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BOHR-ROGOSINSKI TYPE INEQUALITIES FOR CONCAVE

UNIVALENT FUNCTIONS

VASUDEAVARAO ALLU AND VIBHUTI ARORA

Abstract. In this paper, we generalize and investigate the Bohr-Rogosinski’s inequalities
and Bohr-Rogosinski phenomenon for the subfamilies of univalent (i.e., one-to-one) functions
defined on unit disk D := {z ∈ C : |z| < 1} which maps to the concave domain, i.e., the
domain whose complement is a convex set. All the results are proved to be sharp.

1. Introduction

Let D := {z ∈ C : |z| < 1} be the unit disk in C and H(D) denote the family of analytic
functions on D. Let S be the class of all univalent functions f ∈ H(D) satisfying the normal-
ization f(0) = 0 = f ′(0)− 1. Let B be the subclass of H(D) consisting of functions that are
bounded by 1. In 1914, Harald Bohr [21] proved the following remarkable result.

Theorem A. Let f ∈ B and f(z) =
∑∞

n=0 anz
n then

(1.1)

∞∑

n=1

|an|rn ≤ 1− |f(0)|

for |z| = r ≤ 1/3. The number 1/3 cannot be improved.

This constant 1/3 and the inequality (1.1) is known as Bohr radius and classical Bohr
inequality, respectively for the family B. Bohr originally obtained the inequality (1.1) for
r ≤ 1/6, which was improved to r ≤ 1/3 by Wiener, Riesz, and Schur, independently. It is
worth pointing out that if |f(0)| in the classical Bohr inequality is replaced by |f(0)|2, then
the constant 1/3 could be replaced by 1/2 proved by Paulsen et al. [43].

There are lots of works about the classical Bohr inequality and its generalized forms in the
recent years. For example, the notion of the Bohr radius was generalized by Abu-Muhanna
and Ali [1, 2] to include mappings from D to simply connected domain and to exterior of
a unit disk in C. Moreover, the Bohr phenomenon for shifted disks and simply connected
domains are discussed in [7,23,24,34]. Allu and Halder [9], and Bhowmik and Das [17] have
considered the Bohr phenomenon for the class of subordinations. In [32], Kayumov et al.
have studied the Bohr radius for locally univalent planar harmonic mappings. Kayumov and
Ponnusamy have [29, 30] obtained several different improved version of the classical Bohr
inequality which are sharp. Bohr-type inequalities for certain integral operators have been
obtained by Kayumov et al. [28], and Kumar and Sahoo [33]. For the recent study on the
Bohr radius, we refer to [3, 4, 8, 18, 31, 39–41] and the references therein. The recent survey
article [5] and references therein may be good sources for this topic.

Similar to the Bohr radius, there is a concept of the Rogosinski radius [44] which is defined

as follows: if f(z) =
∑∞

n=0 anz
n ∈ B then |SM(z)| = |

∑M−1
n=0 anz

n| < 1 for |z| < 1/2, where
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1/2 is the best possible quantity (see also [36,45]). The number r = 1/2 is called the Rogosinki
Radius for the family B. The Bohr-Rogosinki inequality, which is considered by Kayumov et
al. in [27], is given by

(1.2) |f(z)|+
∞∑

n=N

|an|rn ≤ 1 = |f(0)|+ d(f(0), ∂f(D)),

for |z| = r ≤ RN where RN is the positive root of the equation 2(1+r)rN −(1−r)2 = 0. Here
d(f(0), ∂f(D)) denotes the Euclidean distance from f(0) to the boundary of domain f(D).
Note that the right hand side of the inequality (1.2) can be rewritten as

1 = 1− |f(0)|+ |f(0)| = |f(0)|+ d(f(0), ∂f(D)).

To generalize the classical Bohr inequality (1.1) and Bohr-Rogosinki inequality (1.2) to the
family of function f defined in D and takes values in any given domain f(D), the above
observation is useful. If we replace |f(z)| by |f(0)| and N = 1 in (1.2), then we see the
connection between the Bohr-Rogosinki inequality and classical Bohr inequality. Recently, a
generalization of the Bohr-Rogosinki inequality (1.2) has been studied by Kumar and Sahoo
[35], and Liu et al. [37].

