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Abstract. In the present paper, various features of the class of propo-
sitional literal paralogics are considered. Literal paralogics are logics in
which the paraproperties such as paraconsistence, paracompleteness and
paranormality, occur only at the level of literals; that is, formulas that are
propositional letters or their iterated negations. We begin by analyzing
Bochvar’s three-valued nonsense logic B3, which includes two isomorphs
of the propositional classical logic CPC. The combination of these two
‘strong’ isomorphs leads to the construction of two famous paralogics P

1

and I
1, which are functionally equivalent. Moreover, each of these logics is

functionally equivalent to the fragment of logic B3 consisting of external
formulas only. In conclusion, we structure a four-element lattice of three-
valued paralogics with respect to the possession of paraproperties.
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1. Introduction

For almost a century, three-valued logics haved continued to spark gen-
uine and ever-increasing interest. New logics in this class occasionally
reveal some rather noteworthy properties. Indeed, the introduction of an
additional truth-value to bivalent logic not only enables the simulation
of classical logic but also allows us to simulate many properties unrelated
to it, such as paraconsistency, paracompleteness, paranormality, maxi-
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mality, duality and others. Furthermore, different interpretations of the
additional (third) truth-value allow for a distinction between classes of
these logics. Among the latter, a special role is played by the class of
nonsense logics, within which the additional truth-value is interpreted
as “nonsense”. The most interesting appears to be the Bochvar three-
valued nonsense logic B3 [5]; its functional properties are determined
by the union of different types of connectives  internal and external 
and this fact accounts for B3 being “emergent” within a huge variety of
three-valued logics.

In the present paper we examine the functional properties of three-
valued logics, such as the functional inclusion of one logic into another,
and the functional equivalence of logics. Analysis of three-valued log-
ics based on these properties can lead to surprising results concerning
the functional equivalence of logics having different axiomatizations and
different meta-logical properties, as shown in the case of paraconsistent
logic P

1 [46] and paracomplete logic I
1 [48]. In order to determine the

functional relation among three-valued logics, some kind of systematiza-
tion or even classification of different sets of their connectives is required.
The necessary condition for such systematization consists in the existence
of some basic structural principle that applies to the whole “three-valued
logic” universe.

In [19, 20] the notions of “significance logic” and “nonsense logic” 
the latter being just a special case of the former  are formally de-
fined through algebraic semantic methods and by the introduction of
the “truth-value type” notion. One classification of three-valued signifi-
cance and nonsense logics is presented. The latter are divided into two
subclasses  strong and weak nonsense logics.

In [3] A. Avron singles out the class of the so-called natural three-
valued logics as extensions of Kleene’s strong three-valued logic K3. Two
of those extensions are functionally equivalent to the three-valued logic
Ł3 of Łukasiewicz, and the remaining two are functionally equivalent
to the three-valued paraconsistent logic of Batens PI

s [4]. However,
it should be noted that the main object of our investigation, namely
Bochvar’s B3 nonsense logic, is excluded from the classification.

In [10] Cucci and Dubois studied relationships among three-valued
functions, which in turn correspond to three-valued connectives. As a
result the class containing 14 different implications and conjunctions,
and 3 negations was singled out. The authors tried to draw a map of the
relationships between conjunctions, negations and implications, which
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appear as extensions of their Boolean counterparts, and to clarify the
connection between them through the use of truth-tables.

Even though all the aforementioned papers are interesting and valu-
able in their own right, without the analysis of different sets of con-
nectives  functioning as different bases for one and the same logic  in
terms of their functional equivalence, there is no firm guarantee that
those sets, considered individually and separately, will not be seen as
giving rise to different logics.

In what follows, we shall consider a completely different approach to
the study of three-valued logics. It involves the partition of the set of
three-valued functions under consideration into equivalence classes, with
the subsequent definition of a lattice of such equivalence classes with re-
spect to set inclusion. This way, all possible bases for a logic are brought
together within some equivalence class, and the place of a specific logic
in the lattice thereby obtained is uniquely determined. However, the
implementation of this approach requires some initial “minimal” basis-
forming set of connectives to be defined which is subsequently consis-
tently expanded by the inclusion of other connectives (chosen according
to specific criteria) as its new elements.

N. Tomova in [52] (see also [53, 54]) identified such a minimal basis-
forming set with the set of Bochvar’s internal connectives (which can
be alternatively described as Kleene’s week three-valued logic K

w
3 ), and

used the so-called natural implications in order to consistently expand it.

Prior to the proper introduction of the notion of natural implication,
we state some basic definitions to which we refer throughout the paper.

2. Basic definitions

Let L be a sentential language, i.e., an algebra L = 〈For, F1, . . . , Fm〉
generated by a set of variables Var := {p, q, r, p1, p2, . . .}. The elements
of For (formulas) are generated from the variables with the use of oper-
ations F1, . . . , Fm, representing sentential connectives.

Let A = 〈V, f1, . . . , fm〉 be an algebra similar to L, where V is the
set of truth-values and for every 1 ¬ i ¬ m, fi is a function from V into
V with the same arity as Fi. A structure M = 〈A, D〉 with A being an
algebra similar to the propositional language L and D ⊆ V a non-empty
subset of the universe of A is called a logical matrix for L. Elements of
D are called designated elements of M.
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Let F be the set of functions. The result of the superposition of
functions f1, . . . , fk is the function obtained from f1, . . . , fk either (1)
by substituting some of these functions for arguments of f1, . . . , fk or
(2) by renaming arguments of f1, . . . , fk or by both (1) and (2). The
closure [F ] of F is a set of all superpositions of elements in F .

Let F be a closed set of functions such that F ⊆ P . F is said to be
functionally precomplete in P iff [F ] 6= P and for every function f ∈ P
such that f /∈ F , [F ∪ {f}] = P . Moreover, F is said to be functionally

complete in P iff [F ] = P .

Let L1 and L2 be logics with the set of function F1 and F2, respec-
tively. We say that L1 is functionally included in L2 iff every function
of F1 can be defined by a superposition of functions of F2. Moreover,
L1 is functionally equivalent to L2 iff L1 is functionally included in L2

and logic L2 is functionally included in L1. Finally, L1 is a fragment

of L2 iff L1 is functionally included in L2, but L1 is not functionally
equivalent to L2, i.e., the opposite does not hold.

Moreover, L2 is said to be an extension of L1 iff F2 is obtained by
adding to F1 a function which cannot be defined by a superposition of
the functions of F1.

