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We present a new method for finding isolated exact solutions of a class of non-
adiabatic Hamiltonians of relevance to quantum optics and allied areas. Central to
our approach is the use of Bogoliubov transformations of the bosonic fields in the
models. We demonstrate the simplicity and efficiency of this method by applying it

to the Rabi Hamiltonian. €2002 American Institute of Physics.
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[. INTRODUCTION

There exists a class of simple, nonintegrable, nonadiabatic Hamiltonians of the type that find
application as models of light—matter interactions, for which it is possible to find exact isolated
solutions. Generally these models involve some atomic system, typically characterized by a simple
two-level (or multilevel) system, interacting with a number of bosonic fields. Making the familiar
rotating-wave approximation usually renders these models completely soluble, but avoiding this
approximation maintains the nonintegrability of the models, and gives rise to the possibility of
isolated exact solutions. This was first demonstrated for the Jahn—Teller model byahdithese
solutions are often referred to as Juddian solutions. Probably the simplest model for which these
solutions have been found is the Rabi Hamiltoni@H), which describes a two-level atom
interacting with a single-mode bosonic field via a dipole interactihe Juddian solutions of the
RH were first discovered by Reik and co-work&nshere they were seen to occur at the level
crossings in the energy schema of the system. This turns out to be a general and important feature
of these solutions.

Apart from being of interest for what they tell us about the structure and symmetries of these
models, the Juddian solutions are of considerable further value. Simple quantum optics and related
models, such as the RH, have long been utilized as test cases for various calculational
techniqued;® and the possession of exact solutions facilitates their accurate assessment. Further-
more, the existence of isolated exact solutions in nonintegrable quantum models is also of interest
from the perspective of studying possible quantum chaos in such systemsaddition, it is
hoped that these exact solutions may serve as useful starting points for perturbative treatments of
the entire spectra of these models.

In this paper we present a new and more general method for finding these isolated exact
solutions, which we believe to have several advantages over the methods hitherto employed. Judd
and Reik, working in the Bargmann representation, have used power series and Neumann series
ansaze for the field mode. Neither of these approaches is particularly intuitive and the resulting
algebra can become complicated. Kaisd Lewensteih have given a more concise approach
which, as we describe later, is clearly related to the method that we describe here. For models such
as the RH they used Bargmann representationta@gar the field consisting of a finite number of
bosonic excitations on top of a coherent state. They have also extended their method to some
further systems, such as a three-level system and an auto-ionizing ion.

We believe that the method we outline in this paper is both more intuitive and more efficient
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than those discussed previously, and that it reflects the essential physics of the systems to a greater
degree. At the heart of the method is a simple canonical transformation of the bosonic field
operators of the models. This transformation suggests the existence of exact solutions in a most
direct manner. Our method also has the advantage that it is easy to generalize, and is readily able
to be extended to “two-photon” type interactions, in which two photons are required to induce an
atomic transitiort?

The remainder of this paper is organized as follows. In Sec. Il we outline our method for
finding the Juddian solutions. We describe in some detail the theory of Bogoliubov transforma-
tions of a boson mode and pay particular attention to their relation to the coherent and squeezed
states. We then use these transformations to investigate the displaced and squeezed harmonic
oscillators, to develop insight into the reasoning behind this approach. In Sec. lll we apply this
method to the Rabi Hamiltonian, as an example of the use of this method. We then finish with
some conclusions and indications of further work.

. METHODOLOGY

The models that we consider here consist of an atomic system interacting with one or more
bosonic modes. Each of these modes is described by annihilation and creation opeiidis’,
respectively, which obey the usual commutation relation,

[b,b']=1. 1)

In general the atomic system will be described in terms of a set of matrices. For example, the
two-level system in the RH is described by the (2JUPauli matrices.