2. Preliminaries

To state our main results, we need some preparation. We set

B0 = {w ∈ B : w(0) = 0} = ∪∞
n=1Bn,

where
Bn = {w ∈ B : w(0) = · · · = w(n−1)(0) = 0 and w(n)(0) 6= 0} for n ∈ N.

The members of the class B0 are called the Schwarz functions.

2.1. Bohr phenomenon and Bohr-Rogosinski phenomenon.

For any two analytic functions f and g in the unit disk D, we say that the function g
is subordinate to f , denoted by g ≺ f in D, if there exist an w ∈ B with w(0) = 0 and
g(z) = f(w(z)) for z ∈ D. Moreover, it is well known that if f is univalent in D, then g ≺ f
if, and only if, f(0) = g(0) and f(D) ⊂ g(D). By the Schwarz lemma, it follows that

|g′(0)| = |f ′(w(0))w′(0)| ≤ |f ′(0)|.

The concept of Bohr phenomenon for the family of functions which are defined by subor-
dination was introduced by Abu-Muhanna [1]. Now for a given analytic function f from D

onto f(D) with the expansion

(2.1) f(z) =
∞∑

n=0

anz
n,

let S(f) = {g : g ≺ f}. We say that the family S(f) has a Bohr phenomenon if there exists
an rf , 0 < rf ≤ 1, such that whenever

(2.2) g(z) =

∞∑

n=0

bnz
n ∈ S(f),

then

(2.3)
∞∑

n=1

|bn|rn ≤ d(f(0), ∂f(D)) for |z| = r ≤ rf .
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We observe that if f(z) = (a0 − z)/(1 − a0z) with |a0| < 1, then f(D) = D, S(f) = B, and
d(f(0), ∂f(D)) = 1− |f(0)| = 1 − |a0| so that (2.3) holds with rf = 1/3 in view of Theorem
A. For univalent functions f , Abu-Muhanna [1] showed that S(f) has a Bohr phenomenon
and the Bohr radius is 3− 2

√
2 ≈ 0.17157.

Similar to Bohr’s inequality, the Bohr-Rogosinski inequality can be generalized to the family
of analytic functions f in D which take values in a given domain f(D). We say that the family

S(f) has Bohr-Rogosinski phenomenon if there exists rfN ∈ (0, 1] such that for any g ∈ S(f)
the inequality:

(2.4) |g(z)|+
∞∑

n=N

|bn|rn ≤ |f(0)|+ d(f(0), ∂f(D))

holds for |z| = r ≤ rNf . The largest such rNf is called the Bohr-Rogosinski radius.

2.2. Bohr-Rogosinski type inequalities involving Schwarz functions.

The Bohr-Rogosinski inequality (1.2) was also generalized by replacing the Taylor coeffi-
cients an partly or completely by higher order derivative in [35,42]. In this sequence, Liu [38]
has generalized several Bohr-Rogosinski’s inequalities by replacing the Taylor coefficient an of
f by f (n)(wn(z))/n! and rm by |wm(z)| in part or in whole, where both wn and wm are some
Schwarz functions. In particular, for N ∈ N, wi ∈ Bmi

, mi ∈ N (i = 0, 1, 2), and w∗
n ∈ Bh(n),

Liu [38] has proved the following Bohr-Rogosinski type inequality:

(2.5) |f(w0(z))|+ |f ′(w1(z))||w2(z)|+
∞∑

n=N

|an||w∗
n(z)| ≤ |f(0)|+ d(f(0), ∂f(D))

for certain subclasses of analytic functions. In context of the above problem, Liu [38] has
also generalized the notion of Bohr-Rogosinski’s phenomenon (2.4) in terms of the Schwarz
functions. Let f, g ∈ H(D) be of the form (2.1) and (2.2), respectively. Then the family
S(f) has a Bohr-Rogosinski’s phenomenon in terms of the Schwarz functions if there exists
an rNf,m0

, 0 < rNf,m0
≤ 1, such that whenever g ≺ f , we have

(2.6) |g(w0(z))| +
∞∑

n=N

|bn|rn ≤ |f(0)|+ d(f(0), ∂f(D))

for w0 ∈ Bm0
, m0 ∈ N and |z| = r < rNf,m0

. Note that, the Bohr-Rogosinski inequality can
be deduced from the Bohr-Rogosinski type inequality by choosing proper combination of the
Schwarz functions. More precisely, if we put w0(z) = z, w∗

n(z) = zn, and let m2 → ∞ in
(2.5), then it reduces to (1.2). If we choose w0(z) = z in (2.6) then it reduces to (2.4). To
find the recent developments in this context, we refer to [25, 27, 39].

