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When closely examined, several biological mechanisms reveal themselves as implementing a
physical and dynamical two-way link or coupling between the organism and the world. In these
cases, some mechanisms’ components can either physically cross the body-world boundary or are
brought by the organism’s motor actions onto specific sensory surfaces. As with any biological
phenomenon, the historical contingencies of these sensorimotor activities generate plastic changes
within the organism, that in turn determine its capacities at any given time. Body-world coupling
instances are evident in examples that we will describe later, such as breathing, sensori-motor
activities, and others. In the present piece, we attempt to position social cognitive phenomena as the
result of the mechanisms involved in the organism’s coupling history with its world. This coupling
constitutes one of the cornerstones of the so called 4E approach to cognition (Newen et al., 2018),
from which we will also draw concepts and distinctions in our effort to relate coupling mechanisms
with social phenomena. Even though reviewing the 4E approach to cognition escapes the scope of
the present piece, we can briefly state that the 4E cognition framework wants to bring multiple
approaches together under a sole emblem. It understands cognition as a natural phenomenon,
embodied in the biophysics of the body which is embedded both phylo- and ontogenically into
the animal’s ecological niche. To the 4E approach, cognition is also opportunistic and promiscuous
as can be extended toward the world with objects both material (e.g., technology) and conceptual
(e.g., institutions). Finally, the 4E approach thinks cognition as intended for action in an ongoing
interactional sense-making process; an enactive phenomenon. The 4E cognition framework owes
its current form to several landmark work such as the “enactive approach” (Varela et al., 2017), the
“distributed cognition branch of cognitive science” (Flor and Hutchins, 1991; Hutchins, 1995), and
the “extended mind” proposal (Clark and Chalmers, 1998), among others.

Despite decades of conceptual development of the 4E approach and its diverse subfields,
there are many questions regarding its particular implications for neuroscience (e.g., how can
neuroscientists can actually implement the 4E approach directly into their research agendas? Is
one-person neuroscience necessary?, etc.) (Di Paolo and De Jaegher, 2012; Willems and Francken,
2012). As experimental neuroscientists interested in the interactional nature of cognition, we
would like to extract the mechanistic implications of the 4E approach: components, activities,
and processes (What?, How?, When?), their context (When?, How?) and their weights (How
important?). Epistemologically, we concur with the view that conceives mechanisms as models
of the phenomena to explain and consider the building of mechanistic models a fundamental
explanatory aim of neuroscience (Craver, 2007). Without a mechanistic picture of the ways in
which the 4Es constitute and/or affect cognitive processes, we are left with few tools to further
empirical research.

We start by considering relevant distinctions provided by De Jaegher et al. (2010), where
constitutive, enabling, and contextual factors can be identified as the “set of circumstances”
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which are phenomena themselves. A contextual factor modulates
the phenomenon, whilst an enabling one is necessary for the
phenomenon to occur. Finally, constitutive factors are processes,
parts, and/or pieces that produce the phenomenon itself. What
happens if we add a dynamic and mechanistic framework
to the De Jaegher, Di Paolo, and Gallagher’s proposal? The
phenomenon to explain -at any scale (from action potentials
to social interaction)- can be understood as the result of
the dynamic operation of one or more mechanisms. Such
mechanisms comprise components, their activities and the
processes in which they participate, whose structural and
functional organization in certain conditions produce the
phenomenon (Bechtel and Abrahamsen, 2005; Craver, 2007).
Thus, we suggest that constitutive factors are processes that
can be composed of different components of a mechanism
under consideration at different moments of time. Examples
of components participating in a constitutive fashion are ion
channels, for the phenomenon of the action potential, and
participating agents for social interaction. In contrast, contextual
and enabling factors are better understood here as elements
which interact with mechanisms’ components and can change its
operation regime. Examples of enabling factors are the existence
of ionic gradients across the membrane, for the action potential,
and the alertness level of a participant, for social interaction.
Examples of contextual factors are, a specific ion channel type for
the action potential, and a given environmental setting, for social
interaction. It is important to note here that the constitutive,
enabling, or contextual quality of a given factor it is not fixed,
but can change throughout the organism’s ontogeny or history of
structural change.

We think our mechanistic view is compatible with the original
proposal of De Jaegher et al. (2010). In what follows, we
consider the above mentioned points in some detail. We start
by examining different mechanisms of body-world coupling, to
then propose ways to extend this viewpoint into social-cognitive
phenomena, considering the organism’s ontogeny.