Some fragment of a logic L is said to be an isomorph of classical

propositional logic iff L has the classical set of tautologies and the clas-
sical consequence relation. Such isomorph is called a strong isomorph.

We will use the same symbols for both the propositional connective
and the corresponding matrix function.

3. The notion of natural implication

Let V3 be the set of truth-values {0, 1/2, 1} and D be a set of designated
values, such that ∅ 6= D ⊆ {1, 1/2}. A function → from V3 into V3

with arity 2 is called natural implication iff it satisfies the following
conditions [54]:

1. C-extending, i.e., it restrictions to the subset {0, 1} of V3 coincide
with classical implication;

2. normality in the sense of Łukasiewicz-Tarski, i.e., for all x, y ∈ V3:
if x → y ∈ D and x ∈ D, then y ∈ D (condition sufficient for the
verification of modus ponens) [33, p. 134];

3. consistency, i.e., for all x, y ∈ V3: if x ¬ y then x → y ∈ D.
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According to the definition of natural implication, there are 6 impli-
cations with D = {1}, and 24 implications with D = {1, 1/2}.

The set of three-valued matrices, which are the extensions of Kleene’s
weak three-valued logic K

w
3 , is divided into 7 disjoint classes. Within our

approach, these 7 classes can be represented by a lattice of 7 basic three-
valued logics with respect to the relation of functional inclusion on the
set of three-valued logics. As a result, we obtain 12 bases for the three-
valued logic of Łukasiewicz Ł3, 8 bases for the paraconsistent logic of
Batens PI

s, and 3 bases for Bochvar’s nonsense logic B3. Henceforth we
shall denote the class of logics obtainable from these three bases by B.
Later, we’ll return to this class.

The logics from this class help us to establish the interesting rela-
tionship between the paralogics P

1 and I
1.

4. Bochvar’s three-valued nonsense logic B3

Dmitry Anatol’evich Bochvar constructed the first nonsense logic B3 in
1938 (see [5]1). The latter was developed in connection with the prob-
lem of logical antinomies and, in particular, Russell’s paradox. Within
Bochvar’s system, the additional (third) truth-value of 1/2 is interpreted
as “nonsense”.

Variables A, B, C with/without indices are used for formulas and
variables x, y, z with/without indices are used for arbitrary truth-values.

4.1. Definition of B3

Logic B3 is presented by the following logical matrix:

M
B
3 = 〈{0, 1/2, 1}, ∼, ⊢, ∩, {1}〉,

where {1} is the set of designated values and ∼ (internal negation), ⊢
(external assertion2), ∩ (internal conjunction) are defined, respectively,
by the truth-tables from Table 1.

1 In his review of Bochvar’s paper in The Journal of Symbolic Logic, 4, 2 (1939),
pp. 98–99, A. Church presented an inaccurate axiomatization of Bochvar’s system,
which led Church to his conclusion about Russell’s paradox being obtainable within
it. Church himself spotted his mistake and published a correction in the same journal,
vol. 5, no. 3 (1940), p. 119.

2 A function f on {0, 1/2, 1} into {0, 1/2, 1} with arity n is called external iff for
any values x1, . . . , xn we have either f(x1, . . . , xn) = 0 or f(x1, . . . , xn) = 1.
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x ∼ x

1 0
1/2 1/2

0 1

x ⊢ x

1 1
1/2 0

0 0

∩ 1 1/2 0

1 1 1/2 0
1/2 1/2 1/2 1/2

0 0 1/2 0

Table 1. Truth-tables for ∼, ⊢, and ∩

Other internal connectives can be introduced by using ∼ and ∩:

A ∪ B := ∼(∼ A ∩ ∼ B)

A ⊃ B := ∼ A ∪ B

A ≡ B := (A ⊃ B) ∩ (B ⊃ A)

One striking feature of the internal connectives is that the attribu-
tion of the value 1/2 to at least one of its arguments suffices for the
whole formula to assume the (same) value of 1/2. This property comes
as a consequence of the interpretation of the third truth-value as “non-
sense”. In other words, “nonsense” entails “nonsense”. In the same year
as Bochvar, Kleene [27] defined the same internal connectives, terming
them “weak”. Therefore, the logic with the set of connectives {∼, ∩, ∪}
as defined above is the same as weak Kleene’s logic K

w
3 .

4.2. Three-valued isomorphs of CPC

The connective of external assertion ⊢ plays an important role in B3.
Here, we shall denote it as 2, because its truth-table is the same as
the one for the necessity operator in the three-valued modal logic of
Łukasiewicz [32, p. 169]. By the use of external assertion we can de-
fine negation ∼2, implication ⊃2, conjunction ∩2, disjunction ∪2, and
equivalence ≡2 in the following manner:

∼2 A := ∼2A (this negation we denote as ⌈ A),

A ⊃2 B := 2A ⊃ 2B,

A ∪2 B := 2A ∪ 2B,

A ∩2 B := 2A ∩ 2B,

A ≡2 B := 2A ≡ 2B.

These connectives are called external and the truth-tables for Bochvar’s
external connectives are in Table 2.
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x ⌈ x

1 0
1/2 1

0 1

⊃2 1 1/2 0

1 1 0 0
1/2 1 1 1

0 1 1 1

∪2 1 1/2 0

1 1 1 1
1/2 1 0 0

0 1 0 0

∩2 1 1/2 0

1 1 0 0
1/2 0 0 0

0 0 0 0

≡2 1 1/2 0

1 1 0 0
1/2 0 1 1

0 0 1 1

Table 2. Truth-tables for Bochvar’s external connectives

One important feature of these tables consists in the fact that the
only possible truth-values for expressions obtained by the use of the
aforementioned connectives are 0 and 1. In essence, Bochvar proposed
a translation of internal connectives into external ones. We shall denote
the logic based on these connectives as B

2

3 , i.e., the logic presented by
the matrix M

2

3 = 〈{0, 1/2, 1}, ⌈, ⊃2, ∪2, ∩2, ≡2, {1}〉, where {1} is the
set of designated values. So B

2

3 is a fragment of B3 (see p. 210). This
fragment proved to be quite peculiar. According to Bochvar’s terminol-
ogy, B

2

3 is an isomorph of classical propositional logic CPC. Thus, logic
B3 contains a fragment isomorphic with the classical two-valued system
CPC.

Only N. Rescher [45, p. 31] took into consideration Bochvar’s result 
that is, the fact that logic B3 contains a fragment isomorphic with CPC.
However, B3 contains another isomorph of CPC.