One of our main concern in this article is to deal with Bohr-Rogosinski’s type inequalities
of the form (2.5) and (2.6) for concave-wedge domains. For the sake of simplification, we
have used the following assumptions throughout this paper:

I. wi ∈ Bmi
for mi ∈ N (i = 0, 1, 2).

II. w∗
n ∈ Bh(n), for n ∈ N, where h(n) is some function of n.

The outline of the paper is as follows. In Section 3, we generalize Bohr-Rogosinki’s inequal-
ity using subordination and the Schwarz functions when image domain is a concave-wedge
domain. Furthermore, we shall state our main results and some of its consequences. In the
same spirit, in Section 4, we consider generalized Bohr-Rogosinki’s phenomenon in terms of
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the Schwarz functions for the family of meromorphic univalent functions which map open
unit disk D into some concave domain. The section 5 contains the proof of our main results.

The following lemma, given by Gangania and Kumar [25], is needed in order to prove our
result.

Lemma 2.1. Let f, g ∈ H(D) with the Taylor expansion (2.1) and (2.2) respectively. If
g ≺ f , then

∞∑

n=N

|bn|rn ≤
∞∑

n=N

|an|rn, N ∈ N

holds for |z| = r ≤ 1/3.

The case N = 1 of Lemma 2.1 has been proved by Bhowmik and Das [17, Lemma 1].

3. The family of concave univalent function with opening angle πα

For our further discussions we need to introduce the following family of univalent functions:
A function f : D → C is said to belong to the family of concave univalent functions with
opening angle πα, α ∈ [1, 2], at infinity if f satisfies the following conditions:

(a) f ∈ H(D) is univalent and f(1) = ∞.
(b) f maps D conformally onto a set whose complement with respect to C is convex.
(c) The opening angle of f(D) at ∞ is less than or equal to πα, α ∈ [1, 2].

We denote this family of functions by Ĉ0(α). For such functions, the boundary of f(D) is
contained in a wedge shaped region with opening angle πα but not in any bigger opening

angle. It may be noted that for f ∈ Ĉ0(α), α ∈ [1, 2], the closed set C \ f(D) is convex

and unbounded. Also, we observe that Ĉ0(2) contains the classes Ĉ0(α), α ∈ [1, 2] (see [12]).
When α = 1, the image domain reduces to a convex half plane. Hence we can see that

concave univalent functions are related to the convex functions and every f ∈ Ĉ0(1) is the
convex function. The case α = 2 yields a slit domain. The family of normalized concave

univalent function are denoted by C0(α), i.e., C0(α) := Ĉ0(α) ∩ S. In 2005, Avkhadiev and
Wirths [12] characterized functions in the class C0(α). For this class Fekete-Szegö problem
has been solved by Bhowmik et al. [20]. Results related to Yamashita conjecture on Dirichlet
finite integral for C0(α) has been discussed by Abu-Muhanna and Ponnusamy [6]. For a
detailed discussion about concave functions, we refer to [11, 12, 16, 17, 22] and the references
therein.

The following lemma is actually contained in the proof of [17, Theorem 1] (see also [12,16])
as well and thus we are omitting the proof.

Lemma 3.1. Let f ∈ Ĉ0(α), α ∈ [1, 2], have the expansion (2.1). Then we have the following
inequalities:

(i) |f ′(0)| ≤ 2α d(f(0), ∂f(D)).
(ii) |an| ≤ An|f ′(0)|, for n ≥ 1.
(iii) |f(z)− f(0)| ≤ |f ′(0)|fα(r), where fα(z) is define by

(3.1) fα(z) :=
1

2α

[(
1 + z

1− z

)α

− 1

]
=

∞∑

n=1

Anz
n.

All inequalities are sharp for the function fα(z).
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The following is our first main result, which estimate the Bohr-Rogosinki inequality (2.6)

for the family Ĉ0(α).

