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Abstract
The relationship between body composition and skeletal metabolism has received growing
recognition. Low body weight is an established risk factor for fracture. The effect of obesity on
skeletal health is less well defined. Extensive studies in patients with anorexia nervosa and obesity
have illuminated many of the underlying biologic mechanisms by which body composition
modulates bone mass. This review examines the relationship between body composition and bone
mass through data from recent research studies throughout the weight spectrum ranging from
anorexia nervosa to obesity.
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Introduction
Osteoporosis is characterized by an increased risk of fracture resulting from reduced bone
mass and abnormal microarchitectural parameters compared to a normal cohort. The
economic burden of skeletal fractures is considerable. Worldwide, 9 million osteoporotic
fractures are estimated to have occurred in 2000, and these events represented approximately
0.83% of the global noncommunicable disease burden (5.8 million disability-adjusted life
years). The disease burden associated with osteoporotic fractures in Europe exceeded that
associated with virtually all common cancers [1].

Health care expenditures attributed to osteoporotic fractures in the United States for adults
aged 45 years and over were an estimated $19 billion in 2005 and are projected to be $25.3
billion in 2025 [2].

Although the prevalence of osteoporosis is higher in older age groups, fractures remain a
significant health burden in younger populations. Approximately 25% of children are
injured on an annual basis [3, 4], and fractures account for a quarter of these events [5]. Up
to half of children experience at least one fracture by the age of 18 years [6].

Pathologic deviations from a normal body weight are increasingly prevalent. The World
Health Organization estimates that global obesity has increased more than twofold over the
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past 30 years. According to the 2009–2010 National Health and Nutrition Examination
Survey, the prevalence of obesity among US adults was 35% [7]. Worrisome rates of obesity
have also been observed in children. Ten percent of children ages 5 to 17 years of age are
estimated to be overweight [8]. At the opposite end of the weight spectrum, anorexia
nervosa (AN), a frequent cause of low weight in developed nations, affects approximately
0.3% of young females and is among the most common chronic illness in this population.
The incidence and prevalence of AN appear to be increasing [9].

A majority of individuals with AN have significantly decreased bone mineral density
(BMD) [10] and an increased risk of fracture [11, 12]. Traditionally, obesity has been
regarded as a protective factor for bone, although recent studies have shown the importance
of fat depots at specific sites in determining this effect. The relationship between body
composition and bone metabolism has been the subject of intensive research, and recent
investigations have explored the complex links between bone, adipose tissue, muscle, the
nervous system, neuroendocrine axes, and the gastrointestinal system. Elucidation of the
pathways for communication between these systems has enhanced our understanding of
skeletal regulation and helped identify new potential biologic targets for therapeutic
intervention. In this review, we discuss these relationships in the context of altered body
composition and their impact on bone health.

Bone Strength, Fracture Risk, and Body Composition
The assessment of an individual’s fracture risk is a complex evaluation that incorporates
bone quality and strength, the degree of mechanical strain applied to bone, and the
likelihood or frequency of these events. Although higher body weight produces a greater
momentum during a fall, fat mass can cushion the area of impact and significantly decrease
the effective forces applied to underlying bone. In a study of postmenopausal women,
assessment of trochanteric soft tissue thickness reduced estimates of fall forces by as much
as 50% at the hip, and incorporation of this parameter alongside areal BMD may better
predict fracture risk [13, 14]. In regard to fat depots, both visceral adipose tissue (VAT) and
subcutaneous adipose tissue (SAT) contribute to total body mass, but SAT may attenuate
bone impact forces in a site-specific manner.

Obese individuals may be at higher risk for fall-related bone injuries. A large adult dataset
from the Medical Expenditure Panel Survey suggested that the incidence of fall injuries is
higher in obese individuals compared to the normal weight population [15]. Obesity-
associated pathologies such as diabetes mellitus and various arthropathic conditions may
partially explain an increased risk of fall. More fundamentally, it appears that obese
individuals, similar to the elderly, require greater attentional resources to maintain postural
stability [16].