As mentioned above, the connective of external assertion ⊢ is 2.
Furthermore, the modal operator of possibility 3 is standardly defined
as follows: 3A := ∼2∼ A. We shall define the external connectives ∼3,
⊃3, ∩3, ∪3 and ≡3 in the same way we defined the external connectives
in B

2

3 ; that is, instead of the necessity operator 2 we use the possibility
operator 3. As a result we get another translation of internal connectives
to external ones. Let us now consider the truth-tables for negation ∼3

(we shall denote it as ⌉) and implication ⊃3 as in Table 3.

We shall denote the logic based on these connectives as B
3

3 , i.e.,
the logic presented by the matrix M

3

3 = 〈{0, 1/2, 1}, ⌉, ⊃3, ∪3, ∩3, ≡3,
{1, 1/2}〉, where {1, 1/2} is the set of designated values. B

3

3 is also an
isomorph of CPC.
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x ⌉ x

1 0
1/2 0

0 1

⊃3 1 1/2 0

1 1 1 0
1/2 1 1 0

0 1 1 1

Table 3. Truth-tables for ∼3 and ⊃3

Thus, Bochvar’s three-valued logic B3 contains two fragments isomor-
phic with CPC. These isomorphs differ from each other, since the truth-
value 1/2 is identified with 0 in B

2

3 , and with 1 in B
3

3 . Under this iden-
tification the connectives retain their classical properties, which ensures
that all the axioms of CPC are verified. This way of proving the “equiv-
alence” of B

2

3 and CPC was proposed by Rescher [45, p. 32]. In [14] a
strict proof of 〈{0, 1/2, 1}, ⌈, ⊃2, {1}〉 and 〈{0, 1/2, 1}, ⌉, ⊃3, {1/2, 1}〉, be-
ing characteristic matrices for CPC, is given.

The understanding of the role of CPC isomorphs remains as yet
incomplete.3 The most interesting feature seems to be given by the
result showing that some many-valued logic containing the isomorph
CPC, can be axiomatized as the extension of CPC (cf. [26, p. 55]).

4.3. Axiomatization and algebraization of B3

B3 was first axiomatized by V. K. Finn in 1971; cf. [17].4 The only
connectives of Finn’s calculus are ∼, ∪, ∩ and ⊃2 (it includes 23 axioms
and 3 rules of inference).

Earlier, class B of Bochvar’s three-valued logics was defined as the
class consisting of three elements  three logics (i.e. the implicative ex-
tensions of Kleene’s weak logic by the natural implications). The corre-
sponding connective bases for the latter are: {∼, ∪, ∩, ⊃2}, {∼, ∪, ∩, ⊃3}
and {∼, ∪, ∩, →4}, where →4 is defined by the following truth-table:

→4 1 1/2 0

1 1 0 0
1/2 1 1 0

0 1 1 1

3 L. Yu. Devyatkin gives an account of general properties of three-valued iso-
morphs of CPC in his monograph [15].

4 One further calculus, equivalent to B3, is presented in [38].
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From what has been said, it follows that the logics contained in B are
pairwise functionally equivalent, and each of these systems is functionally
equivalent to B3 [52].

It should be emphasized that not all the laws of classical propositional
logic CPC are verified in the axiomatization proposed by Finn. For
example, the law of contraposition (p ⊃2 q) ⊃2 (∼ q ⊃2 ∼ p) does
not hold. Using the implication ⊃3, we get the same result. However,
keeping in mind that B3 contains the fragment isomorphic with CPC,
it would be natural to give an axiomatization of CPC by the use of
external formulas. The axiomatization of B3 can then be presented as
an extension of CPC, which was done in [20, pp. 235–236] (using 29
axiom schemes and one inference rule, modus ponens).

In [17] the notion of Bochvar’s three-valued algebra B3 is introduced.
For more information, see [20]; there, the algebraic model of B3 is given
in the following signature 〈∪, ∩, ∼, J0, J1/2

, J1, 0, 1〉. Here 〈∪, ∩, ∼〉 is
De Morgan’s distributive quasi-lattice (lattice without absorption laws),
and the definitions of Ji(x)-operators are given at the end of Section 5.3.
The class of all B3-algebras is a quasivariety but not a variety.

4.4. Functional properties of B3

Consider the matrix M
Ł
3 = 〈{0, 1/2, 1}, ∼, →, {1}〉 for the three-valued

Łukasiewicz logic Ł3, where ∼ has been defined above and → is defined
by the following truth-table:

→ 1 1/2 0

1 1 1/2 0
1/2 1 1 1/2

0 1 1 1

By the use of the primitive connectives the other connectives are
introduced by definition in the following way:

A ∨ B := (A → B) → B disjunction, max(x, y),

A ∧ B := ∼(∼ A ∨ ∼ B) conjunction, min(x, y).

Note that the logic with the set of connectives {∼, ∨, ∧} is nothing other
than Kleene’s strong regular logic K3 [28, §64].

In [50] V.I. Shestakov demonstrated that if in B3 (for {∼, ⊢, ∩})
internal conjunction ∩ is replaced by the strong Kleene’s conjunction
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∧, then B3 is changed into Ł3. This can be done in the following way:
A → B := (∼ A ∨ B) ∨ (↓ A∧ ↓ B), where ↓ C := ∼(⊢ C ∪ ⊢ ∼ C).

It should be noticed that the class of functions corresponding to B3

is functionally included in the class of functions corresponding to Ł3 but
the converse is not true.

It should also be noticed that the functional properties of Ł3 make it
functionally precomplete in P3, where P3 is a three-valued functionally
complete logic of Post [41].

Another important result obtained by Finn in [18], concerns the de-
termination of the functional completeness criterion for the class of func-
tions B3 corresponding to Bochvar’s three-valued logic B3. Finn proves
that B3 has exactly 11 precomplete classes and that a set of functions
F is complete in B3 iff F is not included in any of these 11 precomplete
classes.

4.5. Fragment of B3, consisting only of external formulas

In [49] Shestakov reduced the number of basic connectives of Bochvar’s
logic B3 to two {ψ, ⊢}, where ψ by analogy with classical propositional
logic  is antidisjunction (Peirce’s arrow for internal connectives), and is
defined as follows:

AψB := ∼ A ∩ ∼ B .

Thus, all the internal connectives of B3 can be defined through A ψ B.
Shestakov denoted the fragment B3, consisting only of internal connec-
tives by B0.

