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Abstract

Background Until recently, pediatric body composition reference data were very limited, hindering interpretation of mea-

surements. In the last decade, such data emerged for several techniques for children ≥ 5 years, but equivalent data for

younger age groups remain lacking, due to their poor compliance with most techniques.

Objectives To provide reference data for use in clinical practice and research from 6 weeks to 5 years, that are based on

measurements of total body water (TBW) by isotope dilution.

Design The data on anthropometry and TBW were available from studies of 463 infants and children aged 6 weeks to 7

years, conducted between 1988 and 2010. Both breast-fed and formula-fed infants were included. TBW was measured by
2H- or 18O-labeled water, and converted to fat-free mass (FFM) using published hydration coefficients. Reference charts and

SD scores (SDS) were constructed for FFM, fat mass (FM), FFM index and FM index for each sex, using the lambda-mu-

sigma method.

Results Both sexes were significantly heavier and longer than UK 1990 reference data (p < 0.01), but did not differ in body

mass index SDS. Breast-fed infants were longer than formula-fed infants but did not differ in body composition.

Conclusions These reference data will enhance the ability of clinicians to assess and monitor body composition and FFM/

FM accretion in clinical practice in younger age groups. Total body water can be measured in most patients, though

abnormalities of hydration must be addressed. However, the centiles do not overlap exactly with those published for older

age groups, limiting comparability between younger and older children.

Introduction

Growth charts for weight and height have underpinned

assessment of children’s nutritional status for decades [1, 2],

with body mass index (BMI) charts introduced in the 1990s

[3]. However, BMI provides no information on the pro-

portions of fat and lean mass [4]. More recently, growth

charts for children’s body composition have emerged [5].

Most are based on specific techniques such as skinfolds

[6, 7], bioelectrical impedance analysis (BIA) [8–10] and

dual-energy X-ray absorptiometry (DXA) [11–14], but

multi-component models have also been used [15]. These

charts help identify how specific diseases and their treat-

ment impact the body, and may improve the tailoring of

treatment regimens and nutritional requirements to indivi-

dual patient needs [16].

As yet, such reference data primarily address mid-

childhood (≥5 y) onwards. Infants and younger children are

more difficult to measure, due to poor compliance with most

methodologies. Until recently, the main source of infor-

mation on body composition from birth to 5 years was the

reference child [17]. This pioneering study merged multiple

data on to US growth centiles, and modeled the develop-

ment of fat mass, lean mass, and lean tissue components
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from birth to 10 years, but described only mean values, not

the variability.

Body composition reference data for infants have

recently been published for several techniques. These

include skinfolds [18], DXA [19], air-displacement ple-

thysmography adapted for infants (the PeapodR) [20, 21],

and a multi-component model [22]. Nevertheless, most of

these datasets only address infants < 1 year, though one

study covered the first 2 years [22], leaving young children

< 5 years poorly addressed. Thus, in younger age groups

BMI remains the most commonly used proxy for adiposity,

although its limitations for this role are well established [4].

For clinical practice, this is of particular concern because a

large proportion of pediatric patients are aged < 5 years. In

public health, the first thousand days are now well-

established to represent a critical developmental period,

during which variability in tissue accretion has major

implications for long-term health [23–26]. Both poor infant

growth, and rapid weight gain during both infancy and early

childhood, have been linked with poorer long-term out-

comes [27–29], but data on the underlying body composi-

tion trajectories are urgently required, not least because

associations of weight gain with later body composition

differ between low-/middle-income and high-income set-

tings [30].

We extracted data on total body water (TBW) from

multiple studies of infants and children, from which fat-free

mass (FFM) and fat mass (FM) can be calculated. We

generated new body composition growth charts and stan-

dard deviation scores (SDS) for these outcomes and their

height-adjusted equivalents, for the age range 6 week to

5 years.

Methods

Measurements of weight, length or height, and TBW were

made in several studies of body composition and energy

metabolism conducted by our research group in Cambridge

and London, UK between 1987 and 2010. These studies

have been described previously [15, 31–36]. Broadly,

infants and younger children (<4.5 years) were measured in

the early/mid1990s, and the older children from 2001

onwards. Ethical permission for these studies was granted

by Cambridge Local Research Ethics Committee, the for-

mer MRC Dunn Nutrition Unit, and UCL Great Ormond

Street Institute of Child Health. Written informed consent

was obtained from parents.

Weight of infants was recorded accurate to 20 g using

Seca 727 electronic scales. Length was recorded to 0.2 cm

using a Harpenden infantometer. Weight of children was

measured on electronic scales accurate to 0.01 kg, and

height to 0.1 cm using portable or wall-mounted

stadiometers. All data were collected in duplicate, and the

average value used. BMI was calculated from weight and

height. Data on weight, height, and BMI were converted

into standard deviation scores (SDS), using UK 1990

reference data [3, 37], in order to ascertain how repre-

sentative our sample was of the UK population. BMI was

also expressed as SDS relative to WHO reference data [38].