BODY-WORLD COUPLING

Active Coupling Through Sensorimotor
Activities
An example of body-world coupling is represented by an
animal’s sensory-motor activities. In situations where the sensory
processes are important for the organism, there is usually
a profound interplay between the animal’s actions and the
operation of its sensors (Rojas-Líbano et al., 2014). This is
evident in motor actions associated with sensory sampling of the
environment: touching, sniffing, echolocating, whisking, visual
scanning. These actions allow the animal to bring stimuli to
sensory surfaces. In most of these cases, stimuli sampling takes
place in the wider context of adaptive and context-sensitive
behavior. The animal actively moves its sensory systems to
make decisions about navigation, small displacements, further
explorations, language actions, and the like (Ganguly and
Kleinfeld, 2004; Hayhoe and Ballard, 2005; Rojas-Líbano and
Kay, 2012; Clark, 2013; Arce-McShane et al., 2016).

The appropriate interplay or coordination between motor
actions and sensory activations requires the participation
of certain components of the world in the sensory-motor
mechanism. Therefore, cognitive activities involving any type
of movement will demand some environmental components
to become participants of a mechanism (i.e., a transiently
constitutive factor). If we manipulate world conditions that
interfere with this loop, we can potentially destroy the organism’s
coupling in the sense that we decrease its ability to interact
coherently with its world. Examples are everywhere. Sniffs
manipulate the number of odor molecules drawn onto the
olfactory epithelium, as well as the rate (i.e., flow) at which those
molecules travel through the nose (Rojas-Líbano and Kay, 2012).
Tactile (e.g., whisker, finger) movements are coordinated with
body movements and control the spatiotemporal frequency at
which mechanical stimuli contact the skin cutaneous receptors
(Kurnikova et al., 2017). Eye/head/body movements effectively
displace the photoreceptor surface so as to receive photons
coming from specific objects from the visual scene (Schroeder
et al., 2010), and mechanisms such as the accommodation reflex
modify the amount and direction of light that reaches the retina,
via the modification of pupil size and lens width (Michael-
Titus et al., 2010). All these motor activities manipulate world
components and -through this manipulation- cause changes
onto sensory surfaces (Figures 1A,B). Thus, world components
continuously move back and forth from participating in
processes contextual or enabling to constitutive factors for a given
point in time and a given sensorimotor act.

Other Examples of Coupling
Some mechanisms are part of the basic autonomy of a living
being and can be independent of active volitional control.
There are many examples, such as coupling through circadian
rhythms or, at the cellular scale, through membrane potential
maintenance, nutrient exchange, and structural interactions with
the extracellular matrix. However, for the sake of simplicity,
let us specifically focus on mammalian breathing as a non-
sensorimotor example of a mechanism that allows an organism
to functionally couple with its world. We know a fairly good
deal of the neural mechanisms that implement breathing in
mammals (Feldman and Del Negro, 2006). In this process, the
animal actively exchanges components with its world, specifically
air volumes with different amounts of oxygen and carbon
dioxide. Neurons in the brainstem periodically fire impulses
that eventually send activity down the phrenic nerve, delivering
acetylcholine onto the muscle cells of the diaphragm. The
diaphragm then contracts, expanding the thoracic cavity and
increasing lung volume. This expansion draws air from the
organism’s surroundings into the lungs. Finally, the diaphragm
relaxes, pushing air from inside the lungs back to the exterior of
the animal’s body. Accompanying the volume exchange there is a
substance exchange: inspired air is more enriched in oxygen than
expired air, which in turn ismore enriched in carbon dioxide. At a
molecular scale, we can conceive the mechanism as a continuous
exchange of molecules. From an outside reservoir enriched in
oxygen molecules, the organism draws oxygen inside and pushes
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FIGURE 1 | Illustration of body-world coupling, sensorimotor mechanisms, and the ontogeny of social cognition. Circles represent mechanisms’ components internal

to the organism (Ci ), and crossed circles depict world components (Cw ). Arrows represent causal effects between components. (A) In non-sensorimotor body-world

couplings, an organism’s motor activities capture world’s components and makes them interact with body components. (B) In sensorimotor body-world couplings,

through active motor sampling activities (e.g., sniffing, touching, fixating) the organism dynamically brings world components onto sensory surfaces. During ontogeny,

the occurrence (or not) of specific sensorimotor activities produces plastic changes in body components, represented here as weighted arrows and circles. (C) Social

cognition as a process grounded in sensorimotor coupling. World components relevant to sensorimotor coupling could well be stimuli produced by another organism,

such as physical stimuli resulting from communication processes, and different agents coupled with shared world components can lead to social cognitive

phenomena. This kind of sensorimotor coupling might entail different plastic processes within each organism (represented as different weighted arrows inside each

agent). S, sensory; Mm, motor actions for movement; Ms, motor actions for sampling.

out carbon dioxide. This mechanism operates as long as the
animal preserves its biological autonomy.