In [51] Shestakov extracted the fragment of B3 which contains only
external connectives (their truth-tables contain values 0 and 1 only),
and denoted it as B1. In the same paper Peirce’s arrow γ for external
connectives (and Sheffer stroke λ) was introduced in the following way:

γ 1 1/2 0

1 0 0 0
1/2 0 0 1

0 0 1 1

By the use of this connective all of external connectives can be defined,
including the connective ∼3, and all the connectives pertaining to the
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isomorph B
2

3 (see Section 4.2). The latter allows for the following defi-
nition of γ [51, p. 105]:

A γB := ( ⌉ A ∩2 ⌈ B) ∪2 (⌈ A ∩2 ⌉ B). (Sh)

We shall refer to this notable formula in connection with the paralogics.
Shestakov also discusses the relationship between B0 and B1, concluding
that logic B3 is a union of disjoint logics B0 and B1. This implies that
the set of all connectives of B3 cannot be presented in the form of the
Sheffer stroke (Peirce’s arrow).

The most important result of [51] is the proof  through the intro-
duction of “canonical” (normal) forms  of the theorem on the functional
completeness of the set of external connectives. Nonetheless, a stronger
claim can be proved, which is that, from the aforementioned criterion
concerning functional completeness for the class B3 [18] (see Section 4.4),
the criterion of functional completeness for the class of external functions
B1 follows: B1 has 7 precomplete classes, and a set of functions F is com-
plete in B1 iff F is not included in any of these 7 precomplete classes.

5. Paralogics P
1 and I

1

Paraconsistent and paracomplete logics are areas where interest contin-
ues to grow. One reason for this may be due to their simplicity and
to the wide range of their applications (in computer science, artificial
intelligence, and other areas).

One crucial factor behind the development of paraconsistent logic
is the belief that in certain circumstances we may find ourselves in a
situation where our theory is inconsistent and yet we are required to
draw inferences in a sensible fashion.

Let � be a consequence relation. We call � explosive iff {A, ¬A} � B,
for all A and B. Classical logic, and most standard ‘non-classical’ ones,
such as intuitionist logic, many-valued logics Ł3 and B3, are explosive.
Paraconsistent logic challenges this orthodoxy. A logic is said to be
paraconsistent iff its logical consequence relation is not explosive [42].
Moreover, � is said to be implosive iff B � {A, ¬A}, for all A and B. A
logic is said to be paracomplete iff its logical consequence relation is not
implosive.5

5 The concept of paracompleteness was first introduced in [31].
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CPC is neither paraconsistent nor paracomplete. Logics which are
simultaneously paraconsistent and paracomplete are called paranormal

logics (Miró Quesada’s terminology). Below (Section 5.4.2), we present
a remarkable example of the three-valued paranormal logic TK

1, which
is directly relevant to the Bochvarian class B.

Different formal criteria may be used for the construction of para-
consistent logic (PL), but the “implicative-negative” criterion of S. Jaś-
kowski (who first considered this problem in 1948 (see [21])), best fits
our scope: the logical system PL does not verify “the implicational law
of over completeness”: A → (¬A → B).6 This criterion is best known
as “the law of Duns Scotus”.

5.1. Paraconsistent logic P
1

At this point we shall consider one remarkable paraconsistent logic with
unusual properties. Sette in 1973 [46] constructed the simplest possible
paraconsistent logical calculus P

1 with the following syntax:
• propositional variables: p1, p2, . . . , pn;
• logical connectives ⊃ (implication) and ¬ (negation);
• auxiliary symbols (, ).
Notions of well-formed formulas, atomic formulas, schemes of formulas,
etc. are the usual ones (the same as in classical logic). Capital letters
“A”, “B”, and “C” are used as metavariables over formulas.

The following schemes are axioms:

(P1) A ⊃ (B ⊃ A)
(P2) (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
(P3) (¬A ⊃ ¬B) ⊃ ((¬A ⊃ ¬¬B) ⊃ A)
(P4) (¬A ⊃ ¬¬A) ⊃ A)
(P5) (A ⊃ B) ⊃ ¬¬(A ⊃ B)

and modus ponens, (MP) A, A ⊃ B/B is the only rule of inference.
In [6] it is shown that axiom (P4) is not independent. Note that, if

the law of contraposition (¬A ⊃ ¬B) ⊃ (B ⊃ A) is added to the axioms
(P1) and (P2), then we get the axiomatization of CPC (cf. [33, p. 136]).

P
1 is complete relative to the matrix 〈{0, 1/2, 1}, ¬, ⊃, {1, 1/2}〉, where

the connectives ¬ and ⊃ are ⌈ and ⊃3, respectively (see the correspond-
ing truth-tables in Section 4.2). Other connectives are introduced by the
following definitions:

6 For a more detailed account see [23].
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A ∨ B := (A ⊃ ¬¬A) ⊃ (¬A ⊃ B)

A ∧ B := (((A ⊃ A) ⊃ A) ⊃ ¬((B ⊃ B) ⊃ B)) ⊃ ¬(A ⊃ ¬B)

A ≡ B := (A ⊃ B) ∧ (B ⊃ A)

These connectives are nothing but disjunction ∪3, conjunction ∩3, and
equivalence ≡3 from Bochvar’s isomorph B

3

3 (see Section 4.2).
The definitions of connectives ∨ and ∧ in P

1 are further simplified
in [22, p. 67]. This is done in the following way:

⌉ A := ⌈(⌈ A ⊃ A)

A ∨ B := (⌉ A ⊃ B)

A ∧ B := ⌉(A ⊃ ⌉ B)

Logic P
1 has the following important properties:

(1) P
1 is paraconsistent only for atomic formulas. It means that the law

of Duns Scotus A ⊃ (¬A ⊃ B) is a P
1-tautology only if A is not a

propositional variable.
(2) P

1 is maximal in the following sense: if A is a classical tautology
not provable in P

1, then by adding A to P
1 as a new axiom schema,

classical logic CPC is obtained [46, Proposition 11].
(3) P

1 is algebraizable in the sense of Block and Pigozzi (see [29, 44]).
(4) P

1 is the combination of logical operations from isomorphs B
2

3 and
B

3

3 , i.e., connectives of P
1 are {∼2, ⊃3, ∩3, ∪3, ≡3} [25, p. 183].

5.2. Paracomplete logic I
1

In [48] logic I
1 (named “weakly-intuitionistic logic”) was introduced as

a dual of the paraconsistent calculus P
1. Since I

1 has a paracomplete
character let’s consider it as a paracomplete logic. By analogy with the
paraconsistent logic it is convenient to use the following criterion for
paracompleteness: a logic is paracomplete iff the law of Clavius, (¬A ⊃
A) ⊃ A, is not valid in it (see e.g. [11]).