Feeding mode was categorized through parental report as

predominantly breast-fed or formula-fed at 6 and 12 weeks.

We did not subsequently collect adequate data on breast-

feeding status at later ages to allow accurate categorization

of feeding mode.

Measurement of TBW requires oral administration of

water labeled with 2H or 18O. After equilibration with the

body water pool, the isotopic enrichment of saliva or urine

samples can be analyzed to calculate the dilution space (N)

using simple dilution principles [39]. There are two

approaches to calculating N, known as the plateau method

and the back extrapolation method [39]. In children and

adults these give similar results, but in infants, where water

turnover is more rapid, the plateau method overestimates N,

due to dilution of the dose by unlabeled water during

equilibration [39]. In our sample, the back extrapolation

method was used in all those aged < 2 years, while both

methods were used in those aged ≥ 2 years as they gave

minimally different values.

Both 2H and 18O dilution spaces overestimate TBW, due

to exchange with non-aqueous exchangeable hydrogen and

oxygen. Conventionally, the 18O space (NO) is converted to

TBW by dividing by 1.01, and the 2H space (ND) by

dividing by 1.044 [40]. TBW was therefore calculated as

NO/1.01 for all infants and children where possible, and as

ND/1.044 where only the deuterium dilution space was

available. We assumed that these adjustments were suffi-

cient to address any inconsistencies in TBW data obtained

with the two different isotopes.

FFM was calculated as TBW/hydration, using published

age- and sex-specific hydration values [17]. FM was cal-

culated as the difference between FFM and weight. FFM

and FM were divided by the square of height, to give

Fat-Free Mass index (FFMI) and Fat Mass Index (FMI)

in kg/m2 units [41]. Seven data points around the age of

2 years were rejected for implausibly high FFMI values.

Statistics

In order to maximize consistency between these new cen-

tiles and those published previously for the age range 5 to

20 years [15], data for children aged 4.2–7.0 years from the

latter study (n= 81) were included in the analysis.

Sex-specific values by month of age were obtained for

body composition outcomes by using the LMS method

(LMS Chart Maker; Medical Research Council) [42]. This
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statistical approach, widely used to construct reference data

for traits that incorporate the effects of growth, provides the

following 3 outputs: 1) a smoothed median (M or mu)

curve, which represents how the outcome varies in relation

to age, 2) the CV (S or sigma), which models the scatter of

values around the mean and adjusts for any non-uniform

dispersion, and 3) the skewness (L or lambda), which cor-

responds to the age-specific Box-Cox transformation nee-

ded to achieve a normal distribution.

TBW and FFM were fitted by using rescaled age, which

improves the goodness of fit for monotonic data by fitting

the M curve twice. All other outcomes were fitted with

transformed age with zero offset, which also improves the

fit even for non-monotonic data. Initially, the goodness of

fit was assessed by using the Bayesian Information Cri-

terion, with an extra degree of freedom added to the model

only if it reduced the deviance by more than loge(n) units,

where n was the sample size. However, visual inspection of

the model-fit was also used, leading to simpler models

being selected at the final stage for some outcomes as

described in the results. We fitted the data for all ages

(6 weeks to 7 years) and derived LMS values and charts for

the age range 6 weeks to 5 years, as our earlier work

addressed children > 5 years [15]. For all outcomes, we

calculated the following SDS cutoffs: −2, −1.67, −1.33, 0,

1.33, 1.67, and 2, which are equivalent to percentiles of

2.3%, 9.2%, 25.2%, 50%, 74.8%, 90.8%, and 97.7%

respectively [43]. Finally, we converted previously pub-

lished body composition reference values from infancy and

early childhood [17, 22] into FFM SDS, FM SDS, FFMI

SDS and FMI SDS using our own reference data, to

compare the datasets.

Results

Valid body composition data were available for 463 indi-

viduals (211 males, 252 females). As shown in Fig. 1, a

wide range of BMI SDS was apparent across the age range

studied, though the range was narrower for the age range 3

to 5 years. On average, our sample was taller in comparison

with UK reference data of the early 1990s (P < 0.05 in both

sexes), but did not differ in BMI (Table 1). Relative to

WHO reference data however, both sexes had greater

weight and BMI SDS but were not taller. The numbers

predominantly breast-fed and formula-fed were 20 and 29

respectively at 6 weeks, and 45 and 55, respectively at

12 weeks. There were no differences in anthropometry or

body composition SDS by infant feeding mode, except at

12 weeks when the breast-fed infants were significantly

longer (∆= 0.44 SDS, 95% CI 0.09, 0.78).