Now, consider what happens when we intervene on the
external side. Lowering the air oxygen concentration causes a
decrease in blood oxygen, which in turn activates peripheral
and central chemoreceptor neurons (Teppema and Dahan,
2010). The activation of the latter triggers an increase in drive
to the diaphragm, resulting in stronger, and more frequent
breathing cycles. Something similar happens if we prevent
molecules from crossing the boundary, say by occluding the
airway. This indicates that by manipulating the external state
of affairs, and/or by preventing physical exchanges across the
body-world boundary, we causally intervene in the mechanism.
We propose that this is a feature of mechanisms that
couple body and world. It is also trivially true that several
manipulations of the external conditions can causally affect
the body, such as when the body is hit, for example, by
a heavy object. But in those cases the world component
involved was not implicated in a regular mechanism with
the organism.

ONTOGENY, SOCIAL COGNITION, AND
BODY-WORLD COUPLING MECHANISMS

In the cases described above, and in many others, what we
see is a physiological mechanism that contains -as part of its
regular components- some element(s) of the world. By altering

either internal or external components, we alter the mechanism
operation (Figures 1A,B).

LetM be a (neuro)physiological mechanism (e.g., respiration,
sensorimotor operations, circadian rhythms) containing internal
components Ci which normally interact with some world’s
components Cw (any processes and/or entities, whether living or
not, present outside the organism’s physical body). Traditionally,
it is conceived that the operation of M depends on Ci alone.
However, for relevant biological phenomena, such as respiration
or sensorimotor activities, Cw are mechanism components,
participating in the resulting processes, and therefore we think is
useful to regard them as constitutive1. Likewise, other Cw would
be enabling and/or contextual, depending on the phenomena
under consideration. Considering Cw as constitutive and/or
enabling elements of a given M, we can further state that
many organizational principles of the brain -generated from
multiple operating mechanisms- will be much better explained
by incorporating their relationship to the world (Clark and
Chalmers, 1998; Cosmelli and Thompson, 2010; Parada and
Rossi, 2018).

We could also say that the operation of a given M will
depend on the organism’s past and current temporospatial

1We follow Craver (2007) in using manipulability as a criterion for recognizing

mechanisms’ components. Briefly stated, if interventions on the mechanism as a

whole are accompanied by changes of a potential component, and if interventions

on the component produce, in turn, changes in the mechanism, then the

component under consideration is a mechanism’s component.
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contingencies (i.e., both Ci and Cw). A key notion here is that
biological mechanisms are not timeless laws, but historically
contingent processes (Craver, 2007). Consider, as an example,
the mechanisms of neural plasticity. It has been shown that
present neuronal properties -both structural and functional2-
are dependent on the neuron’s previous interactions with its
immediate environment (Rose and Rankin, 2001; Bailey et al.,
2015; Andersen et al., 2017; Schulz and Lane, 2017). Importantly,
this is not a special feature of neurons, but a general biological
phenomenon. The actual state and capacities of any organism
are activity- and ontogeny-dependent, and are always intertwined
with the environment in which ontogeny takes place (Stagg et al.,
2011; Kelly et al., 2012; Ganguly and Poo, 2013; Sale et al., 2014;
Fields, 2015). Social-cognitive phenomena can be conceived,
within this framework, as interactions occurring through the
sharing of someCw between the agents engaged in it (Figure 1C).

Taking into account the dependence on history of biological
mechanisms, it is particularly relevant to distinguish the role of
Cw at different moments along ontogeny. At different moments,
the weight of a Cw could play a role as a constitutive, enabling,
or contextual factors in a given phenomenon. For example,
the case of behavioral habituation shows that, under sustained
interactions, responses to the same Cw can decrease drastically,
turning aCw stimulus from a once-constitutive element to amere
contextual perturbation (Brunelli et al., 1976). In what follows, we
use these ideas to propose a link between ontogenic mechanisms
of body-world coupling and social interactions.