Theorem 3.2. Let f, g ∈ H(D), with the Taylor expansion (2.1) and (2.2) respectively, such

that f ∈ Ĉ0(α), α ∈ [1, 2] and g ∈ S(f). Then, for each N ∈ N, the inequality

|g(w0(z))| +
∞∑

n=N

|bn|rn ≤ |f(0)|+ d(f(0), ∂f(D))

holds for |z| = r < min{rNα,m0
, 1/3}, where rNα,m0

is the positive root of the equation FN
α,m0

(x) =
0,

(3.2) FN
α,m0

(x) :=
∞∑

n=N

Anx
n + fα(x

m0)− 1

2α
,

in (0, 1). If rNα,m0
≤ 1/3, the radius rNα,m0

is sharp for the function fα defined in (3.1).

Remark 3.3. Choosing m0 → ∞ and N = 1 in Theorem 3.2, we obtain the Bohr-Rogosinski
radius

r1α,∞ =
21/α − 1

21/α + 1
and hence Theorem 3.2 coincides with [17, Theorem 1]. Moreover, for α = 1, it readily follows

that the Bohr radius for the class Ĉ0(1), which is the class of convex functions, is 1/3 and for

α = 2 the Bohr radius for the class Ĉ0(2) is 3− 2
√
2.

Since Ĉ0(1) contains in the family of univalent convex functions, the following corollary,
for α = 1, covers the particular case of [38, Corollary 1].

Corollary 3.4. Let f, g ∈ H(D), with the Taylor expansion (2.1) and (2.2) respectively, such

that f ∈ Ĉ0(1) and g ∈ S(f). Then, for each N ∈ N, the inequality

|g(w0(z))| +
∞∑

n=N

|bn|rn ≤ |f(0)|+ d(f(0), ∂f(D))

holds for |z| = r < min{rN1,m0
, 1/3}, where rN1,m0

is the positive root of the equation

FN
1,m0

(x) =

∞∑

n=N

xn +
rm0

1− rm0

− 1

2
= 0,

in (0, 1). If rN1,m0
≤ 1/3, the radius rN1,m0

is sharp for the function f1 defined in (3.1).

We observe that the case w0(z) = z in Theorem 3.2 gives the following corollary.

Corollary 3.5. Let f, g ∈ H(D), with the Taylor expansion (2.1) and (2.2) respectively, such

that f ∈ Ĉ0(α), α ∈ [1, 2], g ∈ S(f). Then for each N ∈ N the inequality

|g(z)|+
∞∑

n=N

|bn|rn ≤ |f(0)|+ d(f(0), ∂f(D))

holds for |z| = r < min{rNα,1, 1/3}, where rNα,1 is the positive root of the equation FN
α,1 = 0 is

defined in (3.2). If rNα,1 ≤ 1/3, the radius rNα,1 is sharp for the function fα given by (3.1).
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Theorem 3.6. Let f ∈ Ĉ0(α), α ∈ [1, 2], with the Taylor expansion (2.1). Then for each
N ∈ N, we have

|f(w0(z))|+ |f ′(w1(z))||w2(z)|+
∞∑

n=N

|an||w∗
n(z)| ≤ |f(0)|+ d(f(0), ∂f(D))

for |z| = r ≤ rNα,m0,m1,m2
, where rNα,m0,m1,m2

∈ (0, 1) is the unique positive root of the equation

KN
α,m0,m1,m2

(x) = 0,

(3.3) KN
α,m0,m1,m2

(x) :=

∞∑

n=N

Anx
h(n) + fα(x

m0) + xm2
(1 + xm1)α−1

(1− xm1)α+1
− 1

2α

and An is given in (3.1). The radius rNα,m0,m1,m2
cannot be improved.

If we allow m2 tends to infinity in Theorem 3.6, then it leads to the following result.

Corollary 3.7. For α ∈ [1, 2], let f ∈ Ĉ0(α) with the Taylor expansion (2.1). Then for each
N ∈ N, we have

|f(w0(z))|+
∞∑

n=N

|an||w∗
n(z)| ≤ |f(0)|+ d(f(0), ∂f(D))

for |z| = r ≤ rNα,m0,m1,∞
, where rNα,m0,m1,∞

∈ (0, 1) is the unique positive root of the equation

KN
α,m0,m1,∞(x) = 0 defined in (3.3). The radius rNα,m0,m1,∞ cannot be improved.