Our method for finding exact isolated solutions for such systems involves two components.
First, one must choose an appropriate representation for the atomic matrices and then, crucially,
one performs a Bogoliubov transformation of the operators of the field mode. The nature of this
transformation depends upon the type of interaction being considered and, with the correct choice
of parameters, it leaves the Sctilger equation in a form that admits exact solutions with very
simple anste.

A. Bogoliubov transformations

A Bogoliubov transformation is a transformation from one description of a field mode in terms

of the bosonic operators, andb', to a description in terms of new bosonic operatbrandb’,
say. This transformation is canonical so that the new operators obey the same commutation
relation as the old ones, namely

[b,bT]=1. 2

The most general linear Bogoliubov transformation may be viewed as a rotation plus trans-
lation of the original oscillator Hilbert space to the new oscillator space,

b=e""#(1-|o|>) " *(b—0ob'~2),

— 3
bT:e|B(1_|o_|2)71/2(bT_o.* b—Z*),

where o and z are complex numbers describing the amplitudes of the rotation and translation,
respectively.8 is a simple, and usually rather unimportant, phase factor. From the outset it is
important to note the restrictigar| <1 in order to preserve the unitarity of the transformation. In

the following we consider two specializations of this transformation, namely a pure translation and
a pure rotation. These transformations may be very simply related to the familiar coherent and
squeezed states of quantum optics and it is from this standpoint that we introduce the transforma-
tions.
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B. Coherent bosons

The usual Glauber coherent stat¢z),, may be defined as eigenkets of the single-mode
bosonic annihilation operatdt,

b|z)=2|2), (4)
wherez is a complex number. Such states are readily constructed as the following equivalent
forms:

|2)=e" ¥22e20'|0) )
=e@'~2')|g), ®)

where we have normalized the coherent state such#at=1. The exponential operator in Eq.
(6) is denoted as follows:

D(2)=e(®'~2'D), )

and is called the displacement operator. It is a unitary operator and we may readily use it to
perform a unitary transformation of the field operators,

D(z)bD'(z)=b—z=a,
(8
D(2)b'DT(z)=b"—z*=a.

The operator® (z) form a representation of the Wegdr Heisenberg—Weylgroup when multi-

plied by a trivial phase factor exigf), with ¢ real. The operators and a' obey the same
commutator relation as the original operators, and thus we see this transformation to be a Bogo-
liubov transformation of the type described earlier as a pure translation. Equétioand (8)

clearly imply

alz)=0, ©)

from which we see that the operatar annihilates the coherent stafe). Thus |z) may be
considered as the vacuum state of #iype bosons, and we rewrite it accordingly [@5z)
=|2),

a|0;2)=0. (10

We shall call thesa-type bosons “coherent bosons” and write their number statés;a$, such
thata'a|n;z)=n|n;z).
C. Displaced harmonic oscillator

The simplest application of the coherent bosons is to the displaced harmonic oscillator,

Hp=3(x+v2\)?+ 3p?, (11)

in which the center of the oscillator is shifted by an amount2\. Introducing the harmonic
oscillator operators via

! (b"+b)
X=— ,
2

S

(12

i
=—(b"-b),
p= )
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the Hamiltonian reads
Hp=b'b+X(bT+b)+ 2 +\2 (13

By performing a Bogoliubov transformation of the original bosonic operators to a new set of
coherent bosons' anda, such that

a=b+\, a=b'+\, (14

we may rewrite the Hamiltonian of Eg13) in the form
Hp=a'a+ & (15)

The eigenstates of this Hamiltonian are thus clearly seen to be the number statesdfpee
bosons, with corresponding eigenenerdigs-n+ 3.