Age and BMI SDS were weakly correlated in both sexes

(UK reference: r= 0.15; WHO reference: r= 0.24, both

p < 0.005). Correlations of FFMI SDS with BMI SDS were

0.49 and 0.54 for males and females respectively, while

those of FMI SDS with BMI SDS were 0.49 and 0.56

respectively (all p < 0.0001).

Consistent with the narrower BMI SDS range for chil-

dren aged 3–5 years (Fig. 1), visual inspection of the total

body water centiles generated by the best-fit model showed

an unexpected dip around the same age range (Supple-

mentary online Fig. 1). The centiles were therefore re-

generated with fewer degrees of freedom, reducing sensi-

tivity to age.

Based on this approach, LMS centiles for TBW, FFM

and FM by sex are shown in Fig. 2. TBW and FFM

increased with age in both sexes, but increased faster in

males during the first 2 years. In contrast FM centiles were

similar between the sexes, with a dramatic fall in fat

accretion after the first 3 months. The median boy and girl

had accumulated ~2.5 kg fat by 1 year, but only another ~1

kg by 4.5 years. Supplementary online Table 1 provides

LMS values by 1-month intervals for each sex.

LMS centiles for FFMI and FMI by sex are shown in

Fig. 3. Male FFMI plateaued around 1 year, indicating

that FFM accretion outstrips length growth during early

life, with this pattern subsequently fading. A weaker

version of this pattern was evident in females, so that FFM

accretion was broadly proportional to height from 1 year

onwards. In both sexes, FMI rose up to ~6 months and

then declined, first rapidly then more slowly, so that the

slope was almost flat by 2 years in both sexes. This

indicates that fat was gained in proportion with height

during early childhood.

Figure 4 plots the reference child of Fomon and col-

leagues [17] and the data of Butte and colleagues 2000

[22] as SDS relative to our data. The Fomon data showed

broadly similar age trends for FFM, though ~0.5 SDS
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Fig. 1 Distribution of body mass index standard deviation score (BMI

SDS) against age in the sample. N= 199 males, 233 females
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greater when expressed as FFMI, and similar levels of

fatness in infancy, but progressively lower values from

6–9 months onwards. The Butte data showed lower FFM

and FFMI values in early infancy and after 1 year, but

similar values in the second 6 months. Fatness was

substantially higher in early infancy, but was similar to

our values from 9 months.

Consistency between the new TBW centiles and those

published previously for children aged > 5 years was assessed

by graphic analysis (Supplementary online Fig. 2). Even

Table 1 Anthropometry

standard deviation scores

relative to the UK 1990

reference in children aged < 5

years

Males (n= 167) Females (n= 200)

UK 1990 WHO UK 1990 WHO

SDS ∆ 95% CI ∆ 95% CI ∆ 95% CI ∆ 95% CI

Weight 0.08 −0.06, 0.22 0.15 0.01, 0.30 0.06 −0.07, 0.20 0.18 0.06, 0.30

Height 0.20 0.05, 0.35 0.07 −0.09, 0.23 0.24 0.09, 0.39 0.11 −0.02, 0.25

BMI −0.10 −0.25, 0.05 0.15 −0.00, 0.30 −0.11 −0.26, 0.03 0.18 0.03, 0.33

∆ - difference from zero by paired t-test. Significant results in bold

No significant difference between sexes by two-sample t test

Fig. 2 Centiles for total body

water (TBW) in (a) boys and (b)

girls, fat-free fat mass (FFM) in

(c) boys and (d) girls, and fat

mass (FM) in (e) boys and (f)

girls measured by deuterium

dilution. The 3rd, 10th, 25th,

50th, 75th, 90th and 97th

centiles are displayed
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though the two charts included 81 children in common across

the age range at which they intersect, the new centiles were

lower in the younger children by around ~0.33 SDS in the

lower centiles and ~0.66 SDS in the upper centiles.

Discussion

We present the first body composition reference data using

a two-component model over the combined period of

Fig. 3 Centiles for (a) fat-free

mass index (FFMI) in boys, (b)

fat-free mass index (FFMI in

girls, (c) fat mass index (FMI) in

boys and (d) fat mass index

(FMI) in girls. The 3rd, 10th,

25th, 50th, 75th, 90th and 97th

centiles are displayed

Fig. 4 Published data of Fomon

and colleagues [17] and Butte

and colleagues [22] converted to

z-scores using our new reference

data, to evaluate differences

between studies in (a) fat-free

mass (FFM), (b) fat mass (FM),

(c) fat-free mass index (FFMI)

and (d) fat mass index (FMI)

Body composition reference charts for UK infants and children aged 6 weeks to 5 years based on. . . 145



infancy and early childhood. This enables trajectories of FM

and FFM accretion to be described over the crucial first

thousand days of life, a period when growth is sensitive to

diverse ecological stimuli and stresses, and has implications

for long-term health. Beyond the overall patterns of devel-

opment, our charts also highlight subtle sex differences in

FFM and FM accretion. In early infancy, though weight

gain is slowing, males gain FFM faster than females, who

show slightly faster FM accretion. From 3 years, females

gain both tissues at consistent rates, whereas FM accretion

declines in males while FFM accretion increases.