Furthermore, the following result can be derived from Corollary 3.7 by lettingm0, m2 → ∞.

Corollary 3.8. Let f ∈ Ĉ0(α), α ∈ [1, 2], with the Taylor expansion (2.1). Then for each
N ∈ D, we have

∞∑

n=N

|an||w∗
n(z)| ≤ d(f(0), ∂f(D)), |z| = r ≤ rNα,∞,m1,∞

,

where rNα,∞,m1,∞
is the unique positive root of the equation KN

α,∞,m1,∞
(x) = 0 defined in (3.3).

The radius rNα,∞,m1,∞
cannot be improved.

4. The family of concave univalent functions with pole p

Motivated by the work of Bhowmik and Das [17], we generalize Bohr-Rogosinski’s phenom-
enon for functions that are subordinate to a meromorphic function defined in the unit disk
D. Recall from [15], the definition of subordination for meromorphic functions is same as for
analytic functions.

Analogous to the family of convex analytic functions, it is interesting to consider the family

of meromorphic concave functions. Let Ĉ := C ∪ {∞} be the extended complex plane. We

denote by Ĉp the class of meromorphic univalent functions f : D → Ĉ which satisfies the
following conditions:

(i) f is analytic in D \ {p} and Ĉ \ f(D) is convex domain.
(ii) f has a simple pole at the point p.
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By a suitable rotation, without loss of generality we can assume that 0 < p < 1. Each function

in Ĉp is called a concave univalent function with a pole p ∈ (0, 1) and has a Taylor series

expansion (2.1) in the disk Dp := {z ∈ D : |z| < p}. Let Cp := {f ∈ Ĉp : f(0) = f ′(0)−1 = 0}.
In 2006, Wirths [47] established the representation formula for functions in Cp. Using this
representation, the discussion based on the Laurent series expansion about the pole p was
started by Bhowmik et al. [19] in 2007, where the authors obtained some coefficient estimates

for the family Ĉp. Such functions are intensively studied by many authors, we refer to the
papers [10, 13, 14, 17, 46] for a detailed discussion about this class.

Using the definition of Bohr-Rogosinski’s phenomenon for analytic functions, we introduce
the notion of Bohr-Rogosinski’s phenomenon for the family S(f), where f is meromorphic
with pole p. We say that S(f) has the Bohr-Rogosinski phenomenon if for any g ∈ S(f) where
f and g have Taylor expansion (2.1) and (2.2) in Dp respectively, if there exists r

N
f , 0 < rNf ≤ p

such that the inequality (2.4) holds. Similar to the analytic case, this can be generalized to
(2.5) in terms of the Schwarz function for further investigation.

In view of [14, Theorem 1] (see also [15, Theorem 8.4]) for normalized functions f ∈ Cp,
we can easily obtain the following result.

Lemma 4.1. Let p ∈ (0, 1). If f ∈ Ĉp and g =
∑∞

n=0 bnz
n ≺ f(z), then

|bn| ≤ |f ′(0)| 1

pn−1

n−1∑

k=0

p2k, n ∈ N.

The inequality is sharp for

(4.1) kp(z) =
pz

(p− z)(1− pz)
=

∞∑

n=1

1− p2n

(1− p2)pn−1
zn =

∞∑

n=1

cn(p)z
n.

Proof. For f ∈ Ĉp, the function defined by F (z) = (f(z) − f(0))/f ′(0) belongs to the class
Cp. Note that f(0) = g(0) and f ≺ g if, and only if,

1

f ′(0)

∞∑

n=1

bnz
n =

g(z)− g(0)

f ′(0)
≺ f(z)− f(0)

f ′(0)
= F (z), z ∈ D.

Therefore, by [14, Theorem 1], we easily get

bn

f ′(0)
≤ 1

pn−1

n−1∑

k=0

p2k.

�

We now state our next result, which deals with the Bohr-Rogosinki phenomenon for the

family Ĉp.