D. Squeezed bosons

Following Bishop and Vourda$we construct the most general squeezed state, 6, 8), by
acting upon the bosonic vacuy®) first with the displacement operatbr(z) of Eq. (7) and then
with the pure squeezing operat8fp, 6, ),

|z;p,6,8)=S(p,6,8)D(2)|0), (16)

The squeezing operator is given by

S(p,0,8)=exp — ;pe” b+ ;pe'’b?)expi fb'b), (17)

wherep, 6,8 are real parameters. It is a unitary operaBS=1, and provides a representation of
the group SW1,1). Using a relationship given by PerelomGwve are able to write the squeezing
operator in the equivalent form

S(a,B) = exp( 1 ab'2)(1—| o|2)P P2 V4 exp — L o*b2)expi BbTh), (18)

where 3 is the same real parameter as above, arnsl a complex number with modulys|<1,

given by o= —e " "?tanh{p). Using this expression, we can use the squeezing operator to make
unitary transformations of the bosonic annihilation and creation operators,

S(a,8)bS'(,8)=€ (1~ |0|?>) *(b—0ob")=c,
19
S(o,B)b'S' (0, 8)=€#(1—|0]?)  Y4b"— o*b)=c". 19

The operators andc' satisfy the commutation relatidre,c']=1 and thus the transforma-
tionb,b’—c,c' is a Bogoliubov transformation of the rotation type. From Ed), it follows that
for any functionf(b,b"),

Sf(b,b")ST=f(c,ch—Sf(b,b"H=f(c,chS. (20)

Equation(20) implies thatSb=cSand hencéz; o 8)=|z;p6B) are eigenstates of the annihilation
operatorc,

clz;oB)=cYo,B)|z)=S(0,B)b|z)=2|z;0B). (21

If we consider the squeezed vacui®)=|0;0,8)=|0;0), we see that it is independent of
B and that

c/0;0)=0. (22
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The number states of thetype bosons are denotéat o8), such that'c|n;oB8)=n|n;oB). We
call thec-type bosons “squeezed” bosons.

E. Squeezed harmonic oscillator

In position representation the squeezed harmonic oscillator has the form
Hs=3(1+2N)x%+ 3(1—2\)p?, (23

where the real parametardetermines the degree of squeezing, with the restriction|ijat 3.
Translating this into the standard bosonic representation defined byl Bqve have

Hs=b'b+ 3+ \(b™2+b?). (24)

We introduce squeezeadtype bosons defined by

" b+ ob b+ob' (25)
c'= , c= ,
N J1-02
and leaveo real but undetermined for the moment. Making these substitutions int¢2Bg.we
have
1 1
He=———1{[— o+ N+ No?](c2+c?)+ (02 +1—-4No)| cTe+ = |- (26)
(1-09) 2
We eliminate the first term in this Hamiltonian by choosing
—o+N+Na?=0, (27)
giving, as one of the two solutions,
1-Q
o= ( T ) , Q=1-4\2 (29
With this choice, the Hamiltonian becomes
Hs={c'c+ 3Q. (29

The eigenstates of this Hamiltonian are clearly the number states of the sqeegpedbosons,
with eigenenergies

E,={n+10Q. (30)

We note that the other solution of E@7) with o= (1+Q)/2\ leads to the unphysical oscillator
with Hg= — (cc+ 3)Q, and since this Hamiltonian does not have square-integrable solutions, we
discard it.

lll. APPLICATION TO THE RABI HAMILTONIAN

The Rabi HamiltonianRH) describes a two-level atom interacting with a single mode of
quantized electromagnetic radiation via a dipole interactitiris usually written in the form

HRrab= 3 woo,+ wbb+g(b™+b) (o, +o_), (31)
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wherew, is the atomic level splittingy is the frequency of the boson mode, and the coupling
strength of the atom to the field. The two-level atom is described by the Pauli pseudo-spin
operators, which satisfy the $2) commutation relations

[ow,01]=2igmom, (32

where k,I,me{x,y,z} with k#1 and g, is the antisymmetric Levi-Civita symbol. We have
defined the raising and lowering operators as

o,=oytio,, o_=o,—ioy. (33
It is convenient to rescale the Hamiltonian lg,= wHrapi, Where
Hrab= @0, +b'b+N(b"+b)a,, (39
and o= wy/(2w) and\A= 2g/w. There is a conserved parity associated with the Hamiltonian,
M=exdim(b'b+3(o,+1))]=—0,codwb'b), (35)
such that[Hg.pi,I11=0. The parity operatofl has two eigenvaluesy==*=1. The RH is not
known to be integrable, but isolated exact solutions do exist. Here we use the above-outlined
technique to find these Juddian solutions.