Low body weight is a well-known risk factor for fracture and is incorporated into the FRAX
and Garvan algorithms, calculations aimed to predict an individual’s prospective fracture
risk [17]. Studies in adolescents and adults with AN have consistently shown reduced bone
mass and an increased fracture incidence and prevalence [10–12, 18–21]. Studies
investigating the relationship between bone structure parameters and obesity have produced
conflicting results, and a comprehensive discussion of those studies is beyond the scope of
this review. The interpretation and comparison of the studies’ results can be complicated by
lack of group homogeneity (in regard to gender, age, ethnicity, and metabolic profile) and
variations in bone measurement technique (eg, dual-energy x-ray absorptiometry [DXA] and
peripheral quantitative computed tomography [pQCT]), bone site, and method of analysis
(including bone mineral content [BMC]; areal BMD, volumetric BMD, microarchitecture,
and algorithm-based analyses such as the Hip Structure Analysis program). Studies have
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also utilized varied measures to assess adiposity. These strategies include indirect methods
such as body mass index (BMI) and waist circumference or direct measurement by DXA,
CT, or magnetic resonance imaging. The presence of multiple compartments of adipose
tissue such as SAT, VAT, and bone marrow fat and their potential distinct metabolic
characteristics add to the complexity of analysis. Limitations imposed on statistical models
by colinearity between highly related variables have not routinely been addressed in a
consistent manner in studies seeking to isolate the impact of fat mass on BMD and bone
structure. Misleading data and potentially erroneous conclusions can result from treating
highly related covariates as independent variables [22•, 23]. The cross-sectional nature of
many bone imaging studies is an additional limitation. Recent large longitudinal fracture
studies in postmenopausal women suggest that the relationship between obesity and fracture
is site-dependent [24•, 25]. Similar results were observed in a recent near-nationwide
medical record review in Spain [26]. Comparatively large longitudinal studies are not
available in pediatric populations.

Mechanical Stimuli
Mechanical stimuli linked to body weight have been thought to underlie differences in bone
mass and fracture risk in patients. The hypothesis that bone adapts to mechanical forces was
first postulated by J. Wolff in 1869 and later refined into the “mechanostat” proposal by H.
Frost [27]. Experiments have demonstrated that dynamic, rather than static, loads promote
bone formation [28, 29], and that the response of bone is governed by the amplitude and
frequency of these stimuli [29, 30]. Body mass and composition influence the amplitude of
mechanical forces exerted on bone, and the frequency of forces is defined by an individual’s
physical activity. Adipose tissue predominantly applies a static load on bone (although it can
also indirectly affect the amplitude of dynamic forces). Muscle use creates dynamic strains
on bone, and these forces greatly exceed the static gravitational loads resulting from body
mass [31, 32].

Because individuals with AN have reduced amounts of lean and fat mass, their skeleton
encounters diminished mechanical stimuli. Moreover, exercise does not appear to benefit
BMD in individuals with active AN [33]. Obese individuals have excess fat mass and
generally also have an increased amount of lean mass. From a biomechanical viewpoint, the
excess mass associated with obesity should benefit bone strength, although perhaps less than
initial expectations due to the fact that excess fat mass primarily exerts static loads on bone.

Nutrition and Diet
Adequate micronutrient intake, especially calcium and vitamin D, are important factors to
maintain normal BMD and prevent fractures. Studies in adults with AN suggest that a
significant portion do not meet the recommended intake levels of calcium and vitamin D,
although the percentages were comparable to healthy controls [34, 35]. Interestingly, data in
adolescent girls showed that those with AN had significantly higher intake of calcium and
vitamin D compared to healthy controls, often through the use of dietary supplements, and
that a higher percentage of girls with AN met the Dietary Reference Intake for these
nutrients [36].

Obesity is often described as a high-caloric state of malnutrition. Micronutrient deficiencies,
including vitamin D, are prevalent in obese populations [37, 38]. Studies show an inverse
correlation between serum levels of 25-hydroxyvitamin D or 1,25-dihydroxyvitamin D and
BMI [39, 40]. Proposed etiologies for this correlation have included poor dietary intake,
limited sun exposure, decreased hepatic production of 25-hydroxyvitamin D, or reduced
bioavailability due to storage in adipose tissue. A study by Wortsman et al. [41] showed
decreased serum 25-hydroxyvitamin D levels in obese subjects and concluded that obese
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subjects had decreased bioavailability of vitamin D from cutaneous and dietary sources,
possibly due to deposition in adipose tissue. Parathyroid hormone (PTH) levels are also
elevated in obese populations, and PTH appears to positively correlate with BMI [40, 42].
Although relative vitamin D deficiency is likely contributive, a recent study utilizing citrate-
calcium clamps revealed that the PTH-calcium set point is altered in obese subjects.
Specifically, the results were consistent with enhanced PTH production in obese individuals
[43].