Theorem 4.2. If f ∈ Ĉp, p ∈ (0, 1), and g(z) =
∑∞

n=0 bnz
n ∈ S(f). Then for each N ∈ N

the inequality

(4.2) |g(w0(z))|+
∞∑

n=N

|bn|zn ≤ |f(0)|+ d(f(0), ∂f(D))
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holds for |z| = r ≤ rNp,m0
< p, where rNp,m0

is the positive root of the equation GN
p,m0

(x) = 0,

(4.3) GN
p,m0

(x) :=

∞∑

n=N

1− p2n

(1− p2)pn−1
xn + kp(x

m0)− p

(1 + p)2
.

The radius is sharp for the function f = kp given by (4.1).

Remark 4.3. We first observe that for N = 1 and m0 → ∞, we have

rNp,m0
= (p+ 1/p+ 1)− (

√
p+ 1/

√
p)
√

p+ 1/p

as the root of the equation pr2 − 2(p2 + 1 + p)r + p = 0 and thus Theorem 4.2 contains the
result of [17, Corollary 1] as a special case.

Furthermore, the substitution w0(z) = z bring Theorem 4.2 back into the following form.

Corollary 4.4. If f ∈ Ĉp, p ∈ (0, 1), with the Taylor series expansion (2.1) and g(z) =∑∞
n=0 bnz

n ∈ S(f). Then for each N ∈ N, the inequality

|g(z)|+
∞∑

n=N

|bn|zn ≤ |f(0)|+ d(f(0), ∂f(D))

holds for |z| = r ≤ rNp,1 < p, where rNp,1 is the positive root of the equation GN
p,1(r) = 0 given

by (4.3). The radius is sharp for the function f(z) = kp(z) as defined in (4.1).

5. Proof of the main results

In order to prove our main results, we frequently use a consequence of the Schwarz lemma
which says that “if w ∈ Bm for some m ∈ N, then |w(z)| ≤ |z|m for all z ∈ D.”

5.1. Proof of Theorem 3.2. Let g(z) =
∑∞

n=0 bnz
n ∈ S(f), where f ∈ Ĉ0(α), α ∈ [1, 2].

Then the condition g ≺ f and the growth theorem [16, Corollary 2.4] lead to the fact that

|g(z)− g(0)| ≤ |f ′(0)|fα(r) ≤ 2α d(f(0), ∂f(D))fα(r)

so that (because f(0) = g(0)) for m0 ∈ N, we have

(5.1) |g(w0(z))| ≤ |f(0)|+ 2α d(f(0), ∂f(D))fα(r
m0).

By using Lemma 2.1, we obtain the following inequality

(5.2)

∞∑

n=N

|bn|rn ≤
∞∑

n=N

|an|rn = |f ′(0)|
∞∑

n=N

Anr
n ≤ 2α d(f(0), ∂f(D))

∞∑

n=N

Anr
n

for |z| = r ≤ 1/3. Clearly from (5.1) and (5.2), we deduce that

|g(w0(z))| +
∞∑

n=N

|bn|rn ≤ |f(0)|+ 2α d(f(0), ∂f(D))

( ∞∑

n=N

Anr
n + fα(r

m0)

)

= |f(0)|+ 2α d(f(0), ∂f(D))

(
FN
α,m0

(r) +
1

2α

)

:= ΦN
f,α,m0

(r),

where FN
α,m0

(r) is given by (3.2). Obviously, FN
α,m0

(r) is an increasing function of r on [0, 1).

Moreover, FN
α,m0

(0) < 0 and limr→1 F
N
α,m0

(r) = +∞ and hence the equation FN
α,m0

(r) = 0 has

the unique positive root rNα,m0
in (0, 1). In order to complete the proof, it suffices to show

that ΦN
f,α,m0

(r) ≤ |f(0)|+ d(f(0), ∂f(D)) holds for |z| = r ≤ {rNα,m0
, 1/3}.
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If rNα,m0
≤ 1/3, then we show that rNα,m0

cannot be improved. For α ∈ [1, 2], consider
g = f = fα. Then, for z = r,

|f(w0(r))|+
∞∑

n=N

|an|rn = |fα(0)|+ 2α d(fα(0), ∂fα(D))

(
fα(r

m0) +

∞∑

n=N

Anr
n

)