In order to do this we first require an appropriate matrix representation for the Pauli matrices,
which for this model is one in whickr, is diagonal. We shall use

1 0
0 -1

0 i
-i 0

0 1
10

O-X = 1 U'y = 1 Uz = . (36)

(V)

In terms of the two-component wave functidr"l,f)=(m,2>

), the time-independent Schiimger
equation for the systent g,/ W)=E|¥), then reads

®|¥,)+(bb+N(b"+b)—E)|¥,)=0,
(37)
®|¥ )+ (bTb—A(b"+b)—E)|¥,)=0.

We now make the Bogoliubov transformation to the coherent bosdnanda, specified by
al=b"™-\, a=b—A\. (39
The vacuum state of these bosons is the coherent |3tatét should be noted that this choice of
transformation may be intuited from considering #e- 0 limit of the Hamiltonian, where the

same transformation is used to solve the model exactly in this limit, which is essentially equivalent
to the displaced oscillator considered earlier. With this transformatioi 3 .becomes

»|¥,)+{a’a+2x(a’+a)+3\2—E}V¥,)=0,
(39
o|¥,)+{a’a—\2—E}|¥,)=0,

where the ket§¥, ,) are now in the transformed representation. For these kets we choose the
ansatz
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N-1 N-1 (ahn
— )= N\ — T .
(W)= 2 prlin) = 2 P = |0) =Pr-a(ah]Oid),
(40
N N (a‘r)n
[W2)= 2 dnlmin)= 2 dn—==[0:0)=Qn(ah|0:A),

Jnt

where|n;\) are number states of the coherent bosalg/n;\)=n|n;\), and we have intro-
duced the polynomial®,_; andQy of orderN—1 andN, respectively. Making these substitu-
tions we have

N N—-1
2, qulmA)+ X pa(n+3N2—E)|m\)
n=0 n=0

N—-1 N—-1
+20 > ppyn+1n+10)+2N >, ppynjn—1;1)=0,
n=0 n=1
(41)
N—-1 N
Z)nzo pn|n;)\>+nzo gn(n—X2—E)|n;\)=0.

Considering the highest number stdfé;\ ), in the second of these equations, we see that for
this equation to hold we require

(N=\%2—E)qy=0. (42)
Sinceqn# 0 by ansatz, we obtain a determination of the energy
E=N—)\2 (43

This equation identifies the Juddian baseline energies, along which the Juddian solutions lie.
Comparing the coefficients of the remaining number states givedlusi2linear equations for the
2N+1 coefficients p,,, 0=m=<N-1) and @y, 0O<k=N). To obtain nontrivial solutions, we
clearly require the determinant of this equation set to be zero. This gives the compatibility con-
dition, providing the locations of the Juddian points. The first two conditidis {,2) have the
explicit forms

®2+4N%=1, for N=1, (44)
@4+ (12N 2= 5)@%+ 34— 322 +4=0, for N=2, (45)
as have been given by Kad Lewensteifl.Thus, for a giverlN, we have a polynomial ofith
order in\? and®?. Each of these hal roots forA? in terms of@?2, which all turn out to be real,
thus giving the location oN Juddian solutions. Before we look at these results, it is of interest to
consider the other possible type of finite ansatz at the Juddian points. These are found by using the
coherent bosons
al=b™+\, a=b+x, (46)
and interchanging the roles g¥,) and|V,).