Neuroendocrine Function
Hypothalamic-Pituitary-Gonadal Axis

Reproductive function is typically impaired in extreme states of over- and undernutrition,
and amenorrhea is a part of the current Diagnostic and Statistical Manual of Mental
Disorders-IVR (fourth edition, text revision) diagnostic criteria for AN. Amenorrhea
associated with AN is hypothalamic in origin due to impaired gonadotropin-releasing
hormone (GnRH) pulsatility and reflects an adaptive response to a negative energy state. In
individuals with AN, levels of gonadal steroids are reduced, and gonadotropin secretion
patterns mimic those observed in prepubertal or early pubertal children [44, 45].
Administration of exogenous GnRH is able to restore gonadal axis function [46].

Lumbar BMD is lower in adults with the onset of AN during adolescence compared to adult
onset and reflects the impact of the disease on attainment of peak bone mass [47]. Bone
mass is lower in amenorrheic women with AN compared to eumenorrheic women with
comparable body mass [48]. Women have elevated markers of bone resorption after
menopause, a physiologic state of hypoestrogenism. A similar pattern of enhanced bone
resorption is observed in women with AN [49]. However, oral estrogen administration does
not improve BMD in adults with AN [50, 51]. A recent study by our group has demonstrated
improvement in BMD in adolescent girls after treatment with physiologic transdermal
estradiol [52••]. The dissimilar outcomes may be the consequence of the effects of oral
versus transdermal estradiol on levels of insulin-like growth factor 1 (IGF-1) [53], and/or
age-dependent skeletal responses to estrogen in undernutrition.

GH-IGF-1 Axis
Impairment of the growth hormone–insulin-like growth factor type 1 (GH-IGF-1) axis can
be seen in both under- and overnutrition. Although the mechanisms of impairment differ, a
relative state of decreased GH action may be present at both extremes. The anabolic effects
of IGF-1 on bone have been well described [54]. Typically, serum levels of IGF-1 are
reduced, and levels of GH are elevated in AN, consistent with a state of acquired GH
resistance [55, 56]. In adults with AN randomized to placebo or supraphysiologic doses of
recombinant human GH, GH did not significantly increase levels of IGF-1, implying a
resistance of GH at the level of the liver [57•].

Serum levels of bone formation markers are reduced in AN [44,49], consistent with the loss
of an endogenous anabolic factor, and levels of IGF-1 correlate with bone microarchitectural
parameters [58]. Administration of recombinant human IGF-1 (rhIGF-1) increases serum
markers of bone formation in adolescents and adults with AN [49, 59], and treatment with
the combination of an oral contraceptive and rhIGF-1 significantly improves BMD in adult
women with AN compared to placebo [52••]. Levels of IGF-1 peak during adolescence and
decline with age [60]. The relative contribution of IGF-1 with regard to bone formation is
likely to be most profound during adolescence.

Visceral adiposity is associated with reduced GH secretion, and IGF-1 may be lower [61–
63]. Hypoactivation of the somatotropic axis appears limited to individuals with increased
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visceral fat [64]. Levels of IGF-1 positively correlate with markers of bone formation and
BMD in obese premenopausal women and inversely correlate with visceral adiposity [65].

HPA Axis
Hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis and enhanced cortisol
secretion are observed in AN. Serum and urinary measures of cortisol are elevated compared
to healthy weight controls, and pooled serum cortisol levels inversely correlate with BMD
[66–68]. Excess cortisol has well-defined direct deleterious effects on bone mass and may
indirectly influence bone via effects on sex steroids, GH, muscle mass, intestinal calcium
absorption, and renal tubular calcium excretion [69–72].