Social interaction starts very early during development,
from prenatal experiences to turn-taking in babies to
early verbalizations in infants (Siddiqui and Hägglöf,
2000; Kugiumutzakis, 2017; Quigley et al., 2017). From
the point of view of mechanisms of body-world coupling,
these developmental changes correspond to an increment
in the allowed complexity of sensorimotor interactions.
Mechanistically, increased sensorimotor complexity can
be reached by reducing the sensorimotor contingencies’
dimensionality, using both history of interactions and
sensorimotor function. This is the organism’s current
morphological shape, as a product of previous body-world
couplings in time, affords more complex actions contained in
appropriate ecological niches. A now-classic example is the
theoretical (Smith et al., 1999) and empirical (Smith and Thelen,
2003) dynamical systems account of the A-not-B error in infants
(Piaget, 1962). Briefly, the processes underlying the perseverative
reaching seen in the A-not-B error are not only continuously
tied to the infant’s sensorimotor system but also to her history
of interactions (Spencer et al., 2011). From our perspective,

evidence from animal models suggests a constitutive role of
external factors such as maternal state during gestation (Kofman,
2002), maternal care/physical contact (Cancedda et al., 2004;
Sale et al., 2004), as well as overall environmental conditions (Cai
et al., 2009). Similar effects have been reported in humans; social,
cultural, and/or physical environmental conditions in earlier
developmental stages might bias -or even shape- bio-psycho-
social trajectories (Guzzetta et al., 2009; Bowers and Yehuda,

2And hence of the networks in which the neuron participates.

2016; McEwen, 2017). Later in life, most of these factors can
become enabling and/or contextual.

A more speculative example -directly related to social
cognition- could be found in language; a higher-level cognitive
phenomenon profoundly sensitive to ontogenic changes (Peña
et al., 2003; Dehaene-Lambertz et al., 2008; Mampe et al.,
2009; Mahmoudzadeh et al., 2013; Werker and Gervain, 2013;
Werker and Hensch, 2015). The available evidence indicates
that human auditory learning starts in the third trimester
of gestation (Shahidullah and Hepper, 1994; Hepper, 1996).
We further interpret this evidence as suggesting a constitutive
role for prenatal listening experiences (Cw) in the specific
physiological and developmental trajectory that gives rise to
speech processing brain structures (Ci) (Wermke and Friederici,
2004). Between the 8th and 10th month of age, this body-world
coupling begins its consolidation, allowing infants to extract
statistical regularities (Saffran et al., 1996), which we conceive
as a dimensionality reduction of the complex linguistic world
(Werker and Tees, 1984; Maurer and Werker, 2014)3. Following
our interpretation of these data, listening experiences and verbal
interactions (Cw) become contextual factors after the 10th
month of age (Werker and Curtin, 2005; Werker and Hensch,
2015). We further speculate that such change, from constitutive
to contextual, illustrates the dimensionality reduction required
for the appearance of more complex sensorimotor operations,
such as actively seeking learning opportunities, maximizing
informative interactions, and the beginning of adult-like social
interactions (Begus et al., 2016). We still lack both data and tools
to appropriately model the role, weight, and influence of external
factors (from physical interplay to social interactions to processes
unfolding from them) in the emergence of social-cognitive
functioning and the overall biophysics of human experience.

CLOSING REMARKS

The present opinion piece seeks to facilitate a mechanistic
approximation to multi-level phenomena, grounding social
cognition, and social interaction into time-dependent functional
and structural components and their interplay; a goal for the
4E approach to cognition. Furthermore, it points to the need
of modeling, through experimental manipulations, the weight
and influence of both internal [i.e., (neuro)physiological] and
external (i.e., objects, processes, other people) components at
a given developmental period. This modeling can be achieved
through tools derived from network science and/or machine
learning techniques (Vespignani, 2011; Boonstra et al., 2015;
Sekara et al., 2016; Shine et al., 2016; Avena-Koenigsberger et al.,
2017; Aguilera, 2018; Parada and Rossi, 2018). Furthermore,
implementing scalable experimental paradigms (Parada, 2018;
Matusz et al., 2019; Shamay-Tsoory and Mendelsohn, 2019) and
generating novel hypotheses of interacting brain/body systems
functioning during natural cognition (De Jaegher et al., 2010,
2016; Di Paolo and De Jaegher, 2012; Gramann et al., 2014;
Ladouce et al., 2017; Parada, 2018; Parada and Rossi, 2018) are
among the most outstanding challenges for the 4E-cognition

3This is also seen in other aspects of perceptual development (Scott et al., 2007).
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research program. We believe that the incorporation of a
mechanistic framework facilitates meeting those challenges and
advancing a deeper understanding of cognitive phenomena,
social, and otherwise.
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