Results By solving the complementary conditions we have calculated the first ten Juddian
points for the resonant RH. These are displayed in Table I, listed to ten decimal places.
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TABLE I. The couplings, energies, amd, of the first ten Juddian points of
the resonant Rabi HamiltoniamE wy=1).

g E N
0.216 506 351 0 0.812 500 0000 1
0.166 164 073 2 1.889558 003 1 2
0.446 0403578 1.204 191 996 9 2
0.140 088 959 0 2.921500334 3 3
0.366 4714887 2.4627945920 3
0.616 3829153 1.480 288 407 1 3
0.1234229399 3.939067 1161 4
0.319907578 1 3.590 636 565 8 4
0.524 3395120 2.9002723045 4
0.7582492415 1.7002323511 4

The location of these Juddian points in the energy schema of the Hamiltonian is displayed in
Fig. 1, where the schema was obtained by approximate numerical diagonalization via a standard
configuration-interaction method, using a basis size of the lowest 101 harmonic oscillatot‘states.
Also plotted are the Juddian baselines from ER).

From Fig. 1 we see that the Juddian points occur at the level crossings in this diagram. Thus
we see that they occur when two solutions of different pdiithecome degenerate in energy, and
this degeneracy is the key to the existence of the Juddian solutions. The coherent-boson number
states|n;\) are not eigenstates di, and thus the ansze (40) is not of definite parity. It is
precisely because we can construct wave functions of mixed parity that allows us to find such
simple ansatz at the Juddian points.

We are now able to make explicit the connection between this method and that used by Kus
and Lewensteihin investigating the RH. They worked in the Bargmann represent&tionyhich
the bosonic operators are represented by

bf—z b d 4
—Z, —>d—z (7)

and postulated the following forms for the two components of the wave function:

g

FIG. 1. The first ten Juddian points of the Rabi Hamiltonfdiamond$. Also plotted are the energy levels obtained by
numerical diagonalizatiofdark lineg, and the Juddian base lindight lines). The Hamiltonian is resonani= wy=1.
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Wy(2)=e 22wy =Py 4(2)€,
, _ (48)
V,(2)=e 472 W )=Qu(2)e"?,

whereTDN_l(z) and (~2N(z) are polynomials irz of orderN—1 andN, respectively. Bearing in
mind the form of the coherent stat@), these wave functions are simply seen to be of the form of
polynomials in the bosonic creation operatot, acting upon a coherent state of amplituddn
our ansatz40), we have the same coherent state but now being acted upon by polynomials in
a'=(b"—X\), which shares a closer connection to the coherent statebthan

The polynomials of Kusand Lewenstein are simply related to those of angd® by
Pn(2)=Pn(z—\). In the present case where we have only used displacements of the boson
mode, the difference between the two approaches is thus minimal. However, this is not the case
when we require the use of squeezed bosons. Generally, an ansatz posited in the squeezed repre-
sentation would contain polynomials of the fo(c"), wherec' is the creation operator of the
squeezed bosons. The analogous ansatz t¢4Bywould still contain a polynomial irz, Py(2)
say. If we assume the simplest type of squeezing and wfite(b"+ ob)/(\1—o?) as in Eq.
(25), then the Kusand Lewenstein polynomial can be written

(49

which, crucially, contains botlz and its derivative, and although formal relationships do exist
between the polynomials of the two methods, these relationships are generally not trivial, espe-
cially if one considers the more general form of the Bogoliubov transformation. So thzewsa

the two methods are seen to be significantly different, and we conjecture that the one described
here has several advantages which we shall discuss in the conclusion.

IV. CONCLUSIONS

We have presented a method for finding isolated exact solutions of a class of nonadiabatic
models, of the type frequently used in quantum optics and related fields.

Compared with the original approaches of Judd and Reik, the above-mentioned method is
more transparent and considerably simpler, advantages that it shares with the techniquaraf Kus
Lewenstein. However, we believe that the use of transformed bosons is more obviously physically
meaningful than the use of wave functions in Bargmann space, especially given the connection of
these bosons to the coherent and squeezed states, so important in quantum optics.