> d(fα(0), ∂fα(D)) =
1

2α

holds for r > rNα,m0
and hence the Bohr radius rNα,m0

is sharp. �

5.2. Proof of Theorem 3.6. Let f ∈ C0(α) and w0 ∈ B0. Then it follows, for |z| = r < 1,
from Lemma 3.1 and the classical the Schwarz lemma that

|f(w0(z))| ≤ |f(0)|+ |f ′(0)|
∞∑

n=1

An|w0(z)|n

= |f(0)|+ 2α d(f(0), ∂f(D))fα(r
m0).(5.3)

On the other hand, the Distortion theorem [16, Corollary 2.3] leads to

|f ′(w1(z))||w2(z)| ≤ |f ′(0)| (1 + |w1(z)|)α−1

(1− |w1(z)|)α+1
rm2

≤ 2α d(f(0), ∂f(D))
(1 + rm1)α−1

(1− rm1)α+1
rm2 .(5.4)

The last inequality follows because u(x) = (1+ x)α−1/(1− x)α+1 is an increasing function on
[0, 1]. Also, from Lemma 3.1(ii) we can write

∞∑

n=N

|an||w∗
n(z)| ≤ |f ′(0)|

∞∑

n=N

An|w∗
n(z)|

≤ 2α d(f(0), ∂f(D))

∞∑

n=N

Anr
bn .(5.5)

Thus combining the equations (5.3), (5.4), and (5.5) we obtain

|f(w0(z))|+|f ′(w1(z))||w2(z)| +
∞∑

n=N

|an||w∗
n(z)|

≤ |f(0)|+ 2α d(f(0), ∂f(D))

(
fα(r

m0) +
∞∑

n=N

Anr
bn +

(1 + rm1)α−1

(1− rm1)α+1
rm2

)

= |f(0)|+ 2α d(f(0), ∂f(D))

(
KN

α,m0,m1,m2
(r) +

1

2α

)
,(5.6)

where

KN
α,m0,m1,m2

(r) = fα(r
m0) +

∞∑

n=N

Anr
bn +

(1 + rm1)α−1

(1− rm1)α+1
rm2 − 1

2α
.

Note that the functionKN
α,m0,m1,m2

(r) is a strictly increasing function of r in (0, 1),KN
α,m0,m1,m2

(0)

is negative, and limr→1K
N
α,m0,m1,m2

(r) = ∞ and hence there exists the unique positive root

say rNα,m0,m1,m2
of the equation (3.3) in (0, 1). Thus the last quantity of the inequality (5.6) is

less than or equal to |f(0)| + d(f(0), ∂f(D)) for r ≤ rNα,m0,m1,m2
and this completes the first

part of the proof.
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Next we show that the radius rNα,m0,m1,m2
is sharp. Let wi(z) = zmi (i = 0, 1, 2), w∗

n(z) =

zh(n), and f = fα. Simple computation shows that

|fα(w0(z))|+ |f ′
α(w1(z))||w2(z)|+

∞∑

n=N

An|w∗
n(z)| = |fα(zm0)|+ |f ′

α(z
m1)|rm2 +

∞∑

n=N

Anr
h(n).

After substituting z = r in the above equation, we obtain

|fα(w0(r))|+ |f ′
α(w1(r))||w2(r)|+

∞∑

n=N

An|w∗
n(r)|

= |fα(0)|+ 2α d(fα(0), ∂fα(D))

(
KN

α,m0,m1,m2
(r) +

1

2α

)

> d(fα(0), ∂fα(D)) =
1

2α

which holds if, and only if, r > rNα,m0,m1,m2
. This completes the proof. �

5.3. Proof of Theorem 4.2. For a given f ∈ Ĉp, let g(z) =
∑∞

n=0 bnz
n ∈ S(f). Let the

Koebe transform of f ,

F (z) =

f

(
z + a

1 + az

)
− f(a)

(1− |a|2)f ′(a)

for any a ∈ D\{p}. Since for some t ∈ R, e−itF (zeit) ∈ C| p−a

1−ap
|. Therefore, from [46], we have

(5.7) d(f(0), ∂f(D)) ≥ (p/(1 + p)2)|f ′(0)|.
As F (z) = (f(z)− f(0))/f ′(0) ∈ Cp, it follows that (see [26])

(5.8) |an| ≤ |f ′(0)| 1− p2n

(1− p2)pn−1
, for all n ≥ 1.

