the translates
Tf = {f(t + τ) : τ ∈ R} of f are precisely the almost periodic functions which
are ∗-equivalent to f .

Theorem 14 Let Λ be a set of exponents, G an equivalence class in FG,Λ/
∗∼

and f ∈ G. Then the set of functions Tf = {fτ (t) := f(t+ τ) : τ ∈ R} is dense
in G.

Proof. Let f(t) be a function in the class FG,Λ. We know by Corollary 13 that
the limit points of the set of functions Tf = {fτ (t) := f(t + τ) : τ ∈ R} are
functions in G(R,C) which are ∗-equivalent to f . We next demonstrate that any
function h(t) which is ∗-equivalent to f(t) is also a limit point of Tf . Consider
]Λ =∞ and let {Pn(t)}n≥1 and {Qn(t)}n≥1 be the sequences of Bochner-Fejér
polynomials which converge, with respect to the topology of G(R,C), to f(t)
and h(t), respectively. Take ε1 = max{‖f(t) − P1(t)‖G, ‖h(t) − Q1(t)‖G} >
0, then Proposition 5 assures the existence of a positive number τ1 satisfying
‖P1(t+ τ1)−Q1(t)‖G ≤ ε1. Hence

‖f(t+ τ1)− h(t)‖G ≤
‖f(t+ τ1)− P1(t+ τ1)‖G + ‖P1(t+ τ1)−Q1(t)‖G+

+ ‖Q1(t)− h(t)‖G ≤ 3ε1.
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Similarly, take ε2 = max{‖f(t)−P2(t)‖G, ‖h(t)−Q2(t)‖G} > 0, then Proposition
5 assures the existence of τ2 > τ1 such that ‖P2(t+ τ2)−Q2(t)‖G ≤ ε2. Hence

‖f(t+ τ2)− h(t)‖G ≤
‖f(t+ τ2)− P2(t+ τ2)‖G + ‖P2(t+ τ2)−Q2(t)‖G

+ ‖Q2(t)− h(t)‖G ≤ 3ε2.

In general, by repeating this process, we can construct an increasing sequence
{τn}n≥1 such that each τn satisfies that

‖Pn(t+ τn)−Qn(t)‖G ≤ εn, (11)

with εn = max{‖f(t) − Pn(t)‖G, ‖h(t) − Qn(t)‖G}. Thus, from (11), it is ac-
complished that

‖f(t+ τn)− h(t)‖G ≤ ‖f(t+ τn)− Pn(t+ τn)‖G+

+ ‖Pn(t+ τn)−Qn(t)‖G + ‖Qn(t)− h(t)‖G ≤ 3εn.

Finally, note that εn tends to 0 when n goes to ∞. Consequently, the sequence
of functions {f(t + τn)}n≥1 converges to h(t) with respect to the topology of
G(R,C) and the result holds.

Corollary 15 Let f ∈ G(R,C) and h
∗∼ f . There exists an increasing un-

bounded sequence {τn}n≥1 of positive numbers such that the sequence of func-
tions {f(t + τn)}n≥1 converges with respect to the topology of G(R,C) to h(t).
In fact, given ε > 0, it is accomplished that

i) if G = AP , G = Sp or G = W p, there exists a relatively dense set of
positive numbers {τ} such that

‖f(t+ τ)− h(t)‖G ≤ ε ∀τ ∈ {τ}.

ii) if G = Bp there exists a satisfactorily uniform set of real numbers {τ}
such that

‖f(t+ τ)− h(t)‖Bp ≤ ε ∀τ ∈ {τ}.

Proof. Let f ∈ G(R,C), then f ∈ FG,Λ for some set Λ of exponents. First of
all, fixed a ∈ R, let fa(t) denote the function fa(t) := f(t+a), t ∈ R. Consider G
an equivalence class in FG,Λ/

∗∼ so that f ∈ G and let h
∗∼ f . Thus, by Theorem

14 (see also its proof), there exists an increasing unbounded sequence {δn}n≥1

of positive numbers such that the sequence of functions {fδn(t)}n≥1 converges
with respect to the topology of G(R,C) to h(t). Equivalently, given ε > 0 there
exists n0 ∈ N such that

‖fδn(t)− h(t)‖G ≤ ε/2 ∀n ≥ n0. (12)

To prove the second statement, we will use the fact that f is a G-a.p. function:

13



a) If G = AP or G = Sp, there exists a relatively dense set {τk} ⊂ R such that

‖fτk(t)− f(t)‖G ≤ ε/2 ∀τk ∈ {τk}. (13)

Therefore, from (12) and (13), each τk satisfies

‖fδn+τk(t)− h(t)‖G ≤ ‖fδn+τk(t)− fδn(t)‖G + ‖fδn(t)− h(t)‖G =

‖fτk(t+ δn)− f(t+ δn)‖G + ‖fδn(t)− h(t)‖G ≤ ε ∀n ≥ n0.

b) If G = W p, there exists a relatively dense set {τk} ⊂ R and L0 > 0 such that

‖fτk(t)− f(t)‖Sp
l
≤ ε/2 ∀τk ∈ {τk} ∀l ≥ L0. (14)

Therefore, from (12), (14) and [3, p. 73] (or [2, p. 170]), each τk and l ≥ L0

satisfies

‖fδn+τk(t)− h(t)‖Wp ≤ ‖fδn+τk(t)− fδn(t)‖Wp + ‖fδn(t)− h(t)‖Wp =

‖fτk(t+ δn)− f(t+ δn)‖Wp + ‖fδn(t)− h(t)‖Wp ≤

‖fτk(t+ δn)− f(t+ δn)‖Sp
l

+
ε

2
≤ ε

2
+
ε

2
= ε ∀n ≥ n0.

Hence we have proved i).
c) If G = Bp, there exists a satisfactorily uniform set {τk} ⊂ R such that

‖fτk(t)− f(t)‖Bp ≤ ε/2 ∀τk ∈ {τk}. (15)

Therefore, from (12) and (15), each τk satisfies

‖fδn+τk(t)− h(t)‖Bp ≤ ‖fδn+τk(t)− fδn(t)‖Bp + ‖fδn(t)− h(t)‖Bp =

‖fτk(t+ δn)− f(t+ δn)‖Bp + ‖fδn(t)− h(t)‖Bp ≤ ε ∀n ≥ n0,

which proves ii).

We have seen in the introduction that the G-a.p. functions satisfy the
Bochner-type property consisting of the relative compactness of the set {f(t+
τ)}, τ ∈ R, associated with an arbitrary function f ∈ G(R,C). As an important
consequence of Theorem 14, we next refine this property in the sense that we
show that the condition of G-almost periodicity of a function f(t) ∈ G(R,C)
implies that every sequence {f(t + τn)}, τn ∈ R, of translates of f has a sub-
sequence that converges with the topology of G(R,C) to a function which is
∗-equivalent to f .

Corollary 16 If f ∈ G(R,C), then the closure of its set of translates coincides
with its equivalence class and it is compact.

Proof. It is straightforward from Theorem 14 and Proposition 11.
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Remark 17 The main results of this paper, Theorem 14 and Corollary 16, have
been formulated for the cases of G-a.p. functions, where G could be AP , Sp,
W p or Bp, with 1 ≤ p < ∞. However, we can go further by generalizing these
results to every existing space T (R,C) of functions f : R → C, which can be
associated with a Fourier series, satisfying the appropriate conditions used in
this work. In particular, we have the following conditions:

i) The space T (R,C) is defined as the closure of the trigonometric polyno-
mials with respect to a certain topology ‖ · ‖T ;

ii) It is satisfied the Bochner-type property consisting of the relative compact-
ness of the set {f(t + τ)}, τ ∈ R, associated with an arbitrary function
f ∈ T (R,C);

iii) T (R,C) contains AP1(R,C) (and hence it is satisfied that ‖f1(t)−f2(t)‖T ≤
‖f1(t) − f2(t)‖AP1

), where AP1(R,C) consists of all functions f from R
into C representable in the form

∑∞
j=1 aje

iλjt, λj ∈ R, aj ∈ C, with

‖f‖AP1 :=
∑∞
j=1 |aj | <∞ (therefore AP1(R,C) ⊂ AP (R,C)).

iv) There exists a method of summation in the style of that of Bochner-Féjer.
That is, every f ∈ T (R,C), associated with a Fourier series

∑
k≥1 ake

iλkt,

can be approximated by polynomials of the form P fk (t) =
∑
j≥1 pj,kaje

iλjt,
where the terms pj,k only depend on the frequency λj (not on the function
f).
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