As an example of the use of this technique, we have applied it to the Rabi Hamiltonian and
obtained in a simple fashion the known Juddian solutions of this model. In this example, we have
used the coherent bosons to obtain Juddian solutions for a problem with an interaction of the type
A(bT+b)o,. It is hopefully now clear how one may apply this method to further problems
containing the same type of interaction. We have not as yet mentioned the application of the
squeezed bosons in performing this kind of calculation. This second type of Bogoliubov transfor-
mation is useful in finding Juddian solutions of models containing two-photon type interactions.
An obvious example is the two-photon Rabi Hamiltontdmyhich has the Hamiltonian

H=®0o,+bb+X(b"?+b?)0,. (50)

Using squeezed bosons we are able to obtain a set of Juddian solutions for this model and these
results will be discussed in a future publication.

Due to the intuitive nature and simplicity of this technique it is easy to extend to other
systems. For example, in view of their mode of construction we expect that our displaced and
squeezed coherent states will be of particular use in any quantum field theory that has underlying
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dynamical symmetry of the Weyl group or the @L1) group, or to which théinhomogeneous or
homogeneouys Bogoliubov transformation may be profitably applied. The obvious group-
theoretical foundations of the technique also point the way to other approximations, since, for
example in the squeezdtivo-photon case, SWL,1) is not the only relevant group. Thus, the
three-dimensional Lorentz group 801), which is the group of rotations in three-dimensional
Minkowski space with two space and one time dimensions, is locally isomorphic t&,BU
Similarly, both the groups SP,R) of real second-order matrices with unit determinant and the
symplectic group S2,R) are also locally isomorphic to SW,1).

One may also readily generalize the current approach for the two-level models involving
linear or quadratic interactions with a single bodoen canonical quantum mogéo the corre-
sponding case of linear or bilinear interactions involving several distinct bosons or modes. For the
linear models involving only displacements this is essentially trivial. However, for models involv-
ing squeezing, in the case nfbosons or modes the various bilinear products of operdﬂ;ﬁxﬁ,
bib; and bin,- , 1,j=1,2,..,n now form a realization of the higher symplectic algebra Sp{d.

As before one can simply construct a unitary representation of this group by exponentiating the
skew-adjoint operators in the algebra. For example, Bishop and Vdiraage shown explicitly

how to construct the most general two-mode squeezed states associated with a unitary represen-
tation of the group S@,R). Once again such states are the ordinary coherent states with respect to
the new destruction operatocs andc,, which are themselves general linear Bogoliubov trans-
formations of the original destruction operatdrg, b, and their Hermitian-conjugate creation
operators! | b} . The Spi4,R) algebra has various subalgebras corresponding to different sorts of
linear pairing terms. For example, whereas the single-mode paring opd@bﬁé—(b?)z; KO

=1b?; K{)=1bb;+ % fori=1,2 correspond to the so-callef, #) representations of SW,1), the

mixed pairing operatord ., =b!b); L_=h;b,; Lo=%(bib;+b}b,+1) correspond to the
discrete-series representation of (311). By contrast, the mixed pairing operataiazb{bz;
J_=b;b}; Jo=%blb;—blb,) correspond to théSchwinger representation)ahe angular mo-
mentum subalgebra $P). Bishop and Vourdas have shown in a separate public&tioow
squeezedpair coherent states can also be used in connection with a rather broad class of quantum
Lagrangians which include the damped harmonic oscillator, and hence with problems involving
“quantum friction” or fluctuation-dissipation phenomena in general. Within quantum optics for
example, the quantum theory of lasers and photon detection provide obvious applications. Such
problems can now also usefully be extended by our present treatment to the case of such damped
systems coupled to two level atoms.

The possibility of using these solutions as the basis of a perturbative approach extends the
method away from just the isolated exact points to the remainder of the spectrum of the system.
The properties of such an approach are yet to be investigated. Finally we note that the extension
to similar single-mode or multimode systems as considered earlier coupfetet@l atoms with
n=2 is also straightforward in principle.
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