Visceral Fat and Subcutaneous Fat
VAT and SAT compartments may exert distinct effects on bone. VAT is generally
considered to be metabolically unhealthy; compared to SAT, VAT exhibits increased
immune cell infiltration and a more proinflammatory cytokine/adipokine profile. VAT
secretes lower levels of adiponectin and higher levels of proinflammatory cytokines such as
interleukin-6 and tumor necrosis factor-α, which stimulate osteoclastogenesis and bone
resorption [73]. Higher levels of preadipocyte factor 1 (Pref-1) may promote the
development of a proinflammatory environment [74]. Levels of Pref-1 are elevated in the
VAT and SAT of metabolically unhealthy obese individuals compared to healthy obese
adults and correlate with parameters of metabolic dysfunction [75]. Furthermore, VAT
inversely correlates with serum levels of IGF-1 in obese women [76] and is a negative
predictor of insulin sensitivity [74].

In a study of obese women, VAT (but not SAT) correlated with marrow adiposity, and
marrow fat content inversely correlated with lumbar trabecular BMD [77]. Similar results
were observed in a study of normal weight women [78]. Several studies have shown inverse
correlations of VAT, but not SAT, with measurements of bone structure and strength [76,
79–81]. Skeletal muscle adipose tissue accumulation is considered pathogenic and shares
similar metabolic characteristics with VAT. A large study in girls showed an inverse
association of skeletal muscle fat with volumetric BMD and bone strength indices [82].
Similar results were observed in men [83]. Therefore, consideration of the effects on adipose
tissue on BMD is likely dependent on specific fat depots.

Adipokines
Leptin is a fat-derived hormone, primarily made in subcutaneous fat, whose concentration is
proportional to total body fat mass. Serum levels of leptin are reduced in conditions of low
weight, such as AN [84, 85], and are elevated in obesity [86]. Leptin-deficient mice have
reduced total bone mass, but the effects of leptin vary according to the bone site examined.
Leptin deficiency in mice results in greater BMD in the axial skeleton but reduced values at
appendicular locations [87, 88], and its effects are mediated through central and peripheral
pathways [89–92]. In patients with the rare condition of congenital leptin deficiency, BMD
and BMC appear largely normal, and treatment with leptin did not affect BMD in most of
these individuals [93, 94]. Studies examining the relationship between serum leptin levels
and BMD in humans have been inconsistent likely due to differences in bone sites
examined, gender, and leptin resistance. A recent meta-analysis of studies in nonobese
adults indicated that leptin is positively associated with BMD in men and women, especially
in postmenopausal women [95]. Serum leptin levels also predict bone microarchitectural
parameters in women with AN [58]. In addition to its central and peripheral actions, leptin
may influence bone metabolism by its effects on the gonadal, GH, and HPA axes and
glucose metabolism/insulin sensitivity [85, 96–98].
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Although adiponectin is produced by adipocytes, serum levels inversely correlate with BMI
and visceral fat [99, 100]. Studies have shown high, normal, or low levels in patients with
AN [101–103], and one study showed an inverse association between adiponectin values
and bone density parameters in adolescents with AN [104]. Adiponectin levels are inversely
associated with BMD in children and adults [95, 100, 105, 106]. Adiponectin receptors are
expressed on osteoblasts and osteoclasts [107, 108]. In vitro experiments with human cell
cultures demonstrate that adiponectin promotes osteoclastogenesis through osteoblast
production of receptor activator of nuclear factor-κB ligand (RANKL) and inhibition of
osteoprotegerin [109]. Other studies suggest that adiponectin enhances osteoblast
proliferation and activity and suppresses osteoclast function [110–112]. Low adiponectin
levels are predictive of greater insulin resistance [113]. Other adipokines, including visfatin,
resistin, and Dickkopf-1, interact with bone but are outside of the scope of this paper [114–
116].

Gut-Derived Hormones and Neuropeptides
The gastrointestinal system secretes a variety of factors that participate in appetite regulation
and the maintenance of energy homeostasis in conjunction with the nervous system. Several
of these factors have direct effects on bone mass or may impact bone metabolism by their
interaction with hormones thus far discussed.

Peptide YY (PYY) is an anorexigenic hormone principally secreted by intestinal endocrine
cells, and two forms predominate in the circulation: PYY1-36 and PYY3-36 [117, 118].
Serum levels of PYY are elevated in AN compared to lean or obese groups [119, 120], and
mean overnight PYY levels in women with AN inversely correlate with BMD at multiple
sites [121]. PPY and neuropeptide Y (NPY) bind to Y2 receptors with an approximately
equal affinity, and PYY3-36 is a selective agonist of the Y2 receptor [117]. Central activation
of Y2 receptors appears to inhibit osteoblast activity, and hypothalamus-specific adult-onset
Y2 receptor deletion in mice results in an anabolic bone phenotype [122]. PYY also displays
significant affinity for Y1 receptors, and deletion of Y1 receptors in bone marrow stromal
cells enhances osteoblast proliferation and activity [117,123]. Studies in rodents suggest that
PYY may regulate the gonadal axis [124, 125].