The calculus I
1 is axiomatized by means of the following axiom

schemes:

(I1) A ⊃ (B ⊃ A),
(I2) (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)),
(I3) (¬¬A ⊃ ¬B) ⊃ ((¬¬A ⊃ B) ⊃ ¬A),
(I4) ¬¬(A ⊃ B) ⊃ (A ⊃ B),

and modus ponens.
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As shown in [48], I
1 is complete with respect to the three-valued

matrix 〈{0, 1/2, 1}, ¬, ⊃, {1}〉, where ¬ and ⊃ are ⌉ and ⊃2, respectively
(see corresponding truth-tables in Section 4.2).

Conjunction ∧ and disjunction ∨ can be defined in I
1 as follows:

A ∧ B := ¬(((A ⊃ A) ⊃ A) ⊃ ¬((B ⊃ B) ⊃ B))

A ∨ B := ¬((B ⊃ B) ⊃ B) ⊃ ((A ⊃ A) ⊃ A)

These connectives are the same as disjunction ∪2 and conjunction ∩2

from Bochvar’s isomorph B
2

3 (see Section 4.2). In I
1 all axioms of the

well-known Heyting system for intuitionistic logic are valid.

Logic I
1 has the following important properties:

(1) I
1 is paracomplete only for atomic formulas. It means that the law

of Clavius, (¬A ⊃ A) ⊃ A, is a I
1-tautology only if A is not a

propositional variable [11].
(2) I

1 is maximal [48].
(3) I

1 is algebraizable in the sense of Block and Pigozzi (see [48]).
(4) I

1 is the combination of logical operations from isomorphs B
2

3 and
B

3

3 , i.e., connectives of I
1 are ∼3, ⊃2, ∩2, ∪2, ≡2 [25, p. 183].

It should be noted that systems similar to P
1 and I

1 have been stud-
ied from different perspectives. In [13] logic P

1 is considered under the
name of F, as obtained from Łukasiewicz’s three-valued logic Ł3. The
logic P

1, as extension of da Costa’s paraconsistent logic C1, was found
independently by C. Mortensen in 1979, who called it C0.1 (see [37,
p. 299]). In [40] Popov draws attention to the fact that logic P

1 (termed
I1) is obtainable from Arruda’s three-valued paraconsistent logic V1 [2].
This is done by leaving in V1 only the so called “Vasiliev’s propositional
letters”, i.e., only atomic formulas. In [36] logic P

1 is axiomatized by
extension of da Costa’s system Cn. A new Hilbert-type axiomatization
for P

1 is presented in [12]. A system similar to I
1 has also been studied

in [31]. In [47], it was proved that calculus β1 from [31] is equivalent
to I

1. A Gentzen-type sequent calculus for I
1 (termed I2) is presented

in [40]. A new Hilbert-type axiomatization for I
1 can be found in [11].

5.3. Interconnections between P
1 and I

1

The year 2000 turned out to be very important: three papers (Carnielli
[8], D’Ottaviano and Feitosa [16], and Karpenko [25]) were published



Bochvar’s three-valued logic . . . 221

independently of one other which started to look at the logics P
1 and I

1

both separately and as regards their interconnections.
In [8] the strong negation ⌉ A in P

1 is defined in the following way
(we use our own notation):

⌉ A := ⌈(⌈ A ⊃3 A)

In [16] the following definition is given:

⌉ A := A ⊃3 ⌈(A ⊃3 A)

Simpler definitions than those given by Sette [46] (see also [22]), of
the connectives ∪3 and ∩3 in I

1, can be found in [8] and [16]:

A ∪3 B := (⌉ A ⊃3 B)

A ∩3 B := ⌉(A ⊃3 ⌉ B) (see [8, p. 158])

A ∩3 B := ⌉(⌉ A ⊃3 ⌉ B) (see [16, p. 84])

The definitions of connectives ⌈, ∪2, and ∩2 in I
1 are also given in [8]

and [16]. For example, ⌈ A := A ⊃2 ⌉ A (see [8, p. 159]).
The purpose of the paper [8] is to offer semantic interpretations for

finite-valued logics (including P
1 and I

1) that are both intuitively accept-
able and simple to manipulate formally. In order to achieve the latter,
Carnielli developed what he called a “possible translations semantics”.
Carnielli clarified that, in intuitive terms, translations can be seen as
abstract forms of accessibility relations in the usual Kripke semantics,
and the distinct three-valued logical systems as forms of possible worlds
[8, p. 153].

In [16] a new type of translation between logics is introduced  the
so-called “conservative translation”. Specifically, two translations are
defined: R  from I

1 into P
1, and S  from P

1 into I
1. The authors

noticed there that Sette and Carnielli [48] “do not introduce any function
either from P

1 into I
1, or from I

1 into P
1, which could explicate in terms

of translations the meaning of the ‘duality’ between the two systems”
(p. 90).7

The paper [25] is devoted to the clarification of the meaning of the
duality between P

1 and I
1, through the combination of two three-valued

isomorphs of CPC. From the fact that in P
1 we can define

⊢ A := ⌈ ⌈ A and ⌉ A := ⌈(⌈ A ⊃3 A)

7 See the fundamental work of Brunner and Carnielli [7] about the duality of
logics.
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the following important conclusions are drawn [25, p. 185]:

(a) P
1 contains fragments B

2

3 and B
3

3 , isomorphic with CPC,
(b) P

1 contains one fragment isomorphic with I
1.

Using this line of reasoning, the following two further conclusions can be
drawn:

(c) I
1 contains fragments B

2

3 and B
3

3 , isomorphic with CPC,
(d) I

1 contains one fragment isomorphic with P
1.

Obviously, this implies that logic P
1 and I

1 are functionally equivalent,
i.e., connectives of P

1 can be defined by the connectives of I
1 and the

connectives of I
1 can be defined by the connectives of P

1.

Moreover, since P
1 (as I

1) contains both the aforementioned iso-
morphs, connectives ⌉, ⌈, ∩2, and ∪2 are defined in it. Thus, by virtue
of Shestakov’s formula (Sh), P

1 (as I
1) is functionally equivalent to the

fragment B1, which consists of the set of external formulas of Bochvar’s
logic B3. The same conclusion follows from papers [8] and [16], if we
consider the logic I

1 with negation ⌈. However, none of these authors,
including the author of the paper [25], paid special attention to this
conclusion. Only in [53, p. 75] was the functional equivalence of logics
P

1 and I
1 proven, as a consequence of a more general result. In the same

paper (p. 79) one version of Shestakov’s formula (Sh) was rediscovered
and, via it, the functional equivalence of P

1 and B1 was proven.