In view of g ≺ f and (5.8) we have the following inequality

|g(z)− g(0)| ≤ |f(z)− f(0)| ≤
∞∑

n=1

|an|rn ≤ kp(r) = |f ′(0)|
∞∑

n=1

1− p2n

(1− p2)pn−1
rn.

Equivalently, for w0 ∈ Bm0
, we obtain

(5.9) |g(w0(z))| ≤ |f(0)|+ |f ′(0)|
∞∑

n=1

1− p2n

(1− p2)pn−1
rm0n = |f(0)|+ |f ′(0)|kp(rm0).

Also, Lemma 4.1 gives that

(5.10)
∞∑

n=N

|bn|rn ≤ |f ′(0)|
∞∑

n=N

1− p2n

(1− p2)pn−1
rn.

Thus, using (5.9) and (5.10) together with inequality (5.7), we obtain

|g(w0(z))|+
∞∑

n=N

|bn|rn ≤ |f(0)|+ (1 + p)2

p
d(f(0), ∂f(D))

( ∞∑

n=N

1− p2n

(1− p2)pn−1
rn + kp(r

m0)

)

= |f(0)|+ (1 + p)2

p
d(f(0), ∂f(D))

(
GN

p,m0
(r) +

p

(1 + p)2

)

:= TN
f,p,m0

(r),
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where GN
p,m0

(r) is given by (4.3). Note that GN
p,m0

(0) < 0 and since

∞∑

n=N

1− p2n

(1− p2)pn−1
pn =

p(1− p2N )

(1− p2)
+

∞∑

n=N+1

p(1− pn)(1 + pn)

(1− p2)
≥

∞∑

n=N+1

p(1 + pn)

diverges to infinity, we find that GN
p,m0

(p) > 0 while GN
p,m0

(r) is strictly increasing in (0, 1).

Therefore we conclude that the equation (4.3) has the unique positive root say rNp,m0
, 0 <

rNp,m0
< p in (0, 1). This shows that TN

f,p,m0
(r) ≤ |f(0)|+ d(f(0), ∂f(D)), for r ≤ rNp,m0

.

For the equality, we consider the function w0(z) = zm0 and f = g = kp given by (4.1). For

this function it is well known that Ĉ \ kp(D) = [−p/(1 − p)2,−p/(1 + p)2] (see [15, p. 137])
and hence we obtain d(kp(0), ∂kp(D)) = p/(1 + p)2. Taking z = r, then the left side of the
inequality (4.2) reduces to

|kp(rm0)|+
∞∑

n=N

1− p2n

(1− p2)pn−1
rn

= |kp(0)|+
(1 + p)2

p
d(kp(0), ∂kp(D))

(
kp(r

m0) +

∞∑

n=N

1− p2n

(1− p2)pn−1
rn
)

> d(kp(0), ∂kp(D)) =
p

(1 + p)2
,

which holds if, and only if, r > rNp,m0
, which means that the number rNp,m0

cannot be improved.
This shows the sharpness. �
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[45] I. Schur and G. Szegö, Über die Abschnitte einer im Einheitskreise beschrankten Potenzreihe, Sitz.-
Ber. Preuss. Acad. Wiss. Berlin Phys.-Math. Kl. (1925) 545–560.

[46] K.-J. Wirths, The Koebe domain for concave univalent functions, Serdica Math. J. 29 (2003), 355–360.
[47] K.-J. Wirths, On the residuum of concave univalent functions, Serdica Math. J. 32 (2006), 209–214.

Vasudevarao Allu, School of Basic Sciences, Indian Institute of Technology Bhubaneswar,

Bhubaneswar-752050, Odisha, India.

Email address : avrao@iitbbs.ac.in

Vibhuti Arora, School of Basic Sciences, Indian Institute of Technology Bhubaneswar,

Bhubaneswar-752050, Odisha, India.

Email address : vibhutiarora1991@gmail.com


	1. Introduction
	2. Preliminaries
	2.1. Bohr phenomenon and Bohr-Rogosinski phenomenon
	2.2. Bohr-Rogosinski type inequalities involving Schwarz functions

	3. The family of concave univalent function with opening angle 
	4. The family of concave univalent functions with pole p
	5. Proof of the main results
	5.1. Proof of Theorem 3.2
	5.2. Proof of Theorem 3.6
	5.3. Proof of Theorem 4.2

	References