Previously, evaluations of early growth patterns were

restricted to anthropometric outcomes, most commonly

weight, height and body mass index [3, 37], but also

skinfold thicknesses [6]. These approaches can describe

increases in components of size, and regional adiposity, but

provide no direct information on body composition in terms

of differentiating FM and FFM. While skinfolds evaluate

regional subcutaneous adiposity at specific regional depots,

they relate poorly to whole body fat in infancy [44]. Most

importantly, none of these approaches provides useful

information about FFM, the primary functional component

of body mass.

These reference data broadly precede the period during

which the prevalence of obesity has increased in younger

children. Even in the 1990s, the children we studied were

on average heavier and taller than the British reference data,

but importantly, there was no difference in BMI. Relative to

WHO data, both our male and female sample average ~0.2

z-scores for BMI, still a relatively small difference.

A potential limitation of our charts, however, is that the

older children were measured ~10 years more recently than

the infants. On this basis, the charts might potentially

express as age-associated increases in fat or lean mass

increments that are actually due to secular trends in nutri-

tional status. The widening difference between adiposity z-

scores with age, when comparing our sample to that of

Fomon, might seem to support that interpretation. However,

life-course exposure to obesogenic factors also inherently

increases with age, hence the specific contribution of

secular trends may be modest.

Nevertheless, despite incorporating 81 data-points from

our previously published reference data for older children,

with the aim of making the centile charts overlap success-

fully, a poor join was apparent for TBW centiles above the

median, which would propagate to all other body compo-

sition outcomes. We suggest that this is partly because older

children have had longer exposure to obesogenic factors

than younger children; and partly because the older children

were measured more recently and have consistently

experienced an overall more obesogenic environment. Since

greater FM tends to be accompanied by higher FFM (and

hence TBW), both of these scenarios contribute to greater

distances between the upper centiles in the more recently-

measured older children, compared to the younger children.

Overall, this indicates that individuals and groups cannot be

monitored across the two charts, rather each should be used

separately. Further work may be conducted to merge the

two datasets, however the different historical periods of

recruitment cannot be resolved.

More generally, the comparisons with previously pub-

lished data indicate substantial population variability in

body composition in early life. Our children’s data appear to

reflect a more obesogenic setting compared to Fomon’s

reference child [17], reflected in progressively higher FM in

the UK with increasing age. The Butte data [22] show larger

differences in infancy in both tissues, which are harder to

interpret. Possible contributing factors may be varying

contributions of breast- vs formula-feeding, or differences

in measurement methods (eg we used the back extrapolation

method in infants, whereas Butte at el used both this and the

plateau method). Since these contrasts were present both in

early infancy for FM, and in late infancy for FFM, we

suspect that population differences in tissue accretion pat-

terns are likely to be one contributing factor. On this basis,

our data should not be considered definitive, rather they

give a broad indication of early tissue accretion patterns.

Nevertheless, these reference data should be of value to

clinicians, given that a large proportion of pediatric hospital

patients are aged < 5 years. Infants and young children,

especially when sick, may struggle to comply with most

measurement protocols. Currently available techniques

include BIA, DXA and air-displacement plethysmography

(ADP) [45, 46]. Each has some limitations: ADP and DXA

require access to expensive non-portable instrumentation,

and ADP is currently available only for infants < 6 months

of age and > 2 years of age, while DXA involves exposure to

very low levels of radiation. BIA is a more widely available

technique and is portable as well as cheap and quick to use,

however not all infants and young children stay sufficiently

still to satisfy the protocol. Moreover, raw BIA data are

converted to final body composition values using prediction

equations that should ideally be generated in the study

population, or obtained from studies on similar populations.

In contrast, isotope techniques are relatively easy to perform

on all human subjects. The main limiting factors for this

approach are the cost, and the delay in obtaining results. In

addition, where patients may have dehydration, or over-

hydration from edema, measurements of TBW may remain

difficult to interpret. Rapid clinical services could be

developed using simpler analytical techniques, such as

Fourier-Transform Infrared Spectropotometry.

Our reference data may also be of value in the context of

public health. There is increasing realization that infants and

children differ amongst each other in their relative accretion

of weight and length, however the conversion of data to
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BMI provides data on nutritional status rather than body

composition. Recent studies have identified peak BMI

velocity in infancy as an important predictor of subsequent

obesity risk [44], nevertheless it remains difficult to know

whether this implicates the accretion of fat tissue during

early life, or simply a faster rate of growth.
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