However, the functional equivalence of P
1 and I

1 can be proven quite
simply. We have already seen that the negations ⌈ and ⌉ can be mutually
defined in both systems as follows:

⌉ A := ⌈(⌈ A ⊃3 A) and ⌈ A := A ⊃2 ⌉ A

The same can to be done for implications ⊃3 and ⊃2:

A ⊃3 B := ⌈ B ⊃2 ⌈ A and A ⊃2 B := ⌉ B ⊃3 ⌉ A

Thus, both P
1 and I

1 split into two isomorphs of CPC. Relative to
the latter, the following fragment from [35, p. 14] on the application of
possible-translations semantics to finite-valued logics should be noticed:

Moreover, truth-functional finite-valued logics can themselves be split
in terms of 2-valued logics, that is, fragments of classical logic [. . .],
copies of classical logic can be combined into fragments of modal logics,
and so on and so forth.
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Also, it should be emphasized that the logic P
1 (I1), and hence the

logic of external connectives B1, can be axiomatized as a direct extension
of CPC. This can be done by the use of the Anshakov-Rychkov method
for construction of Hilbert-type calculi of finite-valued logics [1]. The
axiomatization conditions are given as follows.

We say that the logic Ln is truth-complete iff all J-operators are
functionally expressible in Ln, where for all i, x ∈ Vn ⊇ {0, 1} we have:

Ji(x) =

{

1, if x = i

0, if x 6= i.

A logic Ln is said to be C-extending iff the binary operations ∨, ∧, →
and the unary operation ¬ (whose restrictions to the subset {0, 1} of
Vn coincide with the classical logical operations of disjunction, conjunc-
tion, implication, and negation) can be functionally expressed in Ln.
Note that Ln coincides with CPC over the set {0, 1}. In [1], general,
effective methods for the construction of Hilbert-type calculi for any
truth-complete C-extending logics are given.

It seems obvious, that logics P
1 and I

1 are C-extending, and also
truth-complete. We will prove it for I

1 by showing that for any x ∈
{0, 1/2, 1}: J0(x) = ⌉(x), J1/2

(x) = ⌉(x ∪2 ⌉ x) and J1(x) = ⌉(⌉ x ∪2

J1/2
(x)).
Notice that Arruda’s logic V3 [2, p. 16]  being itself nothing but I

1

with all J-operators  is axiomatized in the same way.

5.4. Literal-paralogics

In a very interesting paper [30] Lewin and Mikenberg introduce a family
of matrices that define logics in which paraconsisteny and/or paracom-
pleteness occurs only at the level of literals, that is, formulas that are
propositional letters (p, q, r, etc.) or their iterated negations.8 Capital
letters A, B, C, etc. are used as variables for complex formula, i.e.,
formulas that contain a binary connective and α, β, γ etc. as variables
for general formulas.

Using this notation, we shall consider the definitions given in [30,
p. 479]. Let V be a set of truth-values such that {0, 1} ⊆ V and D ⊆ V

8 Let Fm be the set of formulas built in the usual recursive way from a denu-
merable set Var := {p1, p2, . . .} of propositional variables and the connectives. The
literals of Fm is the set Lit of all formulas of the form ¬kp, where ¬0p = p and
¬k+1p = ¬(¬kp), for any p ∈ Var (see e.g. [30, p. 479]).



224 Alexander Karpenko, Natalya Tomova

such that 1 ∈ D and 0 /∈ D. Let ∼ : V → V be a function such that
∼ 1 = 0 and ∼ 0 = 1. They define the literal-paraconsistent-paracomplete

matrix (or LPP-matrix) 〈V, D, ∼〉 along with the following operations for
all x, y ∈ V :

x ∨ y :=

{

1 if x ∈ D or y ∈ D

0 otherwise

x ∧ y :=

{

1 if x ∈ D and y ∈ D

0 otherwise

x → y :=

{

1 if x /∈ D or y ∈ D

0 otherwise

An LPP-matrix is paraconsistent iff for some x ∈ V both x ∈ D and
∼ x ∈ D; it is paracomplete iff for some x ∈ V both x /∈ D and ∼ x /∈ D.
The matrix 〈{1, 0}, {1}, ∼〉, where ∼ 0 = 1 and ∼ 1 = 0, which defines
CPC, is neither paraconsistent nor paracomplete.

Lewin and Mikenberg define a sound and complete deductive system
for the logic defined by the class of all LPP-matrices 〈V, D, ∼〉, with no
conditions on V , D or ∼. This system is called literal-paraconsistent-

paracomplete logic (LPPL) with modus ponens (MP) as its only rule
and the following axioms:

(A1) α → (β → α).
(A2) (α → (β → γ)) → ((α → β) → (α → γ)).
(A3) (α ∧ β) → α.
(A4) (α ∧ β) → β.
(A5) (α → β) → ((α → γ) → (α → (β ∧ γ))).
(A6) α → (α ∨ β).
(A7) β → (α ∨ β).
(A8) (α → γ) → ((β → γ) → ((α ∧ β) → γ)).
(A9) Axiom for negation: (∼ A → ∼ B) → (B → A), where A and B

are complex formulas.

Lewin and Mikenberg observe that this system was proposed by Puga
and da Costa in [43] as axiomatization of the imaginary logic of Vasil’ev.
In [30] the class of three-valued matrices 〈V3, D, ∼〉 is examined, where
V3 = {0, 1/2, 1}. There are three possible functions ∼, namely:
• either ∼1 1/2 = 1/2 (i.e., ∼1 = ∼),
• or ∼2 1/2 = 1 (i.e., ∼2 = ⌈),
• or ∼3 1/2 = 0 (i.e., ∼3 = ⌉).
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There are two possible sets of designated values, namely, D1 = {1}
and D2 = {1/2, 1}. Therefore, we obtain the following six combinations:
• M

3
1,1 = 〈V3, D1, ∼1〉,

• M
3
1,3 = 〈V3, D1, ∼3〉,

• M
3
2,1 = 〈V3, D2, ∼1〉,

• M
3
2,2 = 〈V3, D2, ∼2〉,

• M
3
1,2 = 〈V3, D1, ∼2〉,

• M
3
2,3 = 〈V3, D2, ∼3〉.

Lewin and Mikenberg consider only the reduced matrices (see the defini-
tion on p. 482), i.e., the first four of the above. In the reduced matrices
there is one single element for each negation type present in 〈V, D, ∼〉.
The last two matrices are the Bochvarian isomorphs B

2

3 and B
3

3 of CPC.
In fact, the structuring method for LPP-matrices presents itself as a

more strict exposition of the generation method for isomorphs (by trans-
lation of the intermediate truth values into 1 or 0) and their successive
combination.

5.4.1. Axiomatizations and a lattice of expansions of LPPL

The axiomatizations of the logics determined by the first four matrices
[30] are rather interesting. Now, for any formula α we put

α◦ := ∼(α ∧ ∼ α)

α• := α ∨ ∼ α

The matrix M
3
2,2 = 〈V3, D2, ∼2〉 determines the following axiomati-

zation of the logic S2,2 (the system thus obtained is Sette’s P
1). The

axioms are

(A2,2.1) the axioms of LPPL

(A2,2.2) β◦ → ((α → β) → ((α → ∼2 β) → ∼2 α))
(A2,2.3) (∼2 α)◦

MP is the only rule of inference.
The following is an axiomatization for the logic S1,3 defined by the

matrix M
3
1,3 = 〈V3, D1, ∼3〉. This system is the logic I

1. The axioms
are:

(A1,3.1) the axioms of LPPL

(A1,3.2) α• → ((α → β) → ((α → ∼3 β) → ∼3 α))
(A1,3.3) (∼3 α)•

MP is the only rule of inference.
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Matrix M
3
2,1 = 〈V3, D2, ∼1〉 determines one axiomatization of the

logic S2,1. The latter appears in [9, p. 62] under the name of P
2 (in

our notation P
1
2) as obtained from P

1 through the replacement of the
negation ∼2 with the negation ∼1. Moreover, one axiomatization of this
logic and the proof of its completeness are presented in [36]. There,
Marcos defines (p. 64):

∼2 α := α ⊃3 ∼1 α

The axioms are:

(A2,1.1) the axioms of LPPL

(A2,1.2) β◦ → ((α → β) → ((α → ∼1 β) → ∼1 α))
(A2,1.3) α ↔ ∼1 ∼1 α

MP is the only rule of inference. Or P
1
2 is P

1 + α ↔ ∼1 ∼1 α.
Finally, matrix M

3
1,1 = 〈V3, D1, ∼1〉 determines one axiomatization

of the logic S1,1. The latter first appeared in [39] under the name LAP,
where it was presented in the form of Hilbert and sequent calculi. In
[36, p. 66] this system appeared under the name I

2 (in our notation I
1
2).

Note that here,
∼3 α := ∼1(∼1 α ⊃2 α).

The axioms are:

(A1,1.1) the axioms of LPPL

(A1,1.2) α• → ((α → β) → ((α → ∼1 β) → ∼1 α))
(A1,1.3) β ↔ ∼1 ∼1 β

MP is the only rule of inference. Or I
1
2 is I

1 + β ↔ ∼1 ∼1 β.
In the same paper [30] Lewin and Mikenberg give conditions for the

maximality of these logics.
In what follows we construct a lattice of axiomatic extensions of

propositional logic LPPL. Let LPPL∼1
be LPPL + α ↔ ∼1 ∼1 α. We

obtain the eight-element Boolean lattice from Figure 1. However, since
(1) P

1, I
1 and I

1
P

1 are functionally equivalent, and (2) P
1
2, I

1
2 and

I
1
2, P

1
2 are also functionally equivalent, the eight-element Boolean lattice

given in Figure 1 collapses in the four-element Boolean lattice shown in
Figure 2.

5.4.2. Lattice of paralogics

The four-valued paranormal logic S
4, whose matrix is the smallest one

being both paraconsistent and paracomplete, is presented in [30, p. 487].



Bochvar’s three-valued logic . . . 227

•

••

•

•

••

•

55kkkkkkkkkkkkkkkkkkkkkkkkk

iiSSSSSSSSSSSSSSSSSSSSSSSSS

OO

OO OO55kkkkkkkkkkkkkkkkkkkkkkkkk

iiSSSSSSSSSSSSSSSSSSSSSSSSS

55kkkkkkkkkkkkkkkkkkkkkkkkk

iiSSSSSSSSSSSSSSSSSSSSSSSSS

LPPL

I
1

I
1
2

P
1

P
1
2

LPPL∼1

I
1
2P

1
2

I
1
P

1

Figure 1. The eight-element Boolean lattice
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Figure 2. The four-element Boolean lattice

Nonetheless, we can single out a three-valued paranormal logic. Recall
that the class B of Bochvar’s three-valued logics includes three logics that
are implicative extensions of Kleene’s weak logic obtained by natural
implications. One of them is the logic with natural implication →4.

Let’s consider the matrix M3 = 〈{0, 1/2, 1}, ∼, →4, {1}〉. Disjunction
∨ and conjunction ∧ are defined in the following way:

A ∨ B := ∼A →4 B

A ∧ B := ∼(∼ A ∨ ∼ B)

We shall call the logic associated with the above matrix TK
1. One

can easily prove that TK
1 is paranormal, paraconsistent and paracom-
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Figure 3. The missing logic in four-element Boolean lattice

plete. However, unlike S
4, TK

1 is not a maximal paranormal fragment
of classical logic CPC. Even though the law of contraposition turns to
be valid in TK

1, the law of affirming consequent A →4 (B →4 A) and
the law of permutation (A →4 (B →4 C)) →4 (B →4 (A →4 C)) are
not tautologies of TK

1.9

As a result, all three natural implications from the logic of Bochvar-
ian class B with the negation ∼ define three paralogics: paraconsistent
logic P

1
2 with connectives {∼, ⊃3}, paracomplete logic I

1
2 with connec-

tives {∼, ⊃2} and paranormal logic TK
1 with the following connectives

{∼, →4}, which is paraconsistent and paracomplete.

The existence of yet another logic, being neither paraconsistent nor
paracomplete, would allow us to construct a lattice of logics with respect
to the possession of one of the paraproperties (see Figure 3). Indeed, the
missing logic can be constructed, and in order to do so it is necessary to
generalize the concept of natural implication.

6. Strong and weak modus ponens: the final lattice

In an attempt to generalize the notion of natural implication, at least
two different approaches may be undertaken. First, we can remove the
requirement for the implication → to be C-extending. This immediately
leads to the classes of logics and to the lattice of these classes, where the

9 In the usual way, by using truth-tables to prove the independence of axioms, it
can be shown that the addition of the axiom (A →4 (B →4 C)) →4 (B →4 (A →4 C))
to TK

1 as a tautology does not change TK
1 to CPC, because A →4 (B →4 A)

remains an independent axiom (see [24, p. 256, matrix 5]), and therefore it is still not
verified in TK

1.
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supremum is a class consisting of logics which are functionally equivalent
to Post’s three-valued logic of P3. This new lattice cannot be constructed
without an appropriate computer program.

The second approach consists in loosening the restriction of normal-
ity  in the sense of Łukasiewicz-Tarski [33, p. 134]  for the logical ma-
trix. The latter condition appears as sufficient for the verification of
modus ponens that preserves the designated value.

In [45, p. 70] Rescher pointed out the need “to distinguish between
two ways in which a modus ponens principle can be operative in a system
of many-valued logic”. There are two different formulations:

(s) a stronger condition: whenever A and A → B both assume desig-
nated truth values, then B must also assume the designated value;

(w) a weaker condition: whenever A and A → B are both tautologies,
then B must also be a tautology.

The symbolic formulation of rule modus ponens, corresponding to (s)
and (w) can be represented as follows for any matrix M (cf. [55]):

(s) ∀v ∈ Val(M): if v(A) ∈ D and v(A → B) ∈ D, then v(B) ∈ D;
(w) if ∀v ∈ Val(M) v(A) ∈ D and ∀v ∈ Val(M) v(A → B) ∈ D, then

∀v ∈ Val(M) v(B) ∈ D.

where Val(M) is the set of all valuations in M.

In the case of the matrix of two-valued propositional logic CPC and
material implication both of the above formulations are true. Of course,
(s) logically entails (w), for any matrix and any connective →. However,
where three-valued logics are concerned, the opposite does not hold.

In [55, 56] through the consideration of the example of a three-valued
logic, it is proven that the difference between forms (s) and (w) of the
modus ponens principle is of a fundamental nature. As a consequence, we
end up having 18 three-valued logical matrices with implications satis-
fying conditions 1–3 from Section 3, where condition 2 on the normality
of a logical matrix is replaced by the requirement for modus ponens
to be a tautology-preserving rule (weak formulation of modus ponens).
As a result, the set of three-valued logics  extensions of Kleene’s weak
three-valued logic K

w
3 by natural implication  is divided into 10 disjoint

classes. The most interesting finding concerns the enlargement of the
class of Bochvarian logics B with one more logic (we denote it as TK

2)
having a new implication →29.
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Let us now consider the logic TK
2 determined by the matrix

M = 〈{0, 1/2, 1}, ∼, →29, {1, 1/2}〉,

where {1, 1/2} is the set of designated values and →29 is defined by the
following truth-table:

→29 1 1/2 0

1 1 1 0
1/2 1 1 1

0 1 1 1

Disjunction ∨ and conjunction ∧ are defined in the following way:

A ∨ B := ∼ A →29 B

A ∧ B := ∼(∼ A ∨ ∼ B)

It is easy to see that the law of Duns Scotus and the law of Clavius
A →29 (∼ A →29 B) and (∼ A →29 A) →29 A are verified on the atomic
level.

Thus, the infimum of the lattice in Figure 3 turns to be the logic TK
2

which is neither paraconsistent nor paracomplete. As a result, the final
lattice of paralogics (let us denote it by T K) is presented in Figure 4.
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Figure 4. The lattice T K

Theorem 1. The logics P
1
2, I

1
2, TK

1, and TK
2 are pairwise functionally

equivalent.

Proof. The functional equivalence of logics P
1
2 and I

1
2, with connec-

tives {∼, →7} and {∼, →5} respectively, where →7 is ⊃3 and →5 is ⊃2,
follows from the definitions:

(d1) A →5 B := ∼ B →7 ∼ A
(d2) A →7 B := ∼ B →5 ∼ A
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The functional equivalence of the logics I
1
2 and TK

2 with connectives
{∼, →5} and {∼, →29}, respectively, follows from the definitions:

(d3) A →5 B := A →29 ∼(B →29 ∼ A)
(d4) A →29 B := ∼(A →5 B) →5 (∼ B →5 ∼ A)

From (d1), (d2), (d3), (d4) and the transitivity of the relation of func-
tional equivalence it follows that the logics TK

2 and P
1
2 are functionally

equivalent.
At this point, it suffices to prove the functional equivalence of the

logics P
1
2 and TK

1 with connectives {∼, →7} and {∼, →4}, respectively.
This follows from the following definitions:

(d5) A →7 B := ∼(A →4 B) →4 ∼(B →4 ∼ A),
(d6) A →4 B := ∼((∼ B →7 ∼ A) →7 ∼(A →7 B)).

From (d1), (d2), (d5), (d6) and the transitivity of the relation of func-
tional equivalence it follows that the logics TK

2 and I
1
2 are also func-

tionally equivalent.

Theorem 2. Let B
∼

1 be the class of all external formulas of Bochvar’s

three-valued logic B3. Let this class be defined by the Peirce’s arrow γ

(see Section 4.5) and extended by the connective ∼. Then the logic I
1
2

with connectives {∼, ⊃2} and the logic B
∼

1 with connectives {∼,γ} are

functionally equivalent.

Proof. It is obvious that the connective ⊃2 can be defined by Peirce’s
arrow γ. Moreover, we put:

⌉ A := ∼(∼ A ⊃2 A)

⌈ A := A ⊃2 ∼ A

A ∪2 B := ⌈ A ⊃2 B

A ∩2 B := ⌈(A ⊃2 ⌈ B)

A ≡2 B := (⌉ A ∩2 ⌈ B) ∪2 (⌈ A ∩2 ⌉ B) (Sh)

Corollary 1. The logics P
1
2, I

1
2, TK

1, and TK
2 are functionally equiv-

alent to B
∼

1 .

Corollary 2. The logics P
1
2, I

1
2, TK

1, and TK
2 are axiomatized as an

extension of classical logic CPC by the Anshakov-Rychkov’s method.10

10 See the end of Section 5.3.
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In conclusion, we would like to refer to a class appearing in [18, §8],
in the list of the eleven precomplete classes of B3, namely B∼

1 . The
functional precompleteness of the class B∼

1 in B3 follows from Finn’s
Theorem [18] by the criteria of functional completeness of the class of
functions of B3. This means that the class of functions B∼

1 is the minimal

class that generates the lattice T K.

Acknowledgments. We would like to thank an anonymous referee as
well as Editors of LLP for corrections and suggestions of improvements
of earlier versions of this paper.
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