Ghrelin is an orexigenic peptide secreted by the stomach and is a potent GH secretagogue
[126]. Levels of ghrelin are elevated in AN and are reduced in obesity [127, 128]. Ghrelin
levels predict BMD parameters in healthy girls and elderly men [129, 130]. In vitro
experiments in rats demonstrate that ghrelin stimulates osteoblast proliferation [131]. Like
PYY, ghrelin modulates the gonadal axis. In rat models, ghrelin regulates the gonadal axis at
the level of the hypothalamus and pituitary, and ghrelin administration to men suppresses
luteinizing hormone secretion [132, 133]. Additionally, ghrelin influences β-cell survival,
insulin secretion, and insulin sensitivity [134].

Insulin integrates effects of many of the hormones thus far discussed. In rodents insulin
exerts anabolic effects on bone in vivo [135, 136]. Insulin stimulates osteoblasts directly and
may participate in a regulatory loop between the bone and pancreas in conjunction with
osteocalcin [137, 138]. Serum insulin levels are often elevated in obese individuals and are
reduced in girls with AN compared to healthy controls. Insulin levels correlate with markers
of bone turnover in AN and predicts BMD in elderly men and women [139, 140]. Consistent
with these findings, patients with type 1 diabetes, a state of insulin deficiency, have an
increased risk of fracture [141].

NPY is emerging as a significant intermediary between fat, bone, and the nervous system.
NPY is an orexigenic hormone produced in the central and peripheral nervous system, with
particularly high expression in the hypothalamus [142, 143]. Recent studies have also shown
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that NPY is expressed by subcutaneous and visceral fat in rodents and humans and by
osteocytes and osteoblasts in mice [144–147]. Peripherally, NPY receptors are expressed on
mesenchymal stem cells (MSCs), osteoblasts, preadipocytes, and adipocytes in mice [123,
144, 147]. Current evidence suggests that NPY acts centrally in the hypothalamus and
peripherally to inhibit osteoblast activity. Central and peripheral NPY also promote
lipogenesis [148]. In a small study, serum levels of NPY were increased in women with AN
compared to healthy controls [149]. In a study of lean, overweight, and obese adults, serum
NPY correlated positively with BMI, although this association appeared to be present only
among hypertensive subjects [150].

Bone Marrow Adiposity
The regulation of bone marrow MSC differentiation has been the focus of extensive
research. Osteoblasts and marrow adipocytes differentiate from MSCs [151]. Regulation of
MSC differentiation into these lineages may influence bone formation [152]. Studies have
demonstrated an inverse correlation between marrow fat content and BMD in adolescents
and adults and linked age-related bone loss to increased marrow adiposity [153–157].
Higher marrow fat content has also been observed in prolonged immobilization and women
with AN [158, 159]. Hormones implicated in the regulation of MSC differentiation include
estrogen, IGF-1, and glucocorticoids [160–162]. More recently, Pref-1 has been shown to
inhibit adipocyte and osteoblast differentiation [163–165]. Serum levels of Pref-1 are
elevated in women with AN compared to healthy controls, and levels of Pref-1 correlated
positively with bone marrow fat content and inversely with BMD [166]. The role of bone
marrow adiposity as a factor in bone mass regulation is under active investigation.

Conclusions
Body composition influences bone directly via mechanical stimuli and adipokine secretion
and more obliquely through the communication with and modulation of various central and
peripheral pathways. The metabolic characteristics of adipose tissue are not uniform, and
different depots may exert distinct effects on the regulation of bone mass and structure. The
effect of body composition on clinical outcomes, namely fracture risk, integrates the
metabolic effects of energy balance, lean mass, and adipose tissue mass on bone and the
frequency and severity of mechanical “challenges” that the skeleton encounters. Enhanced
understanding of the pathways that govern skeletal metabolism will support the
identification of therapeutic strategies to maximize skeletal